Announcements

• Last day of classes, you’ve almost made it!

• Final exam is 6-8pm on December 22

• Today is the last day of office hours

• We will still respond on Ed Discussion
Lecture 27: Review Part 2

CIS 4190/5190
Fall 2022
Final Exam Tentative Format

• Similar length/format to the practice exam
 • ≈ 15 questions in increasing difficulty
 • Fewer questions but more parts per question
 • Will require **less memorization** than the practice exam
 • But no cheat sheet

• Make sure you know the written homework well!
 • Also questions from practice final exam that we cover today
Final Exam Format

• We will provide any **complicated** equations necessary
 • **You do not need to know:** Entropy, sigmoid function, logistic NLL, neural network model families
 • **You should know:** Linear regression model family, decision tree model family
 • **You should know:** How to compute a derivative, probability identities, etc.
 • **You should know:** K-means clustering algorithm structure, gradient descent algorithm structure, AdaBoost structure (but not the detailed formulas)

• You should also know how different design choices/hyperparameters affect performance of each algorithm
 • E.g., k in kNN, λ in linear/logistic regression, feature dimension d, number of examples n, AdaBoost iterations T, random forest base models k, etc.
Incomplete List of Potential Topics

• **Models/algorithms**
 • What is the model family? How does its decision boundary look?
 • What is the loss function? How does it compare to the “true” loss (e.g., NLL vs. accuracy for logistic regression)?
 • What is the optimizer? Is it guaranteed to find the global optimizer?
Incomplete List of Potential Topics

- **Models/Algorithms**
 - Linear/logistic regression
 - KNNs
 - Decision trees
 - Random forests, gradient boosted decision trees
 - Feedforward neural networks, convolutional neural networks
 - K-means clustering
 - PCA
 - Bayesian networks
 - Q iteration, Q learning, epsilon-greedy exploration
 - Collaborative filtering
Incomplete List of Potential Topics

• **Concepts**
 • Supervised vs. unsupervised vs. reinforcement learning
 • Loss minimization framework
 • Maximum likelihood framework
 • Bias-variance tradeoff
 • Regularization
 • Exploration in reinforcement learning
 • ML ethics
Good Luck!!!