Announcements

* Homework 1 due Wednesday at 8pm
* Quiz 1 due Thursday at 8pm

 Office hours posted on Course Website (starting today!)
 See announcement on Ed Discussion
e Virtual office hours held via OHQ

* Waitlist update



Lecture 3: Linear Regression (Part 2)

CIS 4190/5190
Fall 2022



Recap: Linear Regression

* Input: Dataset Z = { (x4, V1), ..., (%, Vo) }
* Compute

3 .1
p(Z) = g min =30, (v = B0
ER

* Output: 3, (x) = B(Z)Tx
* Discuss algorithm for computing the minimal [ later today



Recap: Views of ML

Function Approximation

Loss Minimization

Classification

Supervised Learning

Unsupervised Learning

Reinforcement Learning



Recap: Loss Minimization View of ML

* To design an ML algorithm:
* Choose model family F = {fﬁ}ﬁ (e.g., linear functions)

* Choose loss function L(f; Z) (e.g., MSE loss)

* Resulting algorithm:

p(Z) = arg min L(S; Z)
B



Recap: Bias-Variance Tradeoft

* Overfitting (high variance) e Underfitting (high bias)
* High capacity model capable of * Low capacity model that can only
fitting complex data fit simple data
* |Insufficient data to constrain it  Sufficient data but poor fit
Q
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f,B (X) -
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Recap: Bias-Variance Tradeoft

 Underfitting Ideal Overfitting

Loss

—_— » Training loss

Capacity
(not actually 1D!)

Slide by Padhraic Smyth, UClrvine



Recap: Bias-Variance Tradeoft

variance




Recap: Bias-Variance Tradeoff (Overfitting)

variance

f i total loss




Recap: Bias-Variance Tradeoff (Underfitting)

F

varlance

total loss



Recap: Bias-Variance Tradeoff (Ideal)

variance

total loss



Agenda

* Regularization
» Strategy to address bias-variance tradeoff
* By example: Linear regression with L, regularization

* Minimizing the MSE Loss
* Closed-form solution
* Gradient descent



Recall: Mean Squared Error Loss

* Mean squared error loss for linear regression:

1 n
LB Z) = ) 0= FTx)?



Linear Regression with L, Regularization

 Original loss + regularization:

1 n
LB Z) == i — BT + - 1613

l%l d
1
==X 0= FTx)? 42 ) B
i=1 j=1

1 is a hyperparameter that must be tuned (satisfies 1 = 0)



Intuition on L, Regularization

* Equivalently the L, norm of [5:
d
> B2 = 1813 = 115 — Ol13
j=1

* |l.e., “pulling” [ to zero
* “Pulls” more as /1 becomes larger



Intuition on L, Regularization

* Why does it help?
* Encourages “simple” functions
* E.g.,as 1 > oo,0btainff =0
* Use / to tune bias-variance tradeoff



Bias-Variance Tradeoff for Regularization

+ Underfitting Ideal Overfitting

o

rrrrrr

Loss

/ festloss

— » Training loss

Capacity A



Intuition on L, Regularization

* More precisely: Restricts directions of 5 with little variation in data
e Little variation in data = highly varying loss

* Example:
* Suppose that x;; = 0.36 for all training examples x;
* Then, we cannot learn what would happen if x; = 1.29 (for a new input x)

* l.e., hard to estimate f3;

* How does L, regularization help?



Intuition on L, Regularization

Iip Minimizes
original loss
Loss varies greatly (orif 1 = 0)
in this direction . _ "
—> Penalizes more Minimizes At th.'s point, the
gradients are equal
full loss . L
(with opposite sign)
* Tradeoff depends on
b1 choice of /1

Minimizes
regularization term
(orif A > o)

n d
1
LB Z) =~ 0= BTx)? +71 )
i=1 j=1



Regularization and Intercept Term

* If using intercept term (¢p(x) = [1 x; - Xa]'), no penalty on B;:

n d
1
L(B;Z) = EZ(%' — B x;)? + /12,3]'2
i=1 =2+

Sum from j = 2

-As,l—>oo,wehave,82 — =,Bd =0
* |.e., only fit £, (which yields ;(2) = mean({y;};-,))




Feature Standardization

* Unregularized linear regression is invariant to feature scaling
* Suppose we scale x;; < 2x;; for all examples x;
* Without regularization, simply use ; < [;/2 to obtain equivalent solution

