Announcements

- Homework 1 due today (Wednesday) at 8pm
- Quiz 1 due tomorrow (Thursday) at 8pm
- Project: Links to past projects, milestone templates posted
- Homework 2, Quiz 2 will be released tonight
- Covers linear and logistic regression
- HW 2 has a slightly extended deadline (Monday, October 3 at 8pm)

Recap: L_{2} Regularization

- Original MSE loss + regularization:

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda \cdot\|\beta\|_{2}^{2}
$$

- λ is a hyperparameter that must be tuned (satisfies $\lambda \geq 0$)

Recap: L_{2} Regularization

Recap: L_{2} Regularization

Recap: L_{1} Regularization

Recap: L_{1} Regularization

- Step 1: Construct a lot of features and add to feature map
- Step 2: Use L_{1} regularized regression to "select" subset of features
- I.e., coefficient $\beta_{j} \neq 0 \rightarrow$ feature j is selected)
- Tune λ to select more/fewer features
- Optional: Remove unselected features from the feature map and run vanilla linear regression (a.k.a. ordinary least squares)

Recap: Cross Validation

- Original MSE loss + regularization:

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda \cdot\|\beta\|_{2}^{2}
$$

- λ is a hyperparameter that must be tuned (satisfies $\lambda \geq 0$)
- How to choose λ ?

Recap: Cross Validation

Training data $Z_{\text {train }}$

$$
\begin{aligned}
& \lambda_{1}=0.01 \\
& \lambda_{2}=0.10 \\
& \lambda_{2}=1.00
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\beta}_{1} \leftarrow \hat{\beta}\left(Z_{\text {train }}, \lambda_{1}\right) \\
& \hat{\beta}_{2} \leftarrow \hat{\beta}\left(Z_{\text {train }}, \lambda_{2}\right) \\
& \hat{\beta}_{3} \leftarrow \hat{\beta}\left(Z_{\text {train }}, \lambda_{3}\right)
\end{aligned}
$$

$$
L_{\mathrm{val}}^{1} \leftarrow L\left(\hat{\beta}_{1} ; Z_{\mathrm{val}}\right)
$$

$$
L_{\mathrm{val}}^{2} \leftarrow L\left(\hat{\beta}_{2} ; Z_{\mathrm{val}}\right) \quad L\left(\hat{\beta}_{t^{\prime}} ; Z_{\text {test }}\right)
$$

$$
L_{\mathrm{val}}^{3} \leftarrow L\left(\hat{\beta}_{3} ; Z_{\mathrm{val}}\right)
$$

$$
t^{\prime} \leftarrow \max _{t} L_{\mathrm{val}}^{t}
$$

Recap: Cross Validation

- Generally important for tuning design choices
- Hyperparameters
- Features in the feature map
- Model family
- ...
- Alternative approaches exist for very small datasets
- Re-train on $Z_{\text {train }} \cup Z_{\text {val }}$
- k-fold cross validation

Lecture 3: Linear Regression (Part 3)

CIS 4190/5190
Fall 2022

Agenda

- Minimizing the MSE Loss
- Closed-form solution
- Gradient descent

Minimizing the MSE Loss

- Recall that linear regression minimizes the loss

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}
$$

- Closed-form solution: Compute using matrix operations
- Optimization-based solution: Search over candidate β

Recap: Closed-Form Solution

- Minimum solution has gradient equal to zero:

$$
\nabla_{\beta} L(\hat{\beta} ; Z)=0
$$

Recap: Closed-Form Solution

$$
\left[\begin{array}{c}
f_{\beta}\left(x_{1}\right) \\
\vdots \\
f_{\beta}\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
\beta^{\top} x_{1} \\
\vdots \\
\beta^{\top} x_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=1}^{d} \beta_{j} x_{1, j} \\
\\
\vdots \\
\sum_{j=1}^{d} \beta_{j} x_{n, j}
\end{array}\right]=\left[\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{d}
\end{array}\right]=X \beta
$$

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=Y
$$

Summary: $Y \approx X \beta$

Recap: Closed-Form Solution

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}=\frac{1}{n}\|Y-X \beta\|_{2}^{2}
$$

