
Announcements

• Homework 1 due Wednesday at 8pm

• Quiz 1 due Thursday at 8pm

• Office hours posted on Course Website (starting today!)
• See announcement on Ed Discussion
• Virtual office hours held via OHQ

• Waitlist update

Lecture 3: Linear Regression (Part 2)

CIS 4190/5190
Fall 2022

Recap: Linear Regression

• Input: Dataset 𝑍 = 𝑥!, 𝑦! , … , 𝑥" , 𝑦"
• Compute

'𝛽 𝑍 = arg min
#∈ℝ!

!
"
∑&'!" 𝑦& − 𝛽(𝑥&)

• Output: 𝑓*# + 𝑥 = '𝛽 𝑍 (𝑥
• Discuss algorithm for computing the minimal 𝛽 later today

Recap: Views of ML

Supervised Learning

RegressionClassificationUnsupervised Learning

Reinforcement Learning

Loss Minimization

Function Approximation

Recap: Loss Minimization View of ML

• To design an ML algorithm:
• Choose model family 𝐹 = 𝑓! !

(e.g., linear functions)

• Choose loss function 𝐿 𝛽; 𝑍 (e.g., MSE loss)

• Resulting algorithm:

'𝛽 𝑍 = arg min
#

𝐿 𝛽; 𝑍

Recap: Bias-Variance Tradeoff

• Overfitting (high variance)
• High capacity model capable of

fitting complex data
• Insufficient data to constrain it

• Underfitting (high bias)
• Low capacity model that can only

fit simple data
• Sufficient data but poor fit

𝑥

𝑦

𝑓# 𝑥

𝑥

𝑦

𝑓# 𝑥

Recap: Bias-Variance Tradeoff

Lo
ss

Capacity
(not actually 1D!)

Training loss

Test loss

Ideal OverfittingUnderfitting

Slide by Padhraic Smyth, UCIrvine

Recap: Bias-Variance Tradeoff

𝐹

𝑓!"
𝑓∗

𝑓$"
variance

bias

total loss

Recap: Bias-Variance Tradeoff (Overfitting)

𝐹

𝑓!"
𝑓∗ 𝑓$"

variancebias

total loss

Recap: Bias-Variance Tradeoff (Underfitting)

𝐹
𝑓!"

𝑓∗

𝑓$"
variance

bias

total loss

Recap: Bias-Variance Tradeoff (Ideal)

𝐹

𝑓!"
𝑓∗

𝑓$"
variance

bias

total loss

Agenda

• Regularization
• Strategy to address bias-variance tradeoff
• By example: Linear regression with 𝐿" regularization

• Minimizing the MSE Loss
• Closed-form solution
• Gradient descent

Recall: Mean Squared Error Loss

• Mean squared error loss for linear regression:

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&)

Linear Regression with 𝑳𝟐 Regularization

• Original loss + regularization:

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) + 𝜆 ⋅ 𝛽)
)

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) + 𝜆6
,'!

-

𝛽,)

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0)

Intuition on 𝑳𝟐 Regularization

• Equivalently the 𝐿) norm of 𝛽:

6
,'!

-

𝛽,) = 𝛽)
) = 𝛽 − 0)

)

• I.e., “pulling” 𝛽 to zero
• “Pulls” more as 𝜆 becomes larger

Intuition on 𝑳𝟐 Regularization

• Why does it help?
• Encourages “simple” functions
• E.g., as 𝜆 → ∞, obtain 𝛽 = 0
• Use 𝜆 to tune bias-variance tradeoff

Bias-Variance Tradeoff for Regularization

Lo
ss

Capacity 𝜆

Training loss

Test loss

Ideal OverfittingUnderfitting

Intuition on 𝑳𝟐 Regularization

• More precisely: Restricts directions of 𝛽 with little variation in data
• Little variation in data à highly varying loss

• Example:
• Suppose that 𝑥#$ = 0.36 for all training examples 𝑥#
• Then, we cannot learn what would happen if 𝑥$ = 1.29 (for a new input 𝑥)
• I.e., hard to estimate 𝛽$

• How does 𝐿) regularization help?

𝛽)

𝛽!

• At this point, the
gradients are equal
(with opposite sign)

• Tradeoff depends on
choice of 𝜆

Intuition on 𝑳𝟐 Regularization

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) + 𝜆6
,'!

