Announcements

- Homework 1 due Wednesday at 8pm
- Quiz 1 due Thursday at 8pm
- Office hours posted on Course Website (starting today!)
- See announcement on Ed Discussion
- Virtual office hours held via OHQ
- Waitlist update

Lecture 3: Linear Regression (Part 2)

CIS 4190/5190
Fall 2022

Recap: Linear Regression

- Input: Dataset $Z=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Compute

$$
\hat{\beta}(Z)=\underset{\beta \in \mathbb{R}^{d}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}
$$

- Output: $f_{\widehat{\beta}(Z)}(x)=\hat{\beta}(Z)^{\top} x$
- Discuss algorithm for computing the minimal β later today

Recap: Views of ML

Recap: Loss Minimization View of ML

- To design an ML algorithm:
- Choose model family $F=\left\{f_{\beta}\right\}_{\beta}$ (e.g., linear functions)
- Choose loss function $L(\beta ; Z)$ (e.g., MSE loss)
- Resulting algorithm:

$$
\hat{\beta}(Z)=\underset{\beta}{\arg \min } L(\beta ; Z)
$$

Recap: Bias-Variance Tradeoff

- Overfitting (high variance)

- High capacity model capable of fitting complex data
- Insufficient data to constrain it

- Underfitting (high bias)

- Low capacity model that can only fit simple data
- Sufficient data but poor fit

Recap: Bias-Variance Tradeoff

Recap: Bias-Variance Tradeoff

Recap: Bias-Variance Tradeoff (Overfitting)

Recap: Bias-Variance Tradeoff (Underfitting)

Recap: Bias-Variance Tradeoff (Ideal)

Agenda

- Regularization
- Strategy to address bias-variance tradeoff
- By example: Linear regression with L_{2} regularization
- Minimizing the MSE Loss
- Closed-form solution
- Gradient descent

Recall: Mean Squared Error Loss

- Mean squared error loss for linear regression:

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}
$$

Linear Regression with $\boldsymbol{L}_{\mathbf{2}}$ Regularization

- Original loss + regularization:

$$
\begin{aligned}
L(\beta ; Z) & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda \cdot\|\beta\|_{2}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{1}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda \sum_{j=1}^{d} \beta_{j}^{2}
\end{aligned}
$$

- λ is a hyperparameter that must be tuned (satisfies $\lambda \geq 0$)

Intuition on $\boldsymbol{L}_{\mathbf{2}}$ Regularization

- Equivalently the L_{2} norm of β :

$$
\sum_{j=1}^{d} \beta_{j}^{2}=\|\beta\|_{2}^{2}=\|\beta-0\|_{2}^{2}
$$

- I.e., "pulling" β to zero
- "Pulls" more as λ becomes larger

Intuition on $\boldsymbol{L}_{\mathbf{2}}$ Regularization

- Why does it help?
- Encourages "simple" functions
- E.g., as $\lambda \rightarrow \infty$, obtain $\beta=0$
- Use λ to tune bias-variance tradeoff

Bias-Variance Tradeoff for Regularization

Intuition on $\boldsymbol{L}_{\mathbf{2}}$ Regularization

- More precisely: Restricts directions of β with little variation in data
- Little variation in data \rightarrow highly varying loss
- Example:
- Suppose that $x_{i j}=0.36$ for all training examples x_{i}
- Then, we cannot learn what would happen if $x_{j}=1.29$ (for a new input x)
- I.e., hard to estimate β_{j}
- How does L_{2} regularization help?

Intuition on $\boldsymbol{L}_{\mathbf{2}}$ Regularization

- At this point, the gradients are equal (with opposite sign)
- Tradeoff depends on choice of λ

Regularization and Intercept Term

- If using intercept term $\left(\phi(x)=\left[\begin{array}{llll}1 & x_{1} & \ldots & x_{d}\end{array}\right]^{\top}\right)$, no penalty on β_{1} :

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda \sum_{j=2}^{d} \beta_{j}^{2} \text { Sum from } j=2
$$

