Announcements

- Quiz 2 posted (Due this Thursday, September 22 at 8 pm)
- Homework 2 posted (Due Monday, October 3 at 8pm)

Recap: Gradient Descent

- Initialize $\beta_{1}=\overrightarrow{0}$
- Repeat until $\left\|\beta_{t}-\beta_{t+1}\right\|_{2} \leq \epsilon$:

$$
\beta_{t+1} \leftarrow \beta_{t}-\alpha \cdot \nabla_{\beta} L\left(\beta_{t} ; Z\right)
$$

- For linear regression, know the gradient from strategy 1

Recap: Gradient Descent

Problem: α too small

- $L(\beta ; Z)$ decreases slowly

Problem: α too large

- $L(\beta ; Z)$ increases!

Plot $L\left(\beta_{t} ; Z_{\text {train }}\right)$ vs. t to diagnose these problems

Recap: Loss Minimization View of ML

- Three design decisions
- Model family: What are the candidate models f ? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- Optimizer: How do we minimize the loss? (E.g., gradient descent)

Lecture 5: Logistic Regression (Part 1)

CIS 4190/5190

Fall 2022

Supervised Learning

$$
\begin{aligned}
\text { Data } Z=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n} & \hat{\beta}(Z)=\arg \min _{\beta} L(\beta ; Z) \\
L \text { encodes } y_{i} & \approx f_{\beta}\left(x_{i}\right)
\end{aligned}
$$

Regression

Data $Z=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

$$
\begin{gathered}
\hat{\beta}(Z)=\arg \min _{\beta} L(\beta ; Z) \\
L \text { encodes } y_{i} \approx f_{\beta}\left(x_{i}\right)
\end{gathered}
$$

Label is a real value $y_{i} \in \mathbb{R}$

Classification

Data $Z=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$

$$
\begin{gathered}
\hat{\beta}(Z)=\arg \min _{\beta} L(\beta ; Z) \\
L \text { encodes } y_{i} \approx f_{\beta}\left(x_{i}\right)
\end{gathered}
$$

Label is a discrete value $y_{i} \in \mathcal{Y}=\{1, \ldots, k\}$

(Binary) Classification

- Input: Dataset $Z=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Output: Model $y_{i} \approx f_{\beta}\left(x_{i}\right)$

Image: https://eyecancer.com/uncategorized/choroidal-metastasis-test/

Example: Malignant vs. Benign Ocular Tumor

Loss Minimization View of ML

- Three design decisions
- Model family: What are the candidate models f ? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- Optimizer: How do we optimize the loss? (E.g., gradient descent)
- How do we adapt to classification?

Linear Functions for (Binary) Classification

- Input: Dataset $Z=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Classification:
- Labels $y_{i} \in\{0,1\}$
- Predict $y_{i} \approx 1\left(\beta^{\top} x_{i} \geq 0\right)$
- $1(C)$ equals 1 if C is true and 0 if C is false
- How to learn β ? Need a loss function!

Loss Functions for Linear Classifiers

- (In)accuracy:

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n} 1\left(y_{i} \neq f_{\beta}\left(x_{i}\right)\right)
$$

- Computationally intractable
- Often, but not always the "true" loss (e.g., imbalanced data)

Loss Functions for Linear Classifiers

- Distance:

$$
L(\beta ; Z)=\frac{1}{n} \sum_{i=1}^{n} \operatorname{dist}\left(x_{i}, f_{\beta}\right) \cdot 1\left(f_{\beta}\left(x_{i}\right) \neq y_{i}\right)
$$

- If $L(\beta ; Z)=0$, then 100% accuracy
- Variant of this loss results in SVM
- We consider a more general strategy

Maximum Likelihood Estimation

- Our first probabilistic viewpoint on learning (from statistics)
- Given x_{i}, suppose y_{i} is drawn i.i.d. from distribution $p_{Y \mid X}(Y=y \mid x ; \beta)$ with parameters β (or density, if y_{i} is continuous):

$$
y_{i} \sim p_{Y \mid X}\left(\cdot \mid x_{i} ; \beta\right)
$$

Y is random variable, not vector

- Typically write $p_{\beta}(Y=y \mid x)$ or just $p_{\beta}(y \mid x)$
- Called a model (and $\left\{p_{\beta}\right\}_{\beta}$ is the model family)
- Will show up convert p_{β} to f_{β} later