: Bj
In particular, e 2xij = Bj - Xij

* Not true for regularized regression!
* Penalty (,8]-/2)2 is scaled by 1/4 (not cancelled out!)

n d
1
L(B;Z) = EZ(yi — B x;)? + /12,3]'2
i=1 =2



Feature Standardization

* Unregularized linear regression is invariant to feature scaling
* Suppose we scale x;; < 2x;; for all examples x;
* Without regularization, simply use ; < [;/2 to obtain equivalent solution

. Bj
* |n particular, Zj-l:l?] ' ZXij — ?:1,3j * Xij

* Not true for regularized regression!
* Penalty (,8]-/2)2 is scaled by 1/4 (not cancelled out!)

1 n
LB Z) = ) (i = BT + A(BF + -+ B7 4+ 53)
=1



Feature Standardization

* Unregularized linear regression is invariant to feature scaling
* Suppose we scale x;; < 2x;; for all examples x;
* Without regularization, simply use ; < [;/2 to obtain equivalent solution

. Bj
* |n particular, Zj-l:l?] ' inj — ?:1,3j * Xij

* Not true for regularized regression!
* Penalty (,8]-/2)2 is scaled by 1/4 (not cancelled out!)

2

LB Z) =~ (= BTx)? + (ﬁ% L - ﬁé)
=1



Feature Standardization

* Solution: Rescale features to zero mean and unit variance

Xij—Hj _1ynN _1ywN 2
Xij < o/ Hj = NZi:l Xij  0j = Nzl’:l(xi,j —.Uj)

* Note: When using intercept term, do not rescale x; = 1
* Can be sensitive to outliers (fix by dropping outliers)

* Must use same transformation during training and for prediction
* Compute on standardization on training data and use on test data



General Regularization Strategy

 Original loss + regularization:

Loyew(B;Z) = L(B;Z) + A+ R(P)

* Offers a way to express a preference “simpler” functions in family
* Typically, regularization is independent of data



Hyperparameter Tuning

* /1 is a hyperparameter that must be tuned (satisfies 1 = 0)

* Naive strategy: Try a few different candidates /; and choose the one
that minimizes the test loss

* Problem: We may overfit the test set!
* Major problem if we have more hyperparameters



Training/Val/Test Split

* Goal: Choose best hyperpar

ameter /A

e Can also compare different model families, feature maps, etc.

 Solution: Optimize /4 on a held-out validation data

* Rule of thumb: 60/20/20 split

Given data Z

>

Training data Ziy,in

Val data Z,,,;

Test data Ziagt




Basic Cross Validation Algorithm

* Step 1: Split Z into Z i1, Zyal, and Ziast

Training data Zirain

Val data Z,

Test data Ziast

e Step 2: Fort € {1, ..., h}:

« Step 2a: Run linear regression with Z,,.;, and A, to obtain £ (Z; 41, A¢)
* Step 2b: Evaluate validation loss Lf,al = L(B(Ztrain, At); Zval)

* Step 3: Use best A,

« Choose t' = arg min; L, with lowest validation loss
* Re-run linear regression with Z;,,;, and A, to obtain B(Zirain, Agr)




Alternative Cross-Validation Algorithms

 If Z is small, then splitting it can reduce performance
* Can use Zi,4in U Zy4 in Step 3

 Alternative: k-fold cross-validation (e.g., k = 3)
* Split Z into Z,,i, and Ziast
* Split Z;.,i, into k disjoint sets Z__;, and let Z;..;,, = Ugrsg vl
» Use A’ that works best on average across s € {1, ..., k} with Z i,

* Chooses better A’ than above strategy



Example: 3-Fold Cross Validation

3

Training data Z; ., Val data Z;

Test data Ziast

Train data Z2,;

Val data Zéal Train data Zéal

Test data Ziast

Val data Zy,

Train data Zgain

Test data Ziast

Train data Zirain

Test data Ziegt




k-Fold Cross-Validation

 If Z is small, then splitting it can reduce performance
* Can use Zi,4in U Zy4 in Step 3

 Alternative: k-fold cross-validation (e.g., k = 3)
* Split Z into Z,,i, and Ziast
* Split Z;.,i, into k disjoint sets Z__;, and let Z;..;,, = Ugrsg vl
* Use A’ that works best on average across s € {1, ..., k} with Z i,