- As $\lambda \rightarrow \infty$, we have $\beta_{2}=\cdots=\beta_{d}=0$
- I.e., only fit $\beta_{1}\left(\right.$ which yields $\left.\hat{\beta}_{1}(Z)=\operatorname{mean}\left(\left\{y_{i}\right\}_{i=1}^{n}\right)\right)$

Feature Standardization

- Unregularized linear regression is invariant to feature scaling
- Suppose we scale $x_{i j} \leftarrow 2 x_{i j}$ for all examples x_{i}
- Without regularization, simply use $\beta_{j} \leftarrow \beta_{j} / 2$ to obtain equivalent solution
- In particular, $\frac{\beta_{j}}{2} \cdot 2 x_{i j}=\beta_{j} \cdot x_{i j}$
- Not true for regularized regression!
- Penalty $\left(\beta_{j} / 2\right)^{2}$ is scaled by $1 / 4$ (not cancelled out!)

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda \sum_{j=2}^{d} \beta_{j}^{2}
$$

Feature Standardization

- Unregularized linear regression is invariant to feature scaling
- Suppose we scale $x_{i j} \leftarrow 2 x_{i j}$ for all examples x_{i}
- Without regularization, simply use $\beta_{j} \leftarrow \beta_{j} / 2$ to obtain equivalent solution
- In particular, $\sum_{j=1}^{d} \frac{\beta_{j}}{2} \cdot 2 x_{i j}=\sum_{j=1}^{d} \beta_{j} \cdot x_{i j}$
- Not true for regularized regression!
- Penalty $\left(\beta_{j} / 2\right)^{2}$ is scaled by $1 / 4$ (not cancelled out!)

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda\left(\beta_{2}^{2}+\cdots+\beta_{j}^{2}+\cdots+\beta_{d}^{2}\right)
$$

Feature Standardization

- Unregularized linear regression is invariant to feature scaling
- Suppose we scale $x_{i j} \leftarrow 2 x_{i j}$ for all examples x_{i}
- Without regularization, simply use $\beta_{j} \leftarrow \beta_{j} / 2$ to obtain equivalent solution
- In particular, $\sum_{j=1}^{d} \frac{\beta_{j}}{2} \cdot 2 x_{i j}=\sum_{j=1}^{d} \beta_{j} \cdot x_{i j}$
- Not true for regularized regression!
- Penalty $\left(\beta_{j} / 2\right)^{2}$ is scaled by $1 / 4$ (not cancelled out!)

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda\left(\beta_{2}^{2}+\cdots+\frac{\beta_{j}^{2}}{4}+\cdots+\beta_{d}^{2}\right)
$$

Feature Standardization

- Solution: Rescale features to zero mean and unit variance

$$
x_{i, j} \leftarrow \frac{x_{i, j}-\mu_{j}}{\sigma_{j}} \quad \mu_{j}=\frac{1}{N} \sum_{i=1}^{N} x_{i, j} \quad \sigma_{j}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i, j}-\mu_{j}\right)^{2}
$$

- Note: When using intercept term, do not rescale $x_{1}=1$
- Can be sensitive to outliers (fix by dropping outliers)
- Must use same transformation during training and for prediction
- Compute on standardization on training data and use on test data

General Regularization Strategy

- Original loss + regularization:

$$
L_{\text {new }}(\beta ; Z)=L(\beta ; Z)+\lambda \cdot R(\beta)
$$

- Offers a way to express a preference "simpler" functions in family
- Typically, regularization is independent of data

Hyperparameter Tuning

- λ is a hyperparameter that must be tuned (satisfies $\lambda \geq 0$)
- Naïve strategy: Try a few different candidates λ_{t} and choose the one that minimizes the test loss
- Problem: We may overfit the test set!
- Major problem if we have more hyperparameters

Training/Val/Test Split

- Goal: Choose best hyperparameter λ
- Can also compare different model families, feature maps, etc.
- Solution: Optimize λ on a held-out validation data
- Rule of thumb: 60/20/20 split

Given data Z

Training data $Z_{\text {train }}$
Val data $Z_{\text {val }}$
Test data $Z_{\text {test }}$

