Announcements

• Homework 1 due **today (Wednesday) at 8pm**

• Quiz 1 due **tomorrow (Thursday) at 8pm**

• **Project:** Links to past projects, milestone templates posted

• Homework 2, Quiz 2 will be released tonight
 • Covers linear and logistic regression
 • **HW 2 has a slightly extended deadline (Monday, October 3 at 8pm)**
Recap: L_2 Regularization

- **Original MSE loss + regularization:**

\[
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \cdot \|\beta\|_2^2
\]

- λ is a **hyperparameter** that must be tuned (satisfies $\lambda \geq 0$)
Recap: L_2 Regularization
Recap: L_2 Regularization

At this point, the gradients are equal (with opposite sign).

Tradeoff depends on choice of λ.

- Loss varies greatly in this direction.
- Penalizes more.

Minimizes original loss (or if $\lambda = 0$).

Minimizes full loss.

Minimizes regularization term (or if $\lambda \to \infty$).

\[
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2
\]
Recap: L_1 Regularization

\[
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \sum_{j=1}^{d} |\beta_j|
\]

Minimizes original loss (or if $\lambda = 0$)

Minimizer of full loss at corner \rightarrow sparse ($\beta_1 = 0$)

Minimizes regularization term (or if $\lambda \rightarrow \infty$)
Recap: L_1 Regularization

• **Step 1:** Construct a lot of features and add to feature map

• **Step 2:** Use L_1 regularized regression to “select” subset of features
 • I.e., coefficient $\beta_j \neq 0 \rightarrow$ feature j is selected
 • Tune λ to select more/fewer features

• **Optional:** Remove unselected features from the feature map and run vanilla linear regression (a.k.a. ordinary least squares)
Recap: Cross Validation

• **Original MSE loss + regularization:**

\[
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 + \lambda \cdot \|\beta\|_2^2
\]

• \(\lambda\) is a **hyperparameter** that must be tuned (satisfies \(\lambda \geq 0\))

• How to choose \(\lambda\)?
Recap: Cross Validation

<table>
<thead>
<tr>
<th>Training data Z_{train}</th>
<th>Val data Z_{val}</th>
<th>Test data Z_{test}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_1 = 0.01$</td>
<td>$\hat{\beta}1 \leftarrow \beta(Z{\text{train}}, \lambda_1)$</td>
<td>$L^1_{\text{val}} \leftarrow L(\hat{\beta}1; Z{\text{val}})$</td>
</tr>
<tr>
<td>$\lambda_2 = 0.10$</td>
<td>$\hat{\beta}2 \leftarrow \beta(Z{\text{train}}, \lambda_2)$</td>
<td>$L^2_{\text{val}} \leftarrow L(\hat{\beta}2; Z{\text{val}})$ $L(\hat{\beta}{t'}; Z{\text{test}})$</td>
</tr>
<tr>
<td>$\lambda_2 = 1.00$</td>
<td>$\hat{\beta}3 \leftarrow \beta(Z{\text{train}}, \lambda_3)$</td>
<td>$L^3_{\text{val}} \leftarrow L(\hat{\beta}3; Z{\text{val}})$</td>
</tr>
</tbody>
</table>

$t' \leftarrow \max_t L^t_{\text{val}}$
Recap: Cross Validation

• Generally important for tuning design choices
 • Hyperparameters
 • Features in the feature map
 • Model family
 • ...

• Alternative approaches exist for very small datasets
 • Re-train on $Z_{\text{train}} \cup Z_{\text{val}}$
 • k-fold cross validation
Agenda

• Minimizing the MSE Loss
 • Closed-form solution
 • Gradient descent
Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

\[L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 \]

• **Closed-form solution**: Compute using matrix operations

• **Optimization-based solution**: Search over candidate \(\beta \)
Recap: Closed-Form Solution