Maximum Likelihood Estimation

- Compare to loss function minimization:
- Before: $y_{i} \approx f_{\beta}\left(x_{i}\right)$
- Now: $\quad y_{i} \sim p_{\beta}\left(\cdot \mid x_{i} ; \beta\right)$
- Intuition the difference:
- $f_{\beta}\left(x_{i}\right)$ just provides a point that y_{i} should be close to
- $p_{\beta}\left(\cdot \mid x_{i} ; \beta\right)$ provides a score for each possible y_{i}
- Maximum likelihood estimation combines the loss function and model family design decisions

Maximum Likelihood Estimation

- Likelihood: Given model p_{β}, the probability of dataset Z (replaces loss function in loss minimization view):

$$
L(\beta ; Z)=p_{\beta}(Y \mid X)=\prod_{i=1}^{n} p_{\beta}\left(y_{i} \mid x_{i}\right)
$$

- Negative Log-likelihood (NLL): Computationally better behaved form:

$$
\ell(\beta ; Z)=-\log L(\beta ; Z)=-\sum_{i=1}^{n} \log p_{\beta}\left(y_{i} \mid x_{i}\right)
$$

Intuition on the Likelihood

High likelihood (Low NLL)

Low likelihood (High NLL)

Example: Linear Regression

- Assume that the conditional density is

$$
p_{\beta}\left(y_{i} \mid x_{i}\right)=N\left(y_{i} ; \beta^{\top} x_{i}, 1\right)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{\left(\beta^{\top} x_{i}-y_{i}\right)^{2}}{2}}
$$

- $N\left(y ; \mu, \sigma^{2}\right)$ is the density of the normal (a.k.a. Gaussian) distribution with mean μ and variance σ^{2}

Example: Linear Regression

- Then, the likelihood is

$$
L(\beta ; Z)=\prod_{i=1}^{n} p_{\beta}\left(y_{i} \mid x_{i}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{\left(\beta^{\top} x_{i}-y_{i}\right)^{2}}{2}}
$$

- The NLL is

$$
\ell(\beta ; Z)=-\sum_{i=1}^{n} \log p_{\beta}\left(y_{i} \mid x_{i}\right)=\underbrace{\frac{n \log (2 \pi)}{2}}_{\text {constant }}+\underbrace{\sum_{i=1}^{n}\left(\beta^{\top} x_{i}-y_{i}\right)^{2}}_{\mathrm{MSE}!}
$$

Example: Linear Regression

- Loss minimization for maximum likelihood estimation:

$$
\hat{\beta}(Z)=\underset{\beta}{\arg \min } \ell(\beta ; Z)
$$

- Note: Called maximum likelihood estimation since maximizing the likelihood equivalent to minimizing the NLL

Example: Linear Regression

- What about the model family?

$$
\begin{aligned}
f_{\beta}(x) & =\underset{y}{\arg \max } p_{\beta}(y \mid x) \\
& =\underset{y}{\arg \max } \frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{\left\|\beta^{\top} x-y\right\|_{2}^{2}}{2}} \\
& =\beta^{\top} x
\end{aligned}
$$

- Recovers linear functions!

Loss Minimization View of ML

- Three design decisions
- Model family: What are the candidate models f ? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- Optimizer: How do we optimize the loss? (E.g., gradient descent)

Maximum Likelihood View of ML

- Two design decisions
- Likelihood: Probability $p_{\beta}(y \mid x)$ of data (x, y) given parameters β
- Optimizer: How do we optimize the NLL? (E.g., gradient descent)
- Corresponding Loss Minimization View:
- Model family: Most likely label $f_{\beta}(x)=\arg \max _{y} p_{\beta}(y \mid x)$
- Loss function: Negative log likelihood (NLL) $\ell(\beta ; Z)=-\sum_{i=1}^{n} \log p_{\beta}\left(y_{i} \mid x_{i}\right)$
- Very powerful framework for designing cutting edge ML algorithms
- Write down the "right" likelihood, form tractable approximation if needed
- Especially useful for thinking about non-i.i.d. data

What about classification?