Recap: Closed-Form Solution

- Minimizer of the MSE loss has gradient equal to zero:

$$
\nabla_{\beta} L(\hat{\beta} ; Z)=0
$$

Recap: Closed-Form Solution

- The gradient is

$$
\begin{aligned}
\nabla_{\beta} L(\beta ; Z)=\nabla_{\beta} \frac{1}{n}\|Y-X \beta\|_{2}^{2} & =\nabla_{\beta} \frac{1}{n}(Y-X \beta)^{\top}(Y-X \beta) \\
& =\frac{2}{n}\left[\nabla_{\beta}(Y-X \beta)^{\top}\right](Y-X \beta) \\
& =-\frac{2}{n} X^{\top}(Y-X \beta) \\
& =-\frac{2}{n} X^{\top} Y+\frac{2}{n} X^{\top} X \beta
\end{aligned}
$$

Recap: Closed-Form Solution

- The gradient is

$$
\nabla_{\beta} L(\beta ; Z)=\nabla_{\beta} \frac{1}{n}\|Y-X \beta\|_{2}^{2}=-\frac{2}{n} X^{\top} Y+\frac{2}{n} X^{\top} X \beta
$$

- Setting $\nabla_{\beta} L(\hat{\beta} ; Z)=0$, we have $X^{\top} X \hat{\beta}=X^{\top} Y$

Recap: Closed-Form Solution

- Setting $\nabla_{\beta} L(\hat{\beta} ; Z)=0$, we have $X^{\top} X \hat{\beta}=X^{\top} Y$
- Assuming $X^{\top} X$ is invertible, we have

$$
\hat{\beta}(Z)=\left(X^{\top} X\right)^{-1} X^{\top} Y
$$

Shortcomings of Closed-Form Solution

- Computing $\hat{\beta}(Z)=\left(X^{\top} X\right)^{-1} X^{\top} Y$ can be challenging when the number of features d is large
- Computing $\left(X^{\top} X\right)^{-1}$ is $\boldsymbol{O}\left(d^{3}\right)$
- $d=10^{4}$ features $\rightarrow O\left(10^{12}\right)$
- Even storing $X^{\top} X$ requires a lot of memory
- Numerical accuracy issues due to "ill-conditioning"
- What if $X^{\top} X$ is "barely" invertible?
- Then, $\left(X^{\top} X\right)^{-1}$ has large variance along some dimension
- Regularization helps (more on this later)

Optimization Algorithms

- Recall that linear regression minimizes the loss

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}
$$

- Iteratively optimize β
- Initialize $\beta_{1} \leftarrow \operatorname{Init}(\ldots$.
- For some number of iterations T, update $\beta_{t} \leftarrow \operatorname{Step}(\ldots)$
- Return β_{T}

Optimization Algorithms

- Global search: Try random values of β and choose the best
- I.e., β_{t} independent of β_{t-1}
- Very unstructured, can take a long time (especially in high dimension d)!
- Local search: Start from some initial β and make local changes
- I.e., β_{t} is computed based on β_{t-1}
- What is a "local change", and how do we find good one?

Strategy 2: Gradient Descent

- Gradient descent: Update β based on gradient $\nabla_{\beta} L(\beta ; Z)$ of $L(\beta ; Z)$:

$$
\beta_{t+1} \leftarrow \beta_{t}-\alpha \cdot \nabla_{\beta} L\left(\beta_{t} ; Z\right)
$$

- Intuition: The gradient is the direction along which $L(\beta ; Z)$ changes most quickly as a function of β
- $\alpha \in \mathbb{R}$ is a hyperparameter called the learning rate
- More on this later

Strategy 2: Gradient Descent

- Choose initial value for β
- Until we reach a minimum:
- Choose a new value for β to reduce $L(\beta ; Z)$

Strategy 2: Gradient Descent

- Choose initial value for β
- Until we reach a minimum:
- Choose a new value for β to reduce $L(\beta ; Z)$

Strategy 2: Gradient Descent

- Choose initial value for β
- Until we reach a minimum:
- Choose a new value for β to reduce $L(\beta ; Z)$