-

𝛽,)

Minimizes
original loss
(or if 𝜆 = 0)

Minimizes
regularization term

(or if 𝜆 → ∞)

Minimizes
full loss

Loss varies greatly
in this direction
à Penalizes more

Regularization and Intercept Term

• If using intercept term (𝜙 𝑥 = 1 𝑥! … 𝑥- (), no penalty on 𝛽!:

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) + 𝜆6
,')

-

𝛽,)

• As 𝜆 → ∞, we have 𝛽) = ⋯ = 𝛽- = 0
• I.e., only fit 𝛽% (which yields 3𝛽% 𝑍 = mean 𝑦# #&%')

Sum from 𝑗 = 2

Feature Standardization

• Unregularized linear regression is invariant to feature scaling
• Suppose we scale 𝑥#$ ← 2𝑥#$ for all examples 𝑥#
• Without regularization, simply use 𝛽$ ← 𝛽$/2 to obtain equivalent solution

• In particular,
!!
" ⋅ 2𝑥#$ = 𝛽$ ⋅ 𝑥#$

• Not true for regularized regression!
• Penalty 𝛽$/2

"
is scaled by 1/4 (not cancelled out!)

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) + 𝜆6
,')

-

𝛽,)

Feature Standardization

• Unregularized linear regression is invariant to feature scaling
• Suppose we scale 𝑥#$ ← 2𝑥#$ for all examples 𝑥#
• Without regularization, simply use 𝛽$ ← 𝛽$/2 to obtain equivalent solution

• In particular, ∑$&%(!!
" ⋅ 2𝑥#$ = ∑$&%(𝛽$ ⋅ 𝑥#$

• Not true for regularized regression!
• Penalty 𝛽$/2

"
is scaled by 1/4 (not cancelled out!)

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) + 𝜆 𝛽)) +⋯+ 𝛽,) +⋯+ 𝛽-)

Feature Standardization

• Unregularized linear regression is invariant to feature scaling
• Suppose we scale 𝑥#$ ← 2𝑥#$ for all examples 𝑥#
• Without regularization, simply use 𝛽$ ← 𝛽$/2 to obtain equivalent solution

• In particular, ∑$&%(!!
" ⋅ 2𝑥#$ = ∑$&%(𝛽$ ⋅ 𝑥#$

• Not true for regularized regression!
• Penalty 𝛽$/2

"
is scaled by 1/4 (not cancelled out!)

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) + 𝜆 𝛽)) +⋯+
𝛽,)

4
+⋯+ 𝛽-)

Feature Standardization

• Solution: Rescale features to zero mean and unit variance

𝑥&,, ←
/",01
2$

𝜇, =
!
3
∑&'!3 𝑥&,, 𝜎, =

!
3
∑&'!3 𝑥&,, − 𝜇,

)

• Note: When using intercept term, do not rescale 𝑥% = 1
• Can be sensitive to outliers (fix by dropping outliers)

• Must use same transformation during training and for prediction
• Compute on standardization on training data and use on test data

General Regularization Strategy

• Original loss + regularization:

𝐿456 𝛽; 𝑍 = 𝐿 𝛽; 𝑍 + 𝜆 ⋅ 𝑅 𝛽

• Offers a way to express a preference “simpler” functions in family
• Typically, regularization is independent of data

Hyperparameter Tuning

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0)

• Naïve strategy: Try a few different candidates 𝜆7 and choose the one
that minimizes the test loss

• Problem: We may overfit the test set!
• Major problem if we have more hyperparameters

Training/Val/Test Split

• Goal: Choose best hyperparameter 𝜆
• Can also compare different model families, feature maps, etc.

• Solution: Optimize 𝜆 on a held-out validation data
• Rule of thumb: 60/20/20 split

Given data 𝑍

Training data 𝑍89:;4 Test data 𝑍85<8Val data 𝑍=:>

Basic Cross Validation Algorithm

• Step 1: Split 𝑍 into 𝑍89:;4, 𝑍=:>, and 𝑍85<8

• Step 2: For 𝑡 ∈ 1,… , ℎ :
• Step 2a: Run linear regression with 𝑍)*+,- and 𝜆. to obtain 3𝛽 𝑍)*+,-, 𝜆.
• Step 2b: Evaluate validation loss 𝐿/+0

. = 𝐿 3𝛽 𝑍)*+,-, 𝜆. ; 𝑍/+0

• Step 3: Use best 𝜆7
• Choose 𝑡1 = arg min. 𝐿/+0

. with lowest validation loss
• Re-run linear regression with 𝑍)*+,- and 𝜆." to obtain 3𝛽 𝑍)*+,-, 𝜆."

