
Announcements

• Quiz 2 posted (Due this Thursday, September 22 at 8pm)

• Homework 2 posted (Due Monday, October 3 at 8pm)

0

1

2

3

0 0.5 1 1.5 2

Recap: Gradient Descent

• Initialize 𝛽! = 0
• Repeat until 𝛽" − 𝛽"#! $ ≤ 𝜖:

𝛽"#! ← 𝛽" − 𝛼 ⋅ ∇%𝐿 𝛽"; 𝑍

• For linear regression, know the
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽!
𝛽!"#

Recap: Gradient Descent

𝐿 𝛽; 𝑍

Problem: 𝛼 too large
• 𝐿 𝛽; 𝑍 increases!

𝐿 𝛽; 𝑍

Problem: 𝛼 too small
• 𝐿 𝛽; 𝑍 decreases slowly

Plot 𝐿 𝛽!; 𝑍"#$%& vs. 𝑡 to diagnose these problems

Recap: Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we minimize the loss? (E.g., gradient descent)

Lecture 5: Logistic Regression (Part 1)

CIS 4190/5190
Fall 2022

Supervised Learning

Data 𝑍 = 𝑥$, 𝑦$ $%#
& (𝛽 𝑍 = arg min' 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦$ ≈ 𝑓' 𝑥$
Model 𝑓(')

Regression

Data 𝑍 = 𝑥$, 𝑦$ $%#
& (𝛽 𝑍 = arg min' 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦$ ≈ 𝑓' 𝑥$
Model 𝑓(')

Label is a real value 𝑦$ ∈ ℝ

Classification

Data 𝑍 = 𝑥$, 𝑦$ $%#
& (𝛽 𝑍 = arg min' 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦$ ≈ 𝑓' 𝑥$
Model 𝑓(')

Label is a discrete value 𝑦$ ∈ 𝒴 = 1,… , 𝑘

(Binary) Classification

• Input: Dataset 𝑍 = { 𝑥!, 𝑦! , 𝑥", 𝑦" , … , }𝑥# , 𝑦#
• Output: Model 𝑦$ ≈ 𝑓% 𝑥$

Image: https://eyecancer.com/uncategorized/choroidal-
metastasis-test/𝑥! (tumor size)

𝑥 "
(a

ge
)

Example: Malignant vs. Benign Ocular Tumor

Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)

• How do we adapt to classification?

Linear Functions for (Binary) Classification

• Input: Dataset 𝑍 = { 𝑥!, 𝑦! , 𝑥", 𝑦" , … , }𝑥# , 𝑦#

• Classification:
• Labels 𝑦$ ∈ 0, 1
• Predict 𝑦$ ≈ 1 𝛽*𝑥$ ≥ 0
• 1 𝐶 equals 1 if 𝐶 is true and 0 if 𝐶 is false
• How to learn 𝛽? Need a loss function!

Loss Functions for Linear Classifiers

• (In)accuracy:

𝐿 𝛽; 𝑍 =
1
𝑛
8
$'!

#

1 𝑦$ ≠ 𝑓% 𝑥$

• Computationally intractable
• Often, but not always the “true”

loss (e.g., imbalanced data)

𝐿 𝛽; 𝑍 =
6
50

Loss Functions for Linear Classifiers

• Distance:

𝐿 𝛽; 𝑍 =
1
𝑛
>
$%#

&

dist(𝑥$, 𝑓') ⋅ 1 𝑓' 𝑥$ ≠ 𝑦$

• If 𝐿 𝛽; 𝑍 = 0, then 100% accuracy
• Variant of this loss results in SVM
• We consider a more general strategy

𝐿 𝛽; 𝑍 = 1.2

Maximum Likelihood Estimation

• Our first probabilistic viewpoint on learning (from statistics)

• Given 𝑥$, suppose 𝑦$ is drawn i.i.d. from distribution 𝑝(∣* 𝑌 = 𝑦 𝑥; 𝛽
with parameters 𝛽 (or density, if 𝑦$ is continuous):