Basic Cross Validation Algorithm

- Step 1: Split Z into $Z_{\text {train }}, Z_{\text {val }}$, and $Z_{\text {test }}$

Training data $Z_{\text {train }}$	Val data $Z_{\text {val }}$	Test data $Z_{\text {test }}$

- Step 2: For $t \in\{1, \ldots, h\}$:
- Step 2a: Run linear regression with $Z_{\text {train }}$ and λ_{t} to obtain $\hat{\beta}\left(Z_{\text {train }}, \lambda_{t}\right)$
- Step 2b: Evaluate validation loss $L_{\text {val }}^{t}=L\left(\hat{\beta}\left(Z_{\text {train }}, \lambda_{t}\right) ; Z_{\text {val }}\right)$
- Step 3: Use best λ_{t}
- Choose $t^{\prime}=\arg \min _{t} L_{\text {val }}^{t}$ with lowest validation loss
- Re-run linear regression with $Z_{\text {train }}$ and $\lambda_{t^{\prime}}$ to obtain $\hat{\beta}\left(Z_{\text {train }}, \lambda_{t^{\prime}}\right)$

Alternative Cross-Validation Algorithms

- If Z is small, then splitting it can reduce performance
- Can use $Z_{\text {train }} \cup Z_{\text {val }}$ in Step 3
- Alternative: k-fold cross-validation (e.g., $k=3$)
- Split Z into $Z_{\text {train }}$ and $Z_{\text {test }}$
- Split $Z_{\text {train }}$ into k disjoint sets $Z_{\text {val }}^{S}$, and let $Z_{\text {train }}^{S}=\mathrm{U}_{s^{\prime} \neq s} Z_{\text {val }}^{S}$
- Use λ^{\prime} that works best on average across $s \in\{1, \ldots, k\}$ with $Z_{\text {train }}$
- Chooses better λ^{\prime} than above strategy

Example: 3-Fold Cross Validation

Training data $Z_{\text {train }}^{3}$ Val data $Z_{\text {val }}^{3}$ Test data $Z_{\text {test }}$ Train data $Z_{\text {val }}^{2}$ Val data $Z_{\text {val }}^{2}$ Train data $Z_{\text {val }}^{2}$ Test data $Z_{\text {test }}$
Val data $Z_{\text {val }}^{1}$

k-Fold Cross-Validation

- If Z is small, then splitting it can reduce performance
- Can use $Z_{\text {train }} \cup Z_{\text {val }}$ in Step 3
- Alternative: k-fold cross-validation (e.g., $k=3$)
- Split Z into $Z_{\text {train }}$ and $Z_{\text {test }}$
- Split $Z_{\text {train }}$ into k disjoint sets $Z_{\text {val }}^{S}$, and let $Z_{\text {train }}^{S}=U_{s^{\prime} \neq s} Z_{\text {val }}^{S}$
- Use λ^{\prime} that works best on average across $s \in\{1, \ldots, k\}$ with $Z_{\text {train }}$
- Chooses better λ^{\prime} than above strategy
- Compute vs. accuracy tradeoff
- As $k \rightarrow N$, the model becomes more accurate
- But algorithm becomes more computationally expensive

Housing Dataset

- Sales of residential property in Ames, Iowa from 2006 to 2010

- Examples: 1,022
- Features: 79 total (real-valued + categorical), some are missing!
- Label: Sales price

MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	...	MoSold	YrSold	SaleType	SaleCondition	SalePrice
20	RL	80.0	10400	Pave	NaN	Reg	...	5	2008	WD	Normal	174000
180	RM	35.0	3675	Pave	NaN	Reg	..	5	2006	WD	Normal	145000
60	FV	72.0	8640	Pave	NaN	Reg	...	6	2010	Con	Normal	215200
20	RL	84.0	11670	Pave	NaN	IR1	...	3	2007	WD	Normal	320000
60	RL	43.0	10667	Pave	NaN	IR2	...	4	2009	ConLw	Normal	212000
80	RL	82.0	9020	Pave	NaN	Reg	\cdots	6	2008	WD	Normal	168500
60	RL	70.0	11218	Pave	NaN	Reg	\cdots	5	2010	WD	Normal	189000
80	RL	85.0	13825	Pave	NaN	Reg	\ldots	12	2008	WD	Normal	140000
60	RL	NaN	13031	Pave	NaN	IR2	\cdots	7	2006	WD	Normal	187500