* Chooses better A’ than above strategy

 Compute vs. accuracy tradeoff
e Ask —» N, the model becomes more accurate
* But algorithm becomes more computationally expensive



Housing Dataset

* Sales of residential property in Ames, lowa from 2006 to 2010
* Examples: 1,022
* Features: 79 total (real-valued + categorical), some are missing!
* Label: Sales price

MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape "’ MoSold YrSold SaleType SaleCondition SalePrice
20 RL 80.0 10400 Pave  NaN Reg ' 5 2008 WD Normal 174000

180 RM 35.0 3675 Pave NaN Reg 5 2006 WD Normal 145000

60 FV 72.0 8640 Pave NaN Reg 6 2010 Con Normal 215200

20 RL 84.0 11670 Pave NaN IR1 3 2007 WD Normal 320000

60 RL 43.0 10667 Pave NaN IR2 4 2009 ConLw Normal 212000

80 RL 82.0 9020 Pave NaN Reg 6 2008 WD Normal 168500

60 RL 70.0 11218 Pave NaN Reg 5 2010 WD Normal 189000

80 RL 85.0 13825 Pave NaN Reg ™~ 12 2008 WD Normal 140000

60 RL NaN 13031 Pave NaN IR2 7 7 2006 WD Normal 187500

Data from: De Cock. Journal of Statistics Education 19(3), 2011



Housing Dataset

* 438 test examples, preprocessed same as training data
* Sorted by prediction error
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Housing Dataset

« Quadratic features, feature standardization, L, regularization

100000

50000

0

~500001 [

—100000 4

Prediction error ($)

new model
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—200000 1 : : : : : : : :
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Test instance




L, Regularization

e Sparsity: Can we minimize ||/ ||, = |{] | B # O}|?
* That is, the number of nonzero components of 3
* Improves interpretability (automatic feature selection!)
* Also serves as a strong regularizer (n~slogd, where s = ||/]|o)

* Challenge: ||/ ]|, is not differentiable, making it hard to optimize

* Solution
* We can instead use an L; norm as the regularizer!
* Still harder to optimize than L, norm, but at least it is convex



Intuition on L4 Regularization

,32 Minimizes
original loss
(orif A = 0)

Minimizer of full loss at
corner = sparse ([, = 0)!

Minimizes f1
regularization term
(orif A — o)

" d
1
L(B;Z) = EZ(% —Bx;)? + AZ"BJ‘
i=1 J=1



L, Regularization for Feature Selection

* Step 1: Construct a lot of features and add to feature map

* Step 2: Use L, regularized regression to “select” subset of features
* l.e., coefficient f; # 0 - feature j is selected)

* Optional: Remove unselected features from the feature map and run
vanilla linear regression (a.k.a. ordinary least squares)



Agenda

* Regularization
» Strategy to address bias-variance tradeoff
* By example: Linear regression with L, regularization

* Minimizing the MSE Loss
* Closed-form solution
e Stochastic gradient descent



Minimizing the MSE Loss

* Recall that linear regression minimizes the loss
n
1 T. 2
L(5;72) = EZ(YL’ — B x;)
i=1

* Closed-form solution: Compute using matrix operations

* Optimization-based solution: Search over candidate [



Vectorizing Linear Regression



Vectorizing Linear Regression

_fﬁ(x1)_

_f,B (.xn)_



Vectorizing Linear Regression

fp(x1) BT,

_f,B (.xn)_ L T.xn-



Vectorizing Linear Regression
o _
Zﬁ]xlj
) :
ZIB] n]

fp(x1) BT,

_f,B (.xn)_ L T.xn-




Vectorizing Linear Regression

_fﬁ(x1)_

_fﬁ (.xn)_

Z ﬁjxu_

j=1




Vectorizing Linear Regression

_fﬁ(x1)_

_fﬁ (.xn)_

Z ﬁjxu_

j=1




Vectorizing Linear Regression

_fﬁ(x1)_

_fﬁ (.xn)_

Z ﬁjxu_

j=1

18,

Xp



Vectorizing Linear Regression

Z ﬁjxu_

-fﬁ (1) BT x,] j=1 X1,1

_fﬁ (.xn)_ -,BTxn- d An,1
2 Z g
_]=1
i

Vn.