- Minimum solution has gradient equal to zero:

$$\nabla_\beta L(\hat{\beta}; Z) = 0$$
Recap: Closed-Form Solution

\[
\begin{bmatrix}
 f_\beta(x_1) \\
 \vdots \\
 f_\beta(x_n)
\end{bmatrix} = \begin{bmatrix}
 \beta^T x_1 \\
 \vdots \\
 \beta^T x_n
\end{bmatrix} = \begin{bmatrix}
 \sum_{j=1}^{d} \beta_j x_{1,j} \\
 \vdots \\
 \sum_{j=1}^{d} \beta_j x_{n,j}
\end{bmatrix} = \begin{bmatrix}
 x_{1,1} & \cdots & x_{1,d} \\
 \vdots & \ddots & \vdots \\
 x_{n,1} & \cdots & x_{n,d}
\end{bmatrix} \begin{bmatrix}
 \beta_1 \\
 \vdots \\
 \beta_d
\end{bmatrix} = X\beta
\]

\[\therefore \]

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix} = Y
\]

\textbf{Summary: } Y \approx X\beta
Recap: Closed-Form Solution

\[L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 = \frac{1}{n} \|Y - X\beta\|_2^2 \]

\[\|z\|_2^2 = \sum_{i=1}^{n} z_i^2 \]
Recap: Closed-Form Solution

• Minimizer of the MSE loss has gradient equal to zero:

\[\nabla_{\beta} L(\hat{\beta}; Z) = 0 \]
Recap: Closed-Form Solution

- The gradient is

\[
\nabla_{\beta} L(\beta; Z) = \nabla_{\beta} \frac{1}{n} \|Y - X\beta\|_2^2 = \nabla_{\beta} \frac{1}{n} (Y - X\beta)^T (Y - X\beta)
\]

\[
= \frac{2}{n} [\nabla_{\beta} (Y - X\beta)^T] (Y - X\beta)
\]

\[
= -\frac{2}{n} X^T (Y - X\beta)
\]

\[
= -\frac{2}{n} X^T Y + \frac{2}{n} X^T X\beta
\]
Recap: Closed-Form Solution

• The gradient is

\[
\nabla_\beta L(\beta; Z) = \nabla_\beta \frac{1}{n} \| Y - X\beta \|_2^2 = -\frac{2}{n} X^T Y + \frac{2}{n} X^T X\beta
\]

• Setting \(\nabla_\beta L(\hat{\beta}; Z) = 0 \), we have \(X^T X\hat{\beta} = X^T Y \)
Recap: Closed-Form Solution

• Setting $\nabla_{\beta} L(\hat{\beta}; Z) = 0$, we have $X^T X \hat{\beta} = X^T Y$

• Assuming $X^T X$ is invertible, we have

$$\hat{\beta}(Z) = (X^T X)^{-1} X^T Y$$
Shortcomings of Closed-Form Solution

• Computing $\hat{\beta}(Z) = (X^T X)^{-1} X^T Y$ can be challenging when the number of features d is large

• Computing $(X^T X)^{-1}$ is $O(d^3)$
 • $d = 10^4$ features $\rightarrow O(10^{12})$
 • Even storing $X^T X$ requires a lot of memory

• Numerical accuracy issues due to “ill-conditioning”
 • What if $X^T X$ is “barely” invertible?
 • Then, $(X^T X)^{-1}$ has large variance along some dimension
 • Regularization helps (more on this later)
Optimization Algorithms

• Recall that linear regression minimizes the loss

\[L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 \]

• Iteratively optimize \(\beta \)
 • Initialize \(\beta_1 \leftarrow \text{Init}(...) \)
 • For some number of iterations \(T \), update \(\beta_t \leftarrow \text{Step}(...) \)
 • Return \(\beta_T \)
Optimization Algorithms

• **Global search**: Try random values of β and choose the best
 • I.e., β_t independent of β_{t-1}
 • Very unstructured, can take a long time (especially in high dimension d)!