𝑦$ ∼ 𝑝(∣* ⋅ 𝑥$; 𝛽

• Typically write 𝑝% 𝑌 = 𝑦 𝑥 or just 𝑝% 𝑦 𝑥
• Called a model (and 𝑝' '

is the model family)

• Will show up convert 𝑝' to 𝑓' later

𝑌 is random variable,
not vector

Maximum Likelihood Estimation

• Compare to loss function minimization:
• Before: 𝑦$ ≈ 𝑓' 𝑥$
• Now: 𝑦$ ∼ 𝑝' ⋅ 𝑥$; 𝛽

• Intuition the difference:
• 𝑓' 𝑥$ just provides a point that 𝑦$ should be close to
• 𝑝' ⋅ 𝑥$; 𝛽 provides a score for each possible 𝑦$

• Maximum likelihood estimation combines the loss function and
model family design decisions

Maximum Likelihood Estimation

• Likelihood: Given model 𝑝%, the probability of dataset 𝑍 (replaces
loss function in loss minimization view):

𝐿 𝛽; 𝑍 = 𝑝% 𝑌 𝑋 =B
$'!

#

𝑝% 𝑦$ 𝑥$

• Negative Log-likelihood (NLL): Computationally better behaved form:

ℓ 𝛽; 𝑍 = − log 𝐿 𝛽; 𝑍 = −8
$'!

#

log 𝑝% 𝑦$ 𝑥$

Intuition on the Likelihood

0

1

2

3

4

5

6

0 1 2 3 4

x2

x1

0

1

2

3

4

5

6

0 1 2 3 4

x2

x1

High likelihood
(Low NLL)

Low likelihood
(High NLL)

Example: Linear Regression

• Assume that the conditional density is

𝑝% 𝑦$ 𝑥$ = 𝑁 𝑦$; 𝛽+𝑥$, 1 =
1
2𝜋

⋅ 𝑒,
%!-",."

#

"

• 𝑁 𝑦; 𝜇, 𝜎" is the density of the normal (a.k.a. Gaussian) distribution
with mean 𝜇 and variance 𝜎"

Example: Linear Regression

• Then, the likelihood is

𝐿 𝛽; 𝑍 =B
$'!

#

𝑝% 𝑦$ 𝑥$ =B
$'!

#
1
2𝜋

⋅ 𝑒,
%!-",."

#

"

• The NLL is

ℓ 𝛽; 𝑍 = −8
$'!

#

log 𝑝% 𝑦$ 𝑥$ =
𝑛 log 2𝜋

2
+8

$'!

#

𝛽+𝑥$ − 𝑦$ "

constant MSE!

Example: Linear Regression

• Loss minimization for maximum likelihood estimation:

M𝛽 𝑍 = arg min
%

ℓ 𝛽; 𝑍

• Note: Called maximum likelihood estimation since maximizing the
likelihood equivalent to minimizing the NLL

Example: Linear Regression

• What about the model family?

𝑓% 𝑥 = arg max
.

𝑝% 𝑦 𝑥

𝑓% 𝑥 = arg max
.

!
"/
⋅ 𝑒,

$!%&' #
#

#

𝑓% 𝑥 = 𝛽+𝑥

• Recovers linear functions!

Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)

Maximum Likelihood View of ML

• Two design decisions
• Likelihood: Probability 𝑝' 𝑦 𝑥 of data 𝑥, 𝑦 given parameters 𝛽
• Optimizer: How do we optimize the NLL? (E.g., gradient descent)

• Corresponding Loss Minimization View:
• Model family: Most likely label 𝑓' 𝑥 = arg max+ 𝑝' 𝑦 𝑥
• Loss function: Negative log likelihood (NLL) ℓ 𝛽; 𝑍 = −∑$%#& log 𝑝' 𝑦$ 𝑥$

• Very powerful framework for designing cutting edge ML algorithms
• Write down the “right” likelihood, form tractable approximation if needed
• Especially useful for thinking about non-i.i.d. data

What about classification?