Compare to linear regression:

- Consider the following choice:

$$
p_{\beta}\left(Y=0 \mid x_{i}\right) \propto e^{-\frac{\beta^{\top} x_{i}}{2}} \text { and } p_{\beta}\left(Y=1 \mid x_{i}\right) \propto e^{\frac{\beta^{\top} x_{i}}{2}}
$$

- Then, we have

$$
p_{\beta}\left(Y=1 \mid x_{i}\right)=\frac{e^{\frac{\beta^{\top} x_{i}}{2}}}{e^{\frac{\beta^{\top} x_{i}}{2}}+e^{-\frac{\beta^{\top} x_{i}}{2}}}=\frac{1}{1+e^{-\beta^{\top} x_{i}}}
$$

What about classification?

Compare to linear regression:

- Consider the following choice:

$$
p_{\beta}\left(Y=0 \mid x_{i}\right) \propto e^{-\frac{\beta^{\top} x_{i}}{2}} \text { and } p_{\beta}\left(Y=1 \mid x_{i}\right) \propto e^{\frac{\beta^{\top} x_{i}}{2}}
$$

- Then, we have

$$
p_{\beta}\left(Y=1 \mid x_{i}\right)=\frac{e^{\frac{\beta^{\top} x_{i}}{2}}}{e^{\frac{\beta^{\top} x_{i}}{2}}+e^{-\frac{\beta^{\top} x_{i}}{2}}}=\sigma\left(\beta^{\top} x_{i}\right) \quad-\sigma(z)=\frac{1}{1+e^{-z}}
$$

- Furthermore, $p_{\beta}\left(Y=0 \mid x_{i}\right)=1-\sigma\left(\beta^{\top} x_{i}\right)$

Logistic/Sigmoid Function

Logistic Regression Model Family

$$
\begin{aligned}
f_{\beta}(x) & =\underset{y}{\arg \max } p_{\beta}(y \mid x) \\
& =\underset{y}{\arg \max }\left\{\begin{array}{cc}
\sigma\left(\beta^{\top} x\right) & \text { if } y=1 \\
1-\sigma\left(\beta^{\top} x\right) & \text { if } y=0
\end{array}\right. \\
& =\left\{\begin{array}{cc}
1 & \text { if } \sigma\left(\beta^{\top} x\right) \geq \frac{1}{2} \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Logistic Regression Model Family

$$
\begin{aligned}
f_{\beta}(x) & =\underset{y}{\arg \max } p_{\beta}(y \mid x) \\
& =\underset{y}{\arg \max }\left\{\begin{array}{cc}
\sigma\left(\beta^{\top} x\right) & \text { if } y=1 \\
1-\sigma\left(\beta^{\top} x\right) & \text { if } y=0
\end{array}\right. \\
& =\left\{\begin{array}{cc}
1 & \text { if } \sigma\left(\beta^{\top} x\right) \geq \frac{1}{2} \\
0 & \text { otherwise }
\end{array}\right. \\
& = \begin{cases}1 & \text { if } \beta^{\top} x \geq 0 \\
0 & \text { otherwise }\end{cases} \\
& =1\left(\beta^{\top} x \geq 0\right)
\end{aligned}
$$

- Recovers linear classifiers!

Logistic Regression Algorithm

- Then, we have the following NLL loss:

$$
\begin{aligned}
\ell(\beta ; Z) & =-\sum_{i=1}^{n} \log p_{\beta}\left(y_{i} \mid x_{i}\right) \\
& =-\sum_{i=1}^{n} 1\left(y_{i}=1\right) \cdot \log \left(\sigma\left(\beta^{\top} x_{i}\right)\right)+1\left(y_{i}=0\right) \cdot \log \left(1-\sigma\left(\beta^{\top} x_{i}\right)\right) \\
& =-\sum_{i=1}^{n} y_{i} \cdot \log \left(\sigma\left(\beta^{\top} x_{i}\right)\right)+\left(1-y_{i}\right) \cdot \log \left(1-\sigma\left(\beta^{\top} x_{i}\right)\right)
\end{aligned}
$$