• **Local search**: Start from some initial β and make local changes
 • I.e., β_t is computed based on β_{t-1}
 • What is a “local change”, and how do we find good one?
Strategy 2: Gradient Descent

- **Gradient descent**: Update β based on gradient $\nabla_{\beta} L(\beta; Z)$ of $L(\beta; Z)$:

 $$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; Z)$$

- **Intuition**: The gradient is the direction along which $L(\beta; Z)$ changes most quickly as a function of β

- $\alpha \in \mathbb{R}$ is a hyperparameter called the **learning rate**

 - More on this later
Strategy 2: Gradient Descent

• Choose initial value for β
• Until we reach a minimum:
 • Choose a new value for β to reduce $L(\beta; Z)$
Strategy 2: Gradient Descent

• Choose initial value for β
• Until we reach a minimum:
 • Choose a new value for β to reduce $L(\beta; Z)$

$L(\beta; Z)$

Figure by Andrew Ng
Strategy 2: Gradient Descent

• Choose initial value for β
• Until we reach a minimum:
 • Choose a new value for β to reduce $L(\beta; Z)$

Linear regression loss is convex, so no local minima
Strategy 2: Gradient Descent

• Initialize $\beta_1 = 0$
• Repeat until convergence:

$$
\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; Z)
$$

• For linear regression, know the gradient from strategy 1

For in-place updates $\beta \leftarrow \beta - \alpha \cdot \nabla_\beta L(\beta; Z)$, compute all components of $\nabla_\beta L(\beta; Z)$ before modifying β.
Strategy 2: Gradient Descent

• Initialize $\beta_1 = 0$
• Repeat until convergence:

$$
\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; Z)
$$

• For linear regression, know the gradient from strategy 1
Strategy 2: Gradient Descent

• Initialize $\beta_1 = \vec{0}$
• Repeat until $\|\beta_t - \beta_{t+1}\|_2 \leq \epsilon$

$$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_{\beta} L(\beta_t; Z)$$

• For linear regression, know the gradient from strategy 1

Hyperparameter defining convergence
Strategy 2: Gradient Descent

\[h(x) = -900 - 0.1x \]

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \quad \text{and} \quad L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

Minimizer of loss function

\[L(\beta; Z) \]
Choice of Learning Rate α

$L(\beta; Z)$

Problem: α too small
- $L(\beta; Z)$ decreases slowly

Problem: α too large
- $L(\beta; Z)$ increases!

Plot $L(\beta_t; Z_{\text{train}})$ vs. t to diagnose these problems
Choice of Learning Rate α

• α is a hyperparameter for gradient descent that we need to choose
 • Can set just based on training data

• Rule of thumb
 • α too small: Loss decreases slowly
 • α too large: Loss increases!

• Try rates $\alpha \in \{1.0, 0.1, 0.01, \ldots\}$ (can tune further once one works)
Comparison of Strategies

• **Closed-form solution**
 • No hyperparameters
 • Slow if n or d are large

• **Gradient descent**
 • Need to tune α
 • Scales to large n and d

• For linear regression, there are better optimization algorithms, but gradient descent is very general
 • Accelerated gradient descent is an important tweak that improves performance in practice (and in theory)
L_2 Regularized Linear Regression

- Recall that linear regression with L_2 regularization minimizes the loss

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2$$
L_2 Regularized Linear Regression

- Recall that linear regression with L_2 regularization minimizes the loss

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \sum_{j=1}^{d} \beta_j^2 = \frac{1}{n} \|Y - X\beta\|_2^2 + \lambda \|\beta\|_2^2$$

- Gradient is

$$\nabla_{\beta} L(\beta; Z) = -\frac{2}{n} X^T Y + \frac{2}{n} X^T X \beta + 2 \lambda \beta$$
Strategy 1: Closed-Form Solution

• Gradient is

\[\nabla_{\beta} L(\beta; Z) = -\frac{2}{n} X^T Y + \frac{2}{n} X^T X \beta + 2\lambda \beta \]

• Setting \(\nabla_{\beta} L(\hat{\beta}; Z) = 0 \), we have \((X^T X + n\lambda I)\hat{\beta} = X^T Y\)

• Always invertible if \(\lambda > 0 \), so we have

\[\hat{\beta}(Z) = (X^T X + n\lambda I)^{-1} X^T Y \]
Strategy 2: Gradient Descent

• Gradient is

\[
\nabla_{\beta} L(\beta; Z) = -\frac{2}{n}X^T Y + \frac{2}{n}X^T X \beta + 2\lambda \beta
\]

• Same algorithm as vanilla linear regression (a.k.a. OLS)
• **Intuition:** The extra term \(\lambda \beta \) in the gradient is **weight decay** that encourages \(\beta \) to be small
What About L_1 Regularization?