• Consider the following choice:

𝑝% 𝑌 = 0 𝑥$ ∝ 𝑒,
%!-"
" and 𝑝% 𝑌 = 1 𝑥$ ∝ 𝑒

%!-"
"

• Then, we have

𝑝% 𝑌 = 1 𝑥$ =
𝑒
%!-"
"

𝑒
%!-"
" + 𝑒,

%!-"
"

=
1

1 + 𝑒,%!-"

Sigmoid function

𝜎 𝑧 =
1

1 + 𝑒,-

Compare to linear regression:

𝑝' 𝑦 𝑥$ ∝ 𝑒,
'!.",+

#

/

What about classification?

• Consider the following choice:

𝑝% 𝑌 = 0 𝑥$ ∝ 𝑒,
%!-"
" and 𝑝% 𝑌 = 1 𝑥$ ∝ 𝑒

%!-"
"

• Then, we have

𝑝% 𝑌 = 1 𝑥$ =
𝑒
%!-"
"

𝑒
%!-"
" + 𝑒,

%!-"
"

= 𝜎 𝛽+𝑥$

• Furthermore, 𝑝% 𝑌 = 0 𝑥$ = 1 − 𝜎 𝛽+𝑥$

Sigmoid function

𝜎 𝑧 =
1

1 + 𝑒,-

Compare to linear regression:

𝑝' 𝑦 𝑥$ ∝ 𝑒,
'!.",+

#

/

Logistic/Sigmoid Function

�(z)

<latexit sha1_base64="u39OYtMSaq4IXUMvaNyC6wmVWPE=">AAADl3icfVJdaxNBFJ1m/ajrV6tP4stiEBKRkJWAfShYMUhfii00bSETy+zkJjt0ZnaZuVuNw/4MX/V3+W+cTRbTpK0XFs6ee869dy43yaWw2O3+2WgEd+7eu7/5IHz46PGTp1vbz05sVhgOA57JzJwlzIIUGgYoUMJZboCpRMJpcvGpyp9egrEi08c4y2Gk2FSLieAMPTWkVkwVa/1oR+H5VrPb6c4jug7iGjRJHYfn241LOs54oUAjl8zaYdzNceSYQcEllCEtLOSMX7ApDD3UTIEdufnMZfTaM+Nokhn/aYzm7FWHY8ramUq8UjFM7XquIm/MJWqlsxvbqsHaNDjZGTmh8wJB88Uwk0JGmEXVkqKxMMBRzjxg3Aj/noinzDCOfpVhSPvgH2zgwDf/koNhmJk3jjLjd/m9dBS0LQxUo/llTOnbii3/5xJ61UXnNlrxZeiDavjGM6WYHjt6gOUwHjmap4ImYipbVKFrxmX1Y9rlqljV4kQ5VX51rWbcLtck/YWkf3PWLgvYWwpYTFmt8qCWLrWr4uP0Xz2KKSC7pejHZV/KZJ5e0flLjdfv8jo4edeJe53eUa+5t1vf7CZ5SV6RFonJe7JH9skhGRBOMvKT/CK/gxfBh+BzsL+QNjZqz3OyEsHRX31eLZk=</latexit>

𝑝% 𝑌 = 1 𝑥$ = 𝜎 𝛽+𝑥$

Logistic Regression Model Family

𝑓' 𝑥 = arg max
+

𝑝' 𝑦 𝑥

𝑓' 𝑥 = arg max
+

R 𝜎 𝛽*𝑥
1 − 𝜎 𝛽*𝑥

if 𝑦 = 1
if 𝑦 = 0

𝑓' 𝑥 = T10
if 𝜎 𝛽*𝑥 ≥ #

/
otherwise

Logistic Regression Model Family

𝑓' 𝑥 = arg max
+

𝑝' 𝑦 𝑥

𝑓' 𝑥 = arg max
+

R 𝜎 𝛽*𝑥
1 − 𝜎 𝛽*𝑥

if 𝑦 = 1
if 𝑦 = 0

𝑓' 𝑥 = T10
if 𝜎 𝛽*𝑥 ≥ #

/
otherwise

𝑓' 𝑥 = T10
if 𝛽*𝑥 ≥ 0
otherwise

𝑓' 𝑥 = 1(𝛽*𝑥 ≥ 0)

• Recovers linear classifiers!