Training data 𝑍89:;4 Test data 𝑍85<8Val data 𝑍=:>

Alternative Cross-Validation Algorithms

• If 𝑍 is small, then splitting it can reduce performance
• Can use 𝑍)*+,- ∪ 𝑍/+0 in Step 3

• Alternative: 𝑘-fold cross-validation (e.g., 𝑘 = 3)
• Split 𝑍 into 𝑍)*+,- and 𝑍)23)
• Split 𝑍)*+,- into 𝑘 disjoint sets 𝑍/+0

4 , and let 𝑍)*+,-4 = ⋃4"54𝑍/+0
4

• Use 𝜆1 that works best on average across 𝑠 ∈ 1,… , 𝑘 with 𝑍)*+,-
• Chooses better 𝜆1 than above strategy

Example: 3-Fold Cross Validation

Test data 𝑍85<8Val data 𝑍=:>
?Training data 𝑍89:;4?

Test data 𝑍85<8Train data 𝑍=:>
)Val data 𝑍=:>

)Train data 𝑍=:>
)

Test data 𝑍85<8Train data 𝑍89:;4!Val data 𝑍=:>!

Test data 𝑍85<8Train data 𝑍89:;4

𝑘-Fold Cross-Validation

• If 𝑍 is small, then splitting it can reduce performance
• Can use 𝑍)*+,- ∪ 𝑍/+0 in Step 3

• Alternative: 𝑘-fold cross-validation (e.g., 𝑘 = 3)
• Split 𝑍 into 𝑍)*+,- and 𝑍)23)
• Split 𝑍)*+,- into 𝑘 disjoint sets 𝑍/+0

4 , and let 𝑍)*+,-4 = ⋃4"54𝑍/+0
4

• Use 𝜆1 that works best on average across 𝑠 ∈ 1,… , 𝑘 with 𝑍)*+,-
• Chooses better 𝜆1 than above strategy

• Compute vs. accuracy tradeoff
• As 𝑘 → 𝑁, the model becomes more accurate
• But algorithm becomes more computationally expensive

Housing Dataset

• Sales of residential property in Ames, Iowa from 2006 to 2010
• Examples: 1,022
• Features: 79 total (real-valued + categorical), some are missing!
• Label: Sales price

...

...

...

...

...

...

...

...

...

...

Data from: De Cock. Journal of Statistics Education 19(3), 2011

Housing Dataset

• 438 test examples, preprocessed same as training data
• Sorted by prediction error

Housing Dataset

• Quadratic features, feature standardization, 𝐿) regularization

new model
original model

𝑳𝟏 Regularization

• Sparsity: Can we minimize 𝛽 @ = 𝑗 𝛽, ≠ 0 ?
• That is, the number of nonzero components of 𝛽
• Improves interpretability (automatic feature selection!)
• Also serves as a strong regularizer (𝑛~𝑠 log 𝑑, where 𝑠 = 𝛽 6)

• Challenge: 𝛽 @ is not differentiable, making it hard to optimize

• Solution
• We can instead use an 𝐿% norm as the regularizer!
• Still harder to optimize than 𝐿" norm, but at least it is convex

Intuition on 𝑳𝟏 Regularization

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) + 𝜆6
,'!

-

𝛽,

𝛽)

𝛽!

Minimizes
original loss
(or if 𝜆 = 0)

Minimizes
regularization term

(or if 𝜆 → ∞)

Minimizer of full loss at
corner à sparse (𝛽% = 0)!

𝑳𝟏 Regularization for Feature Selection

• Step 1: Construct a lot of features and add to feature map

• Step 2: Use 𝐿! regularized regression to “select” subset of features
• I.e., coefficient 𝛽$ ≠ 0à feature 𝑗 is selected)

• Optional: Remove unselected features from the feature map and run
vanilla linear regression (a.k.a. ordinary least squares)

Agenda

• Regularization
• Strategy to address bias-variance tradeoff
• By example: Linear regression with 𝐿" regularization

• Minimizing the MSE Loss
• Closed-form solution
• Stochastic gradient descent

Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&)

• Closed-form solution: Compute using matrix operations

• Optimization-based solution: Search over candidate 𝛽

Vectorizing Linear Regression

Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

6
,'!