- Logistic regression minimizes this loss:

$$
\hat{\beta}(Z)=\underset{\beta}{\arg \min } \ell(\beta ; Z)
$$

Intuition on the Objective

- Loss for example i is

$$
\left\{\begin{array}{cl}
-\log \left(\sigma\left(\beta^{\top} x_{i}\right)\right) & \text { if } y_{i}=1 \\
-\log \left(1-\sigma\left(\beta^{\top} x_{i}\right)\right) & \text { if } y_{i}=0
\end{array}\right.
$$

Intuition on the Objective

- Loss for example i is

$$
\left\{\begin{array}{cl}
-\log \left(\sigma\left(\beta^{\top} x_{i}\right)\right) & \text { if } y_{i}=1 \\
-\log \left(1-\sigma\left(\beta^{\top} x_{i}\right)\right) & \text { if } y_{i}=0
\end{array}\right.
$$

Intuition on the Objective

- If $y_{i}=1$:
- If $p_{\beta}\left(Y=1 \mid x_{i}\right)=1$, then loss $=0$
- As $p_{\beta}\left(Y=1 \mid x_{i}\right) \rightarrow 0$, loss $\rightarrow \infty$

$$
-y_{i} \cdot \log \left(\sigma\left(\beta^{\top} x_{i}\right)\right)-\left(1-y_{i}\right) \cdot \log \left(1-\sigma\left(\beta^{\top} x_{i}\right)\right)
$$

Intuition on the Objective

- If $y_{i}=1$:
- If $p_{\beta}\left(Y=1 \mid x_{i}\right)=1$, then loss $=0$
- As $p_{\beta}\left(Y=1 \mid x_{i}\right) \rightarrow 0$, loss $\rightarrow \infty$
- If $y_{i}=0$
- If $p_{\beta}\left(Y=0 \mid x_{i}\right)=1$, then loss $=0$
- As $p_{\beta}\left(Y=0 \mid x_{i}\right) \rightarrow 0$, loss $\rightarrow \infty$

$$
-y_{i} \cdot \log \left(\sigma\left(\beta^{\top} x_{i}\right)\right)-\left(1-y_{i}\right) \cdot \log \left(1-\sigma\left(\beta^{\top} x_{i}\right)\right)
$$

Optimization for Logistic Regression

- To optimize the NLL loss, we need its gradient:

$$
\begin{aligned}
\nabla_{\beta} \ell(\beta ; Z) & =-\sum_{i=1}^{n} y_{i} \cdot \nabla_{\beta} \log \left(\sigma\left(\beta^{\top} x_{i}\right)\right)+\left(1-y_{i}\right) \cdot \nabla_{\beta} \log \left(1-\sigma\left(\beta^{\top} x_{i}\right)\right) \\
& =-\sum_{i=1}^{n} y_{i} \cdot \frac{\nabla_{\beta} \sigma\left(\beta^{\top} x_{i}\right)}{\sigma\left(\beta^{\top} x_{i}\right)}-\left(1-y_{i}\right) \cdot \frac{\nabla_{\beta} \sigma\left(\beta^{\top} x_{i}\right)}{1-\sigma\left(\beta^{\top} x_{i}\right)} \\
\begin{array}{l}
\sigma^{\prime}(z) \\
=\sigma(z)(1-\sigma(z)) \\
\end{array} & =-\sum_{i=1}^{n} y_{i} \cdot \frac{\sigma\left(\beta^{\top} x_{i}\right)\left(1-\sigma\left(\beta^{\top} x_{i}\right)\right) \cdot x_{i}}{\sigma\left(\beta^{\top} x_{i}\right)}-\left(1-y_{i}\right) \cdot \frac{\sigma\left(\beta^{\top} x_{i}\right)\left(1-\sigma\left(\beta^{\top} x_{i}\right)\right) \cdot x_{i}}{1-\sigma\left(\beta^{\top} x_{i}\right)} \\
& =-\sum_{i=1}^{n} y_{i} \cdot\left(1-\sigma\left(\beta^{\top} x_{i}\right)\right) \cdot x_{i}-\left(1-y_{i}\right) \cdot \sigma\left(\beta^{\top} x_{i}\right) \cdot x_{i} \\
& =-\sum_{i=1}^{n}\left(y_{i}-\sigma\left(\beta^{\top} x_{i}\right)\right) \cdot x_{i}
\end{aligned}
$$