Linear regression loss is convex, so no local minima

Strategy 2: Gradient Descent

- Initialize $\beta_{1}=0$
- Repeat until convergence:

$$
\beta_{t+1} \leftarrow \beta_{t}-\alpha \cdot \nabla_{\beta} L\left(\beta_{t} ; Z\right)
$$

- For linear regression, know the gradient from strategy 1

For in-place updates $\beta \leftarrow \beta-\alpha \cdot \nabla_{\beta} L(\beta ; Z)$, compute all components of $\nabla_{\beta} L(\beta ; Z)$ before modifying β

Strategy 2: Gradient Descent

- Initialize $\beta_{1}=0$
- Repeat until convergence:

$$
\beta_{t+1} \leftarrow \beta_{t}-\alpha \cdot \nabla_{\beta} L\left(\beta_{t} ; Z\right)
$$

- For linear regression, know the gradient from strategy 1

Strategy 2: Gradient Descent

- Initialize $\beta_{1}=\overrightarrow{0}$

Hyperparameter defining

- Repeat until $\left\|\beta_{t}-\beta_{t+1}\right\|_{2} \leq \epsilon$:

$$
\beta_{t+1} \leftarrow \beta_{t}-\alpha \cdot \nabla_{\beta} L\left(\beta_{t} ; Z\right)
$$

- For linear regression, know the gradient from strategy 1

Strategy 2: Gradient Descent

$f_{\beta}(x)$

$L(\beta ; Z)$

Strategy 2: Gradient Descent

$f_{\beta}(x)$

$L(\beta ; Z)$

Strategy 2: Gradient Descent

$f_{\beta}(x)$

$L(\beta ; Z)$

Strategy 2: Gradient Descent

$f_{\beta}(x)$

$L(\beta ; Z)$

Strategy 2: Gradient Descent

$f_{\beta}(x)$

$L(\beta ; Z)$

Strategy 2: Gradient Descent

Strategy 2: Gradient Descent

$f_{\beta}(x)$

$L(\beta ; Z)$

Strategy 2: Gradient Descent

$f_{\beta}(x)$

$L(\beta ; Z)$

Strategy 2: Gradient Descent

Choice of Learning Rate $\boldsymbol{\alpha}$

Problem: α too small

- $L(\beta ; Z)$ decreases slowly

Problem: α too large

- $L(\beta ; Z)$ increases!

Plot $L\left(\beta_{t} ; Z_{\text {train }}\right)$ vs. t to diagnose these problems

Choice of Learning Rate $\boldsymbol{\alpha}$

- α is a hyperparameter for gradient descent that we need to choose
- Can set just based on training data
- Rule of thumb
- α too small: Loss decreases slowly
- α too large: Loss increases!
- Try rates $\alpha \in\{1.0,0.1,0.01, \ldots\}$ (can tune further once one works)

Comparison of Strategies

- Closed-form solution
- No hyperparameters
- Slow if n or d are large
- Gradient descent
- Need to tune α
- Scales to large n and d
- For linear regression, there are better optimization algorithms, but gradient descent is very general
- Accelerated gradient descent is an important tweak that improves performance in practice (and in theory)

$\boldsymbol{L}_{\mathbf{2}}$ Regularized Linear Regression

- Recall that linear regression with L_{2} regularization minimizes the loss

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda \sum_{j=1}^{d} \beta_{j}^{2}
$$

$\boldsymbol{L}_{\mathbf{2}}$ Regularized Linear Regression

- Recall that linear regression with L_{2} regularization minimizes the loss

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\lambda \sum_{j=1}^{d} \beta_{j}^{2}=\frac{1}{n}\|Y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{2}^{2}
$$

- Gradient is

$$
\nabla_{\beta} L(\beta ; Z)=-\frac{2}{n} X^{\top} Y+\frac{2}{n} X^{\top} X \beta+2 \lambda \beta
$$

Strategy 1: Closed-Form Solution

- Gradient is

$$
\nabla_{\beta} L(\beta ; Z)=-\frac{2}{n} X^{\top} Y+\frac{2}{n} X^{\top} X \beta+2 \lambda \beta
$$