-

𝛽,𝑥!,,

⋮

6
,'!

-

𝛽,𝑥",,

=
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽!
⋮
𝛽-

= 𝑋𝛽

Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

6
,'!

-

𝛽,𝑥!,,

⋮

6
,'!

-

𝛽,𝑥",,

=
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽!
⋮
𝛽-

= 𝑋𝛽

Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

6
,'!

-

𝛽,𝑥!,,

⋮

6
,'!

-

𝛽,𝑥",,

=
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽!
⋮
𝛽-

= 𝑋𝛽

Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

6
,'!

-

𝛽,𝑥!,,

⋮

6
,'!

-

𝛽,𝑥",,

=
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽!
⋮
𝛽-

= 𝑋𝛽

Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

6
,'!

-

𝛽,𝑥!,,

⋮

6
,'!

-

𝛽,𝑥",,

=
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽!
⋮
𝛽-

= 𝑋𝛽

Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

6
,'!

-

𝛽,𝑥!,,

⋮

6
,'!

-

𝛽,𝑥",,

=
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽!
⋮
𝛽-

= 𝑋𝛽

Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

6
,'!

-

𝛽,𝑥!,,

⋮

6
,'!

-

𝛽,𝑥",,

=
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽!
⋮
𝛽-

= 𝑋𝛽

≈

𝑦!
⋮
𝑦"

= 𝑌

Vectorizing Linear Regression

𝑓# 𝑥!
⋮

𝑓# 𝑥"
=

𝛽(𝑥!
⋮

𝛽(𝑥"
=

6
,'!

-

𝛽,𝑥!,,

⋮

6
,'!

-

𝛽,𝑥",,

=
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽!
⋮
𝛽-

= 𝑋𝛽

≈

𝑦!
⋮
𝑦"

= 𝑌
Summary: 𝑌 ≈ 𝑋𝛽

Vectorizing Linear Regression

𝑌 ≈ 𝑋𝛽

𝑌 =
𝑦!
⋮
𝑦"

𝑋 =
𝑥!,! ⋯ 𝑥!,-
⋮ ⋱ ⋮
𝑥",! ⋯ 𝑥",-

𝛽 =
𝛽!
⋮
𝛽-

Vectorizing Mean Squared Error

Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) =
1
𝑛
𝑌 − 𝑋𝛽)

)

Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) =
1
𝑛
𝑌 − 𝑋𝛽)

)

Vectorizing Mean Squared Error

𝐿 𝛽; 𝑍 =
1
𝑛
6
&'!

"

𝑦& − 𝛽(𝑥&) =
1
𝑛
𝑌 − 𝑋𝛽)

)

𝑧)
) =6

&'!

"

𝑧&)

𝑓# 𝑥!
⋮

𝑓# 𝑥"

𝑦!
⋮
𝑦"

Intuition on Vectorized Linear Regression

• Rewriting the vectorized loss:

𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽)
) = 𝑌)

) − 2𝑌(𝑋𝛽 + 𝑋𝛽)
)

𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽)
) = 𝑌)

) − 2𝑌(𝑋𝛽 + 𝛽(𝑋(𝑋 𝛽

• Quadratic function of 𝛽 with leading “coefficient” 𝑋(𝑋
• In one dimension, “width” of parabola 𝑎𝑥" + 𝑏𝑥 + 𝑐 is 𝑎7%

• In multiple dimensions, “width” along direction 𝑣# is 𝜆#7%, where 𝑣# is an
eigenvector of 𝑋8𝑋 with eigenvalue 𝜆#

Intuition on Vectorized Linear Regression

𝛽)

𝛽!

Minimizer 3𝛽 𝑍

Directions/magnitudes are given by eigenvectors/eigenvalues of 𝑋(𝑋

Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

𝐿 𝛽; 𝑍 =
1
𝑛
𝑌 − 𝑋𝛽)

)

• Minimum solution has gradient equal to zero:

∇#𝐿 '𝛽 𝑍 ; 𝑍 = 0

Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

𝐿 𝛽; 𝑍 =
1
𝑛
𝑌 − 𝑋𝛽)

)

• Minimum solution has gradient equal to zero:

∇#𝐿 '𝛽; 𝑍 = 0

Strategy 1: Closed-Form Solution

• The gradient is

∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽)

)

Strategy 1: Closed-Form Solution

• The gradient is

∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽)