Housing Dataset

- 438 test examples, preprocessed same as training data
- Sorted by prediction error

Housing Dataset

- Quadratic features, feature standardization, L_{2} regularization

$\boldsymbol{L}_{\mathbf{1}}$ Regularization

- Sparsity: Can we minimize $\|\beta\|_{0}=\left|\left\{j \mid \beta_{j} \neq 0\right\}\right|$?
- That is, the number of nonzero components of β
- Improves interpretability (automatic feature selection!)
- Also serves as a strong regularizer $\left(n \sim s \log d\right.$, where $\left.s=\|\beta\|_{0}\right)$
- Challenge: $\|\beta\|_{0}$ is not differentiable, making it hard to optimize
- Solution
- We can instead use an L_{1} norm as the regularizer!
- Still harder to optimize than L_{2} norm, but at least it is convex

Intuition on $\boldsymbol{L}_{\mathbf{1}}$ Regularization

$\boldsymbol{L}_{\mathbf{1}}$ Regularization for Feature Selection

- Step 1: Construct a lot of features and add to feature map
- Step 2: Use L_{1} regularized regression to "select" subset of features
- I.e., coefficient $\beta_{j} \neq 0 \rightarrow$ feature j is selected)
- Optional: Remove unselected features from the feature map and run vanilla linear regression (a.k.a. ordinary least squares)

Agenda

- Regularization
- Strategy to address bias-variance tradeoff
- By example: Linear regression with L_{2} regularization
- Minimizing the MSE Loss
- Closed-form solution
- Stochastic gradient descent

Minimizing the MSE Loss

- Recall that linear regression minimizes the loss

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}
$$

- Closed-form solution: Compute using matrix operations
- Optimization-based solution: Search over candidate β

Vectorizing Linear Regression

Vectorizing Linear Regression

$$
\left[\begin{array}{c}
f_{\beta}\left(x_{1}\right) \\
\vdots \\
f_{\beta}\left(x_{n}\right)
\end{array}\right]
$$

Vectorizing Linear Regression

$$
\left[\begin{array}{c}
f_{\beta}\left(x_{1}\right) \\
\vdots \\
f_{\beta}\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\beta^{\top} x_{1} \\
\vdots \\
\beta^{\top} x_{n}
\end{array}\right]
$$

Vectorizing Linear Regression

$$
\left[\begin{array}{c}
f_{\beta}\left(x_{1}\right) \\
\vdots \\
f_{\beta}\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{l}
\beta^{\top} x_{1} \\
\dot{\beta}^{\top} x_{n}
\end{array}\right]=\left[\begin{array}{l}
\sum_{j=1}^{d} \beta_{j} x_{1, j} \\
\vdots \\
\sum_{j=1}^{d} \beta_{j} x_{n, j}
\end{array}\right]
$$

Vectorizing Linear Regression

$$
\left.\left.\left[\begin{array}{c}
f_{\beta}\left(x_{1}\right) \\
\vdots \\
f_{\beta}\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\beta^{\top} x_{1} \\
\vdots \\
\beta^{\top} x_{n}
\end{array}\right]=\left[\begin{array}{l}
\sum_{j=1}^{d} \beta_{j} x_{1, j} \\
\vdots \\
\sum_{j=1}^{d} \beta_{j} x_{n, j}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{x_{1,1}}{x_{1,1}} & \cdots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right] \right\rvert\, \begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right]
$$

Vectorizing Linear Regression

Vectorizing Linear Regression

$$
\left[\begin{array}{c}
f_{\beta}\left(x_{1}\right) \\
\vdots \\
f_{\beta}\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\beta^{\top} x_{1} \\
\vdots \\
\beta^{\top} x_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=1}^{d} \beta_{j} x_{1, j} \\
\vdots \\
\sum_{j=1}^{d} \beta_{j} x_{n, j}
\end{array}\right]=\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right]=X \beta
$$