Optimization for Logistic Regression

- Gradient of NLL:

$$
\nabla_{\beta} \ell(\beta ; Z)=\sum_{i=1}^{n}\left(\sigma\left(\beta^{\top} x_{i}\right)-y_{i}\right) \cdot x_{i}
$$

- Surprisingly similar to the gradient for linear regression!
- Only difference is the σ
- Gradient descent works as before
- No closed-form solution for $\hat{\beta}(Z)$

Feature Maps

- Can use feature maps, just like linear regression

Regularized Logistic Regression

- We can add L_{1} or L_{2} regularization to the NLL loss, e.g.:

$$
\ell(\beta ; Z)=-\sum_{i=1}^{n} y_{i} \cdot \log \left(\sigma\left(\beta^{\top} x_{i}\right)\right)+\left(1-y_{i}\right) \cdot \log \left(1-\sigma\left(\beta^{\top} x_{i}\right)\right)+\lambda \cdot\|\beta\|_{2}^{2}
$$

- Is there a more "natural" way to derive the regularized loss?

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
- What if we assume $\beta \sim N\left(0, \sigma^{2} I\right)$ (the d dimensional normal distribution)?
- Consider the modified likelihood

$$
\begin{aligned}
L(\beta ; Z) & =p_{Y, \beta \mid X}(Y, \beta \mid X) \\
& =p_{Y \mid X, \beta}(Y \mid X, \beta) \cdot N\left(\beta ; 0, \sigma^{2} I\right) \\
& =\left(\prod_{i=1}^{n} p_{\beta}\left(y_{i} \mid x_{i}\right)\right) \cdot \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\|\beta\|_{2}^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
- What if we assume $\beta \sim N\left(0, \sigma^{2} I\right)$ (the d dimensional normal distribution)?
- Consider the modified NLL

$$
\ell(\beta ; Z)=-\sum_{i=1}^{n} \log p_{\beta}\left(y_{i} \mid x_{i}\right)+\underbrace{\log \sigma \sqrt{2 \pi}}_{\text {constant }}+\underbrace{\frac{\|\beta\|_{2}^{2}}{2 \sigma^{2}}}_{\text {regularization! }}
$$

- Obtain L_{2} regularization on β !
- With $\lambda=\frac{1}{2 \sigma^{2}}$
- If $\beta_{i} \sim$ Laplace $\left(0, \sigma^{2}\right)$ for each i, obtain L_{1} regularization

Additional Role of Regularization

- In p_{β}, if we replace β with $c \cdot \beta$, where $c \gg 1$ (and $c \in \mathbb{R}$), then:
- The decision boundary does not change
- The probabilities $p_{\beta}(y \mid x)$ become more confident

Additional Role of Regularization

- Regularization ensures that β does not become too large
- Prevents overconfidence
- Regularization can also be necessary
- Without regularization (i.e., $\lambda=0$) and data is linearly separable, then gradient descent diverges (i.e., $\beta \rightarrow \pm \infty$)

Multi-Class Classification

- What about more than two classes?
- Disease diagnosis: healthy, cold, flu, pneumonia
- Object classification: desk, chair, monitor, bookcase
- In general, consider a finite space of labels \mathcal{Y}

Multi-Class Classification

- Naïve Strategy: One-vs-rest classification
- Step 1: Train $|\mathcal{Y}|$ logistic regression models, where model $p_{\beta_{y}}(Y=1 \mid x)$ is interpreted as the probability that the label for x is y
- Step 2: Given a new input x, predict label $y=\underset{y^{\prime}}{\arg \max } p_{\beta_{y^{\prime}}}(Y=1 \mid x)$

Multi-Class Logistic Regression

- Strategy: Include separate β_{y} for each label $y \in \mathcal{Y}=\{1, \ldots, k\}$
- Let $p_{\beta}(y \mid x) \propto e^{\beta_{y}^{\top} x}$, i.e.