- Setting $\nabla_{\beta} L(\hat{\beta} ; Z)=0$, we have $\left(X^{\top} X+n \lambda I\right) \hat{\beta}=X^{\top} Y$
- Always invertible if $\lambda>0$, so we have

$$
\hat{\beta}(Z)=\left(X^{\top} X+n \lambda I\right)^{-1} X^{\top} Y
$$

Strategy 2: Gradient Descent

- Gradient is

$$
\nabla_{\beta} L(\beta ; Z)=-\frac{2}{n} X^{\top} Y+\frac{2}{n} X^{\top} X \beta+2 \lambda \beta
$$

- Same algorithm as vanilla linear regression (a.k.a. OLS)
- Intuition: The extra term $\lambda \beta$ in the gradient is weight decay that encourages β to be small

What About $\boldsymbol{L}_{\mathbf{1}}$ Regularization?

- Gradient descent still works!
- Specialized algorithms work better in practice
- Simple one: Gradient descent + soft thresholding
- Basically, if $\left|\beta_{t, j}\right| \leq \lambda$, just set it to zero
- Good theoretical properties

Loss Minimization View of ML

- Two design decisions
- Model family: What are the candidate models f ? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)

Loss Minimization View of ML

- Three design decisions
- Model family: What are the candidate models f ? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- Optimizer: How do we minimize the loss? (E.g., gradient descent)

Lecture 5: Logistic Regression

CIS 4190/5190

Fall 2022

Supervised Learning

$$
\begin{aligned}
\text { Data } Z=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} & \hat{\beta}(Z)=\arg \min _{\beta} L(\beta ; Z) \\
L \text { encodes } y_{i} & \approx f_{\beta}\left(x_{i}\right)
\end{aligned}
$$

Regression

Data $Z=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

$$
\begin{gathered}
\hat{\beta}(Z)=\arg \min _{\beta} L(\beta ; Z) \\
L \text { encodes } y_{i} \approx f_{\beta}\left(x_{i}\right)
\end{gathered}
$$

Label is a real value $y_{i} \in \mathbb{R}$

Classification

Data $Z=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

$$
\begin{gathered}
\hat{\beta}(Z)=\arg \min _{\beta} L(\beta ; Z) \\
L \text { encodes } y_{i} \approx f_{\beta}\left(x_{i}\right)
\end{gathered}
$$

Model $f_{\widehat{\beta}(Z)}$

Label is a discrete value $y_{i} \in \mathcal{Y}=\left\{c_{1}, \ldots, c_{k}\right\}$

(Binary) Classification

- Input: Dataset $Z=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Output: Model $y_{i} \approx f_{\beta}\left(x_{i}\right)$

Image: https://eyecancer.com/uncategorized/choroidal-metastasis-test/

Example: Malignant vs. Benign Ocular Tumor

Loss Minimization View of ML

- Three design decisions
- Model family: What are the candidate models f ? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- Optimizer: How do we optimize the loss? (E.g., gradient descent)
- How do we adapt to classification?

Linear Functions for (Binary) Classification

- Input: Dataset $Z=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Regression:
- Labels $y_{i} \in \mathbb{R}$
- Predict $y_{i} \approx \beta^{\top} x_{i}$
- Classification:
- Labels $y_{i} \in\{0,1\}$
- Predict $y_{i} \approx 1\left(\beta^{\top} x_{i} \geq 0\right)$
- $1(C)$ equals 1 if C is true and 0 if C is false
- How to learn β ? Need a loss function!

Loss Functions for Linear Classifiers

- (In)accuracy:

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n} 1\left(y_{i} \neq f_{\beta}\left(x_{i}\right)\right)
$$

- Computationally intractable
- Often, but not always the "true" loss (e.g., imbalanced data)

Loss Functions for Linear Classifiers

- Distance:

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}\left(x_{i}, f_{\beta}\right) \cdot 1\left(f_{\beta}\left(x_{i}\right) \neq y_{i}\right)
$$

- If $L(\beta ; Z)=0$, then 100% accuracy
- Variant of this loss results in SVM
- But, we will consider a more general strategy