Vectorizing Linear Regression

$$
\left[\begin{array}{c}
f_{\beta}\left(x_{1}\right) \\
\vdots \\
f_{\beta}\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\beta^{\top} x_{1} \\
\vdots \\
\beta^{\top} x_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=1}^{d} \beta_{j} x_{1, j} \\
\vdots \\
\sum_{j=1}^{d} \beta_{j} x_{n, j}
\end{array}\right]=\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right]=X \beta
$$

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Vectorizing Linear Regression

$$
\left[\begin{array}{c}
f_{\beta}\left(x_{1}\right) \\
\vdots \\
f_{\beta}\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\beta^{\top} x_{1} \\
\vdots \\
\beta^{\top} x_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=1}^{d} \beta_{j} x_{1, j} \\
\vdots \\
\sum_{j=1}^{d} \beta_{j} x_{n, j}
\end{array}\right]=\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right]=X \beta
$$

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=Y
$$

Summary: $Y \approx X \beta$

Vectorizing Linear Regression

$$
\begin{gathered}
Y \approx X \beta \\
Y=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right] \quad X=\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right] \quad \beta=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right]
\end{gathered}
$$

Vectorizing Mean Squared Error

Vectorizing Mean Squared Error

$L(\beta ; Z)$

Vectorizing Mean Squared Error

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}
$$

Vectorizing Mean Squared Error

$$
\left.L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}=\frac{1}{n} \| \begin{array}{c}
{\left[\|Y-X \beta\|_{2}^{2}\right.} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Intuition on Vectorized Linear Regression

- Rewriting the vectorized loss:

$$
\begin{aligned}
n \cdot L(\beta ; Z)=\|Y-X \beta\|_{2}^{2} & =\|Y\|_{2}^{2}-2 Y^{\top} X \beta+\|X \beta\|_{2}^{2} \\
& =\|Y\|_{2}^{2}-2 Y^{\top} X \beta+\beta^{\top}\left(X^{\top} X\right) \beta
\end{aligned}
$$

- Quadratic function of β with leading "coefficient" $X^{\top} X$
- In one dimension, "width" of parabola $a x^{2}+b x+c$ is a^{-1}
- In multiple dimensions, "width" along direction v_{i} is λ_{i}^{-1}, where v_{i} is an eigenvector of $X^{\top} X$ with eigenvalue λ_{i}

Intuition on Vectorized Linear Regression

Directions/magnitudes are given by eigenvectors/eigenvalues of $X^{\top} X$

Strategy 1: Closed-Form Solution

- Recall that linear regression minimizes the loss

$$
L(\beta ; Z)=\frac{1}{n}\|Y-X \beta\|_{2}^{2}
$$

- Minimum solution has gradient equal to zero:

$$
\nabla_{\beta} L(\hat{\beta}(Z) ; Z)=0
$$

Strategy 1: Closed-Form Solution

- Recall that linear regression minimizes the loss

$$
L(\beta ; Z)=\frac{1}{n}\|Y-X \beta\|_{2}^{2}
$$

- Minimum solution has gradient equal to zero:

$$
\nabla_{\beta} L(\hat{\beta} ; Z)=0
$$

Strategy 1: Closed-Form Solution

- The gradient is

$$
\nabla_{\beta} L(\beta ; Z)
$$

Strategy 1: Closed-Form Solution

- The gradient is

$$
\nabla_{\beta} L(\beta ; Z)=\nabla_{\beta} \frac{1}{n}\|Y-X \beta\|_{2}^{2}
$$

Strategy 1: Closed-Form Solution

- The gradient is

$$
\begin{aligned}
\nabla_{\beta} L(\beta ; Z)=\nabla_{\beta} \frac{1}{n}\|Y-X \beta\|_{2}^{2} & =\nabla_{\beta} \frac{1}{n}(Y-X \beta)^{\top}(Y-X \beta) \\
& =\frac{2}{n}\left[\nabla_{\beta}(Y-X \beta)^{\top}\right](Y-X \beta) \\
& =-\frac{2}{n} X^{\top}(Y-X \beta) \\
& =-\frac{2}{n} X^{\top} Y+\frac{2}{n} X^{\top} X \beta
\end{aligned}
$$