�(z)

<latexit sha1_base64="u39OYtMSaq4IXUMvaNyC6wmVWPE=">AAADl3icfVJdaxNBFJ1m/ajrV6tP4stiEBKRkJWAfShYMUhfii00bSETy+zkJjt0ZnaZuVuNw/4MX/V3+W+cTRbTpK0XFs6ee869dy43yaWw2O3+2WgEd+7eu7/5IHz46PGTp1vbz05sVhgOA57JzJwlzIIUGgYoUMJZboCpRMJpcvGpyp9egrEi08c4y2Gk2FSLieAMPTWkVkwVa/1oR+H5VrPb6c4jug7iGjRJHYfn241LOs54oUAjl8zaYdzNceSYQcEllCEtLOSMX7ApDD3UTIEdufnMZfTaM+Nokhn/aYzm7FWHY8ramUq8UjFM7XquIm/MJWqlsxvbqsHaNDjZGTmh8wJB88Uwk0JGmEXVkqKxMMBRzjxg3Aj/noinzDCOfpVhSPvgH2zgwDf/koNhmJk3jjLjd/m9dBS0LQxUo/llTOnbii3/5xJ61UXnNlrxZeiDavjGM6WYHjt6gOUwHjmap4ImYipbVKFrxmX1Y9rlqljV4kQ5VX51rWbcLtck/YWkf3PWLgvYWwpYTFmt8qCWLrWr4uP0Xz2KKSC7pejHZV/KZJ5e0flLjdfv8jo4edeJe53eUa+5t1vf7CZ5SV6RFonJe7JH9skhGRBOMvKT/CK/gxfBh+BzsL+QNjZqz3OyEsHRX31eLZk=</latexit>

𝜎 0 =
1
2

Logistic Regression Algorithm

• Then, we have the following NLL loss:

ℓ 𝛽; 𝑍 = −∑$%#& log 𝑝' 𝑦$ 𝑥$
ℓ 𝛽; 𝑍 = −∑$%#& 1 𝑦$ = 1 ⋅ log 𝜎 𝛽*𝑥$ + 1 𝑦$ = 0 ⋅ log 1 − 𝜎 𝛽*𝑥$
ℓ 𝛽; 𝑍 = −∑$%#& 𝑦$ ⋅ log 𝜎 𝛽*𝑥$ + 1 − 𝑦$ ⋅ log 1 − 𝜎 𝛽*𝑥$

• Logistic regression minimizes this loss:

M𝛽 𝑍 = arg min
%

ℓ 𝛽; 𝑍

Intuition on the Objective

• Loss for example 𝑖 is

W
− log 𝜎 𝛽+𝑥$

− log 1 − 𝜎 𝛽+𝑥$
if 𝑦$ = 1
if 𝑦$ = 0

lo
g𝑧

Intuition on the Objective

• Loss for example 𝑖 is

W
− log 𝜎 𝛽+𝑥$

− log 1 − 𝜎 𝛽+𝑥$
if 𝑦$ = 1
if 𝑦$ = 0

−
lo
g𝑧

Intuition on the Objective

• If 𝑦$ = 1:
• If 𝑝' 𝑌 = 1 𝑥$ = 1, then loss = 0
• As 𝑝' 𝑌 = 1 𝑥$ → 0,	loss → ∞

𝑝# 𝑦 𝑥

lo
ss

−𝑦$ ⋅ log 𝜎 𝛽+𝑥$ − 1 − 𝑦$ ⋅ log 1 − 𝜎 𝛽+𝑥$

Intuition on the Objective

• If 𝑦$ = 1:
• If 𝑝' 𝑌 = 1 𝑥$ = 1, then loss = 0
• As 𝑝' 𝑌 = 1 𝑥$ → 0,	loss → ∞

• If 𝑦$ = 0
• If 𝑝' 𝑌 = 0 𝑥$ = 1, then loss = 0
• As 𝑝' 𝑌 = 0 𝑥$ → 0,	loss → ∞

𝑝# 𝑦 𝑥

lo
ss

−𝑦$ ⋅ log 𝜎 𝛽+𝑥$ − 1 − 𝑦$ ⋅ log 1 − 𝜎 𝛽+𝑥$

Optimization for Logistic Regression

• To optimize the NLL loss, we need its gradient:

∇'ℓ 𝛽; 𝑍 = −∑$%#& 𝑦$ ⋅ ∇' log 𝜎 𝛽*𝑥$ + 1 − 𝑦$ ⋅ ∇' log 1 − 𝜎 𝛽*𝑥$

∇'ℓ 𝛽; 𝑍 = −∑$%#& 𝑦$ ⋅
∇$1 '!."
1 '!."