• Gradient descent still works!

• Specialized algorithms work better in practice
 • **Simple one:** Gradient descent + soft thresholding
 • Basically, if $|\beta_{t,j}| \leq \lambda$, just set it to zero
 • Good theoretical properties
Loss Minimization View of ML

• Two design decisions
 • Model family: What are the candidate models f? (E.g., linear functions)
 • Loss function: How to define “approximating”? (E.g., MSE loss)
Loss Minimization View of ML

• **Three design decisions**
 • **Model family:** What are the candidate models f? (E.g., linear functions)
 • **Loss function:** How to define “approximating”? (E.g., MSE loss)
 • **Optimizer:** How do we minimize the loss? (E.g., gradient descent)
Lecture 5: Logistic Regression

CIS 4190/5190
Fall 2022
Supervised Learning

Data $Z = \{(x_i, y_i)\}_{i=1}^n$

$\hat{\beta}(Z) = \arg\min_{\beta} L(\beta; Z)$

L encodes $y_i \approx f_\beta(x_i)$

Model $f_{\hat{\beta}(Z)}$
Regression

Data $Z = \{(x_i, y_i)\}_{i=1}^n$

$\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$
L encodes $y_i \approx f_{\beta}(x_i)$

Model $f_{\hat{\beta}(Z)}$

Label is a **real value** $y_i \in \mathbb{R}$
Classification

Data \(Z = \{(x_i, y_i)\}_{i=1}^n \) \(\hat{\beta}(Z) = \arg\min_\beta L(\beta; Z) \)
\(L \) encodes \(y_i \approx f_\beta(x_i) \)

Model \(f_{\hat{\beta}(Z)} \)

Label is a **discrete value** \(y_i \in Y = \{c_1, \ldots, c_k\} \)
(Binary) Classification

- **Input:** Dataset \(Z = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}\)
- **Output:** Model \(y_i \approx f_\beta(x_i) \)

Example: Malignant vs. Benign Ocular Tumor

[Image: https://eyecancer.com/uncategorized/choroidal-metastasis-test/]

Image: https://eyecancer.com/uncategorized/choroidal-metastasis-test/
Loss Minimization View of ML

• Three design decisions
 • Model family: What are the candidate models f? (E.g., linear functions)
 • Loss function: How to define “approximating”? (E.g., MSE loss)
 • Optimizer: How do we optimize the loss? (E.g., gradient descent)

• How do we adapt to classification?
Linear Functions for (Binary) Classification

• **Input:** Dataset \(Z = \{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \)

• **Regression:**
 • Labels \(y_i \in \mathbb{R} \)
 • Predict \(y_i \approx \beta^T x_i \)

• **Classification:**
 • Labels \(y_i \in \{0, 1\} \)
 • Predict \(y_i \approx 1(\beta^T x_i \geq 0) \)
 • \(1(C) \) equals 1 if \(C \) is true and 0 if \(C \) is false
 • How to learn \(\beta \)? **Need a loss function!**
Loss Functions for Linear Classifiers

• (In)accuracy:

\[L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq f_\beta(x_i)) \]

• Computationally intractable

• Often, but not always the “true” loss (e.g., imbalanced data)

\[L(\beta; Z) = \frac{6}{50} \]
Loss Functions for Linear Classifiers

- **Distance:**

\[
L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} \text{dist}(x_i, f_\beta) \cdot 1(f_\beta(x_i) \neq y_i)
\]

- If \(L(\beta; Z) = 0 \), then 100% accuracy
- Variant of this loss results in SVM
- But, we will consider a more general strategy

\[
L(\beta; Z) = 1.2
\]