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A Different Kind of Learning

To this point:  parametric learning
Given a predetermined family of functions that maps from input features to prediction, 
learn a set of parameters for this function

.. one way: by optimizing against the loss function
linear regression – continuous-valued output
logistic regression – Boolean-valued output

But this is not the only kind of ML algorithm – now, we’ll see two variations on this 
theme

• k-Nearest Neighbors
• Decision trees
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Our Default Setup: Training for Binary Classification
Height (cm) Weight (kg) Large (vs Medium) 

t-shirt?
158 58 F
158 59 F
158 63 F
160 59 F
160 60 F
163 60 F
163 61 F
160 64 T
163 64 T
165 61 T
165 62 T
165 65 T
168 62 T
168 63 T
168 66 T
170 63 T
170 64 T
170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-
step-tutorial.html

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html


© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Our Default Setup: Training for Binary Classification
Height (cm) Weight (kg) Large (vs Medium) 

t-shirt?
158 58 F
158 59 F
158 63 F
160 59 F
160 60 F
163 60 F
163 61 F
160 64 T
163 64 T
165 61 T
165 62 T
165 65 T
168 62 T
168 63 T
168 66 T
170 63 T
170 64 T
170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-
step-tutorial.html

Input matrix X with 
d=2 features

and N=18

Class 
vector y

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
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Our Default Setup: Training for Binary Classification
Height (cm) Weight (kg) Large (vs Medium) 

t-shirt?
158 58 F
158 59 F
158 63 F
160 59 F
160 60 F
163 60 F
163 61 F
160 64 T
163 64 T
165 61 T
165 62 T
165 65 T
168 62 T
168 63 T
168 66 T
170 63 T
170 64 T
170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-
step-tutorial.html

Instance vector xi,
(here i=6)

Class label yi

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
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Our Default Setup: Binary Classification for
New Data – What Label? Height (cm) Weight (kg) Large (vs Medium) 

t-shirt?
158 58 F
158 59 F
158 63 F
160 59 F
160 60 F
163 60 F
163 61 F
160 64 T
163 64 T
165 61 T
165 62 T
165 65 T
168 62 T
168 63 T
168 66 T
170 63 T
170 64 T
170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-
step-tutorial.html

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
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k-Nearest Neighbors (kNN)

To predict category label 𝑦 of a new point 𝒙 (classification):
• Find k nearest neighbors (according to some distance metric)
• Assign the majority label to the new point

To predict numeric value 𝑦 of a new point 𝒙 (regression):
• Find k nearest neighbors
• “Average” the values associated with the neighbors

If we change k we may get a different prediction
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kNN Prediction: What Label?
Height (cm) Weight (kg) Large (vs Medium) 

t-shirt?
158 58 F
158 59 F
158 63 F
160 59 F
160 60 F
163 60 F
163 61 F
160 64 T
163 64 T
165 61 T
165 62 T
165 65 T
168 62 T
168 63 T
168 66 T
170 63 T
170 64 T
170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-
step-tutorial.html

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
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kNN Prediction: What Label?
Height (cm) Weight (kg) Large (vs Medium) 

t-shirt?
158 58 F
158 59 F
158 63 F
160 59 F
160 60 F
163 60 F
163 61 F
160 64 T
163 64 T
165 61 T
165 62 T
165 65 T
168 62 T
168 63 T
168 66 T
170 63 T
170 64 T
170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-
step-tutorial.html

k=3

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
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kNN Prediction: What Label?
Height (cm) Weight (kg) Large (vs Medium) 

t-shirt?
158 58 F
158 59 F
158 63 F
160 59 F
160 60 F
163 60 F
163 61 F
160 64 T
163 64 T
165 61 T
165 62 T
165 65 T
168 62 T
168 63 T
168 66 T
170 63 T
170 64 T
170 68 T

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-
step-tutorial.html

k=5

https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
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What Does “Nearest” Mean?

Must define a “distance function” between any two samples 𝒙𝟏 and 𝒙𝟐

“Nearest neighbor” = sample with least “distance”. Some commonly used distances:

Note: boldface 𝒙 denotes a vector in widely used notation. In our 
case, each of these is a 2D vector: 𝒙𝒊 = [𝑥