− 1 − 𝑦$ ⋅
∇$1 '!."
#,1 '!."

∇'ℓ 𝛽; 𝑍 = −∑$%#& 𝑦$ ⋅
1 '!." #,1 '!." ⋅."

1 '!."
− 1 − 𝑦$ ⋅

1 '!." #,1 '!." ⋅."
#,1 '!."

∇'ℓ 𝛽; 𝑍 = −∑$%#& 𝑦$ ⋅ 1 − 𝜎 𝛽*𝑥$ ⋅ 𝑥$ − 1 − 𝑦$ ⋅ 𝜎 𝛽*𝑥$ ⋅ 𝑥$
∇'ℓ 𝛽; 𝑍 = −∑$%#& 𝑦$ − 𝜎 𝛽*𝑥$ ⋅ 𝑥$

𝜎$ 𝑧
= 𝜎 𝑧 1 − 𝜎 𝑧

Optimization for Logistic Regression

• Gradient of NLL:

∇%ℓ 𝛽; 𝑍 =8
$'!

#

𝜎 𝛽+𝑥$ − 𝑦$ ⋅ 𝑥$

• Surprisingly similar to the gradient for linear regression!
• Only difference is the 𝜎

• Gradient descent works as before
• No closed-form solution for (𝛽 𝑍

Feature Maps

• Can use feature maps, just like linear regression

Regularized Logistic Regression

• We can add 𝐿! or 𝐿" regularization to the NLL loss, e.g.:

ℓ 𝛽; 𝑍 = −>
$%#

&

𝑦$ ⋅ log 𝜎 𝛽*𝑥$ + 1 − 𝑦$ ⋅ log 1 − 𝜎 𝛽*𝑥$ + 𝜆 ⋅ 𝛽 /
/

• Is there a more “natural” way to derive the regularized loss?

Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎/𝐼 (the 𝑑 dimensional normal distribution)?

• Consider the modified likelihood

𝐿 𝛽; 𝑍 = 𝑝(,%∣* 𝑌, 𝛽 𝑋
𝐿(𝛽;𝑍)= 𝑝(∣*,% 𝑌 𝑋, 𝛽 ⋅ 𝑁 𝛽; 0, 𝜎"𝐼

𝐿 𝛽; 𝑍 = ∏$'!
𝑝% 𝑦$ 𝑥$ ⋅ !

8 "/
𝑒,

$ #
#

#(#

Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎/𝐼 (the 𝑑 dimensional normal distribution)?

• Consider the modified NLL

ℓ 𝛽; 𝑍 = −∑$'!# log 𝑝% 𝑦$ 𝑥$ + log 𝜎 2𝜋 + % #
#

"8#

• Obtain 𝐿"regularization on 𝛽!
• With 𝜆 = #

/1#
• If 𝛽$ ∼ Laplace 0, 𝜎/ for each 𝑖, obtain 𝐿#regularization

constant regularization!

Additional Role of Regularization

• In 𝑝%, if we replace 𝛽 with 𝑐 ⋅ 𝛽, where 𝑐 ≫ 1 (and 𝑐 ∈ ℝ), then:
• The decision boundary does not change
• The probabilities 𝑝' 𝑦 𝑥 become more confident

𝑝' 𝑦 𝑥 𝑝#3' 𝑦 𝑥

𝑝!%# 𝑌 = 1 𝑥 ≈ 1𝑝# 𝑌 = 1 𝑥 ≈ 0.6

Additional Role of Regularization

• Regularization ensures that 𝛽 does not become too large
• Prevents overconfidence

• Regularization can also be necessary
• Without regularization (i.e., 𝜆 = 0) and data is linearly separable, then

gradient descent diverges (i.e., 𝛽 → ±∞)