Vectorizing Linear Regression

i i z Bixy ;
fﬁ(xl) _IBT.X'l- j=1 _xl.,l .X,'l.’d‘ ‘181'
_fﬁ(.xn)_ ) -,BT.xn_ B i | - Xn1 °° Xpd. _le_
bjxn
2 & J7n,j

Y1

. Summary: /' = X[




Vectorizing Linear Regression

Vi

Vn.

By
Ba.




Vectorizing Mean Squared Error



Vectorizing Mean Squared Error

L(S;7)



Vectorizing Mean Squared Error

1 n
L(p;7) = EZ(%' — B x;)?
i=1



Vectorizing Mean Squared Error

J’1 -fﬁ(xl)_
yn _f,B(.xn)_
1% 1 /
L 2) == ) (i = BTx)? =~ IIY = XBI



Intuition on Vectorized Linear Regression

* Rewriting the vectorized loss:

n-L(B;Z) =Y =XBl5 = IVII5 =2V "XB + IXBI3
=|IY|lz-2Y"XB + BT (XTX)P

* Quadratic function of 8 with leading “coefficient” X ' X

* In one dimension, “width” of parabola ax? + bx + cisa ™'

* In multiple dimensions, “width” along direction v; is /1{1, where v; is an
eigenvector of X ' X with eigenvalue /;



Intuition on Vectorized Linear Regression

B2

Minimizer £ (2)

b1

Directions/magnitudes are given by eigenvectors/eigenvalues of X ' X



Strategy 1: Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VoL(B(2);Z2) =0




Strategy 1: Closed-Form Solution
* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VsL(B;Z) =0




Strategy 1: Closed-Form Solution
* The gradient is

VeL(B;7)



Strategy 1: Closed-Form Solution
* The gradient is

1
VeL(B;2) = Vg —IIY = XS5



Strategy 1: Closed-Form Solution
* The gradient is

VoL(B;7) = Vg~V = XBlI3 = Vs~ (¥ = XR)T(Y — XP)

= 2 [V (v = XB)T](V = XB)

= —2XT(Y = Xp)

n

= —2XTY +2XTXp

n



Aside: Intuition on Computing Gradients

* Warning: Intuitive but easy to make mistakes

* The loss is

Y = X(B+dp)lls

(v = XB) — XdB13
Y = XBlIZ — = (v — XB)TXdB + —l|XdBII3
(B; 7) — — (v = Xp)TXdf + O(lldBI3)

L(p+dp;7) =

~ S|RrS|rS|r

= VBL(,B; Z)T Coefficient of dff term



Intuition on the Gradient

* By linearity of the gradient, we have
n n
VeL(B;7) = z Ve (v, — B x)* = z 2(y; = B x)x;
i=1 i=1

* The gradient for a single term is
V(i = Bx)* = 2(y; — B x)x;

* |.e., the current error y; — " x; times the feature x;



Strategy 1: Closed-Form Solution
* The gradient is
VoL(B;Z) = Vg —|lY — XBII3 = —2XTY + 2XT X

» Setting Vs L(f;Z) = 0, we have X X[ = XY



Strategy 1: Closed-Form Solution

* Setting V;L(f;Z) = 0, we have X "X = XY

« Assuming X ' X is invertible, we have

B(Z)=XTX)TXTY



Note on Invertibility

* Closed-form solution only unique if X ' X is invertible

* Otherwise, multiple solutions existto X ' X = XY
* Intuition: Underconstrained system of linear equations

o 1=

* In this case, any 5, = 2 — 3, is a solution



When Can this Happen?

* Casel
* Fewer data examples than feature dimension (i.e., n < d)
* Solution: Remove featuressod < n
* Solution: Collect more data untild <n

e Case 2: Some feature is a linear combination of the others
* Special case (duplicated feature): For some j and j', x; ; = x; ; forall i
* Solution: Remove linearly dependent features
* Solution: Use L, regularization



Shortcomings of Closed-Form Solution

« Computing £(Z) = (X "X)"'X Y can be challenging

» Computing (X"X) 1is 0(d?)
* d = 10* features = 0(10%%)
* Even storing X ' X requires a lot of memory

* Numerical accuracy issues due to “ill-conditioning”
* X "X is “barely” invertible

* Then, (X "X) ™! has large variance along some dimension
* Regularization helps (more on this later)