$$
p_{\beta}(y \mid x)=\frac{e^{\beta_{y}^{\top} x}}{\sum_{y^{\prime} \in y} e^{\beta_{y^{\prime}}^{\top} x}}
$$

- We define $\operatorname{softmax}\left(z_{1}, \ldots, z_{k}\right)=\left[\begin{array}{lll}\frac{e^{z_{1}}}{\sum_{i=1}^{k} e^{z_{i}}} & \cdots & \frac{e^{z_{k}}}{\sum_{i=1}^{k} e^{z_{i}}}\end{array}\right]$
- Then, $p_{\beta}(y \mid x)=\operatorname{softmax}\left(\beta_{1}^{\top} x, \ldots, \beta_{k}^{\top} x\right)_{y}$
- Thus, sometimes called softmax regression

Multi-Class Logistic Regression

- Model family
- $f_{\beta}(x)=\underset{y}{\arg \max } p_{\beta}(y \mid x)=\underset{y}{\arg \max } \frac{e^{\beta_{y}^{\top} x}}{\Sigma_{y^{\prime} \in y} e^{\beta_{y^{\prime}}^{\top} x}}=\underset{y}{\arg \max } \beta_{y}^{\top} x$
- Optimization
- Gradient descent on NLL
- Simultaneously update all parameters $\left\{\beta_{y}\right\}_{y \in \mathcal{Y}}$

Classification Metrics

- While we minimize the NLL, we often evaluate using accuracy
- However, even accuracy isn't necessarily the "right" metric
- If 99% of labels are negative (i.e., $y_{i}=0$), accuracy of $f_{\beta}(x)=0$ is 99% !
- For instance, very few patients test positive for most diseases
- "Imbalanced data"
- What are alternative metrics for these settings?

Classification Metrics

- Classify test examples as follows:
- True positive (TP): Actually positive, predictive positive
- False negative (FN): Actually positive, predicted negative
- True negative (TN): Actually negative, predicted negative
- False positive (FP): Actually negative, predicted positive
- Many metrics expressed in terms of these; for example:

$$
\text { accuracy }=\frac{T P+T N}{n} \quad \text { error }=1-\operatorname{accuracy}=\frac{F P+F N}{n}
$$

Confusion Matrix

	Predicted Class	
	Yes	No
$\frac{\sim}{U}$	Yes	TP
$\frac{\pi}{U}$	FN	
$\frac{\pi}{工}$		
$\frac{U}{U}$	No	FP
		TN

Confusion Matrix

Classification Metrics

- For imbalanced metrics, we roughly want to disentangle:
- Accuracy on "positive examples"
- Accuracy on "negative examples"
- Different definitions are possible (and lead to different meanings)!

Sensitivity \& Specificity

- Sensitivity: What fraction of actual positives are predicted positive?
- Good sensitivity: If you have the disease, the test correctly detects it
- Also called true positive rate
- Specificity: What fraction of actual negatives are predicted negative?
- Good specificity: If you do not have the disease, the test says so
- Also called true negative rate
- Commonly used in medicine

Sensitivity \& Specificity

Predicted Class				
		Yes	No	
$\begin{aligned} & \tilde{\pi} \\ & \frac{\pi}{U} \end{aligned}$	Yes	TP	FN	$\text { sensitivity }=\frac{T P}{T P+F N}$
-	No	FP	TN	$\text { specificty }=\frac{T N}{T N+F P}$

Sensitivity \& Specificity

Predicted Class				
		Yes	No	
$\begin{gathered} \tilde{\pi} \\ \frac{\pi}{U} \end{gathered}$	Yes	3 TP	4 FN	$\text { sensitivity }=\frac{T P}{T P+F N}$
$$	No	6 FP	37 TN	$\text { specificity }=\frac{T N}{T N+F P}$

Sensitivity \& Specificity

Precision \& Recall

- Recall: What fraction of actual positives are predicted positive?
- Good recall: If you have the disease, the test correctly detects it
- Also called the true positive rate (and sensitivity)
- Precision: What fraction of predicted positives are actual positives?
- Good precision: If the test says you have the disease, then you have it
- Also called positive predictive value
- Used in information retrieval, NLP

Precision \& Recall

Precision \& Recall

Precision \& Recall