Multi-Class Classification

• What about more than two classes?
• Disease diagnosis: healthy, cold, flu, pneumonia
• Object classification: desk, chair, monitor, bookcase
• In general, consider a finite space of labels 𝒴

𝑥1

𝑥2

Multi-Class Classification

• Naïve Strategy: One-vs-rest classification
• Step 1: Train 𝒴 logistic regression models, where model 𝑝'% 𝑌 = 1 𝑥 is

interpreted as the probability that the label for 𝑥 is 𝑦
• Step 2: Given a new input 𝑥, predict label 𝑦 = arg max

+&
𝑝'%& 𝑌 = 1 𝑥

Multi-Class Logistic Regression

• Strategy: Include separate 𝛽. for each label 𝑦 ∈ 𝒴 = {1,… , 𝑘}

• Let 𝑝% 𝑦 𝑥 ∝ 𝑒%'!-, i.e.

𝑝% 𝑦 𝑥 =
𝑒%'!-

∑.)∈𝒴 𝑒
%')
! -

• We define softmax 𝑧!, … , 𝑧@ =
A*+

∑",+
- A*"

… A*-
∑",+
- A*"

• Then, 𝑝% 𝑦 𝑥 = softmax 𝛽!+𝑥,… , 𝛽@+𝑥 .
• Thus, sometimes called softmax regression

Multi-Class Logistic Regression

• Model family

• 𝑓' 𝑥 = arg max
+

𝑝' 𝑦 𝑥 = arg max
+

4$%
!'

∑%&∈𝒴 4
$
%&
! '

= arg max
+

𝛽+*𝑥

• Optimization
• Gradient descent on NLL
• Simultaneously update all parameters 𝛽+ +∈𝒴

Classification Metrics

• While we minimize the NLL, we often evaluate using accuracy

• However, even accuracy isn’t necessarily the “right” metric
• If 99% of labels are negative (i.e., 𝑦$ = 0), accuracy of 𝑓' 𝑥 = 0 is 99%!
• For instance, very few patients test positive for most diseases
• “Imbalanced data”

• What are alternative metrics for these settings?

Classification Metrics

• Classify test examples as follows:
• True positive (TP): Actually positive, predictive positive
• False negative (FN): Actually positive, predicted negative
• True negative (TN): Actually negative, predicted negative
• False positive (FP): Actually negative, predicted positive

• Many metrics expressed in terms of these; for example:

accuracy =
𝑇𝑃 + 𝑇𝑁

𝑛
error = 1 − accuracy =

𝐹𝑃 + 𝐹𝑁
𝑛

Confusion Matrix

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

TP FN

FP TN

Confusion Matrix

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

Accuracy = 0.8

Classification Metrics

• For imbalanced metrics, we roughly want to disentangle:
• Accuracy on “positive examples”
• Accuracy on “negative examples”

• Different definitions are possible (and lead to different meanings)!

Sensitivity & Specificity

• Sensitivity: What fraction of actual positives are predicted positive?
• Good sensitivity: If you have the disease, the test correctly detects it
• Also called true positive rate

• Specificity: What fraction of actual negatives are predicted negative?
• Good specificity: If you do not have the disease, the test says so
• Also called true negative rate

• Commonly used in medicine

Sensitivity & Specificity

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

TP FN

FP TN

sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

specipicty =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Sensitivity & Specificity

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

specipicity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Sensitivity & Specificity

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

sensitivity = 3/7

specipicity = 37/43

Precision & Recall

• Recall: What fraction of actual positives are predicted positive?
• Good recall: If you have the disease, the test correctly detects it
• Also called the true positive rate (and sensitivity)

• Precision: What fraction of predicted positives are actual positives?
• Good precision: If the test says you have the disease, then you have it
• Also called positive predictive value

• Used in information retrieval, NLP

Precision & Recall

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

TP FN

FP TN

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision & Recall

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision & Recall

Yes

No

Yes No

Ac
tu

al
 C

la
ss

Predicted Class

3 TP 4 FN

6 FP 37 TN

recall = 3/7

precision = 3/9