Aside: Intuition on Computing Gradients

- Warning: Intuitive but easy to make mistakes
- The loss is

$$
\begin{aligned}
& L(\beta+d \beta ; Z)=\frac{1}{n}\|Y-X(\beta+d \beta)\|_{2}^{2} \\
&=\frac{1}{n}\|(Y-X \beta)-X d \beta\|_{2}^{2} \\
&=\frac{1}{n}\|Y-X \beta\|_{2}^{2}-\frac{2}{n}(Y-X \beta)^{\top} X d \beta+\frac{1}{n}\|X d \beta\|_{2}^{2} \\
&=L(\beta ; Z)-\underbrace{\frac{2}{n}(Y-X \beta)^{\top} X}_{=\nabla_{\beta} L(\beta ; Z)^{\top}} d \beta+O\left(\|d \beta\|_{2}^{2}\right) \\
& \text { Coefficient of } d \beta \text { term }
\end{aligned}
$$

Intuition on the Gradient

- By linearity of the gradient, we have

$$
\nabla_{\beta} L(\beta ; Z)=\sum_{i=1}^{n} \nabla_{\beta}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}=\sum_{i=1}^{n} 2\left(y_{i}-\beta^{\top} x_{i}\right) x_{i}
$$

- The gradient for a single term is

$$
\nabla_{\beta}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}=2\left(y_{i}-\beta^{\top} x_{i}\right) x_{i}
$$

-I.e., the current error $y_{i}-\beta^{\top} x_{i}$ times the feature x_{i}

Strategy 1: Closed-Form Solution

- The gradient is

$$
\nabla_{\beta} L(\beta ; Z)=\nabla_{\beta} \frac{1}{n}\|Y-X \beta\|_{2}^{2}=-\frac{2}{n} X^{\top} Y+\frac{2}{n} X^{\top} X \beta
$$

- Setting $\nabla_{\beta} L(\hat{\beta} ; Z)=0$, we have $X^{\top} X \hat{\beta}=X^{\top} Y$

Strategy 1: Closed-Form Solution

- Setting $\nabla_{\beta} L(\hat{\beta} ; Z)=0$, we have $X^{\top} X \hat{\beta}=X^{\top} Y$
- Assuming $X^{\top} X$ is invertible, we have

$$
\hat{\beta}(Z)=\left(X^{\top} X\right)^{-1} X^{\top} Y
$$

Note on Invertibility

- Closed-form solution only unique if $X^{\top} X$ is invertible
- Otherwise, multiple solutions exist to $X^{\top} X \hat{\beta}=X^{\top} Y$
- Intuition: Underconstrained system of linear equations
- Example:

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
\hat{\beta}_{1} \\
\hat{\beta}_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

- In this case, any $\hat{\beta}_{2}=2-\hat{\beta}_{1}$ is a solution

When Can this Happen?

- Case 1
- Fewer data examples than feature dimension (i.e., $n<d$)
- Solution: Remove features so $d \leq n$
- Solution: Collect more data until $d \leq n$
- Case 2: Some feature is a linear combination of the others
- Special case (duplicated feature): For some j and $j^{\prime}, x_{i, j}=x_{i, j^{\prime}}$ for all i
- Solution: Remove linearly dependent features
- Solution: Use L_{2} regularization

Shortcomings of Closed-Form Solution

- Computing $\hat{\beta}(Z)=\left(X^{\top} X\right)^{-1} X^{\top} Y$ can be challenging
- Computing $\left(X^{\top} X\right)^{\mathbf{- 1}}$ is $\boldsymbol{O}\left(d^{\mathbf{3}}\right)$
- $d=10^{4}$ features $\rightarrow O\left(10^{12}\right)$
- Even storing $X^{\top} X$ requires a lot of memory
- Numerical accuracy issues due to "ill-conditioning"
- $X^{\top} X$ is "barely" invertible
- Then, $\left(X^{\top} X\right)^{-1}$ has large variance along some dimension
- Regularization helps (more on this later)