)

Strategy 1: Closed-Form Solution

• The gradient is

∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽)

) = ∇#
!
"
𝑌 − 𝑋𝛽 (𝑌 − 𝑋𝛽

∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽)

) =)
"
∇# 𝑌 − 𝑋𝛽 (𝑌 − 𝑋𝛽

∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽)

) = −)
"
𝑋(𝑌 − 𝑋𝛽

∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽)

) = −)
"
𝑋(𝑌 +)

"
𝑋(𝑋𝛽

Aside: Intuition on Computing Gradients

• Warning: Intuitive but easy to make mistakes
• The loss is

𝐿 𝛽 + 𝑑𝛽; 𝑍 = !
"
𝑌 − 𝑋 𝛽 + 𝑑𝛽)

)

𝐿 𝛽 + 𝑑𝛽; 𝑍 = !
"

𝑌 − 𝑋𝛽 − 𝑋𝑑𝛽)
)

𝐿 𝛽 + 𝑑𝛽; 𝑍 = !
"
𝑌 − 𝑋𝛽)

) −)
"
𝑌 − 𝑋𝛽 (𝑋𝑑𝛽 + !

"
𝑋𝑑𝛽)

)

𝐿 𝛽 + 𝑑𝛽; 𝑍 = 𝐿 𝛽; 𝑍 −)
"
𝑌 − 𝑋𝛽 (𝑋𝑑𝛽 + 𝑂 𝑑𝛽)

)

= ∇#𝐿 𝛽; 𝑍 (Coefficient of 𝑑𝛽 term

Intuition on the Gradient

• By linearity of the gradient, we have

∇#𝐿 𝛽; 𝑍 =6
&'!

"

∇# 𝑦& − 𝛽(𝑥&) =6
&'!

"

2 𝑦& − 𝛽(𝑥& 𝑥&

• The gradient for a single term is

∇# 𝑦& − 𝛽(𝑥&) = 2 𝑦& − 𝛽(𝑥& 𝑥&

• I.e., the current error 𝑦& − 𝛽(𝑥& times the feature 𝑥&

Strategy 1: Closed-Form Solution

• The gradient is

∇#𝐿 𝛽; 𝑍 = ∇#
!
"
𝑌 − 𝑋𝛽)

) = −)
"
𝑋(𝑌 +)

"
𝑋(𝑋𝛽

• Setting ∇#𝐿 '𝛽; 𝑍 = 0, we have 𝑋(𝑋 '𝛽 = 𝑋(𝑌

Strategy 1: Closed-Form Solution

• Setting ∇#𝐿 '𝛽; 𝑍 = 0, we have 𝑋(𝑋 '𝛽 = 𝑋(𝑌

• Assuming 𝑋(𝑋 is invertible, we have

'𝛽 𝑍 = 𝑋(𝑋 0!𝑋(𝑌

Note on Invertibility

• Closed-form solution only unique if 𝑋(𝑋 is invertible
• Otherwise, multiple solutions exist to 𝑋8𝑋 3𝛽 = 𝑋8𝑌
• Intuition: Underconstrained system of linear equations

• Example:
1 1
2 2

'𝛽!
'𝛽)

= 2
4

• In this case, any 3𝛽" = 2 − 3𝛽% is a solution

When Can this Happen?

• Case 1
• Fewer data examples than feature dimension (i.e., 𝑛 < 𝑑)
• Solution: Remove features so 𝑑 ≤ 𝑛
• Solution: Collect more data until 𝑑 ≤ 𝑛

• Case 2: Some feature is a linear combination of the others
• Special case (duplicated feature): For some 𝑗 and 𝑗1, 𝑥#,$ = 𝑥#,$" for all 𝑖
• Solution: Remove linearly dependent features
• Solution: Use 𝐿" regularization

Shortcomings of Closed-Form Solution

• Computing '𝛽 𝑍 = 𝑋(𝑋 0!𝑋(𝑌 can be challenging

• Computing (𝑿(𝑿)0𝟏 is 𝑶 𝒅𝟑
• 𝑑 = 10: features à 𝑂(10%")
• Even storing 𝑋8𝑋 requires a lot of memory

• Numerical accuracy issues due to “ill-conditioning”
• 𝑋8𝑋 is “barely” invertible
• Then, 𝑋8𝑋 7% has large variance along some dimension
• Regularization helps (more on this later)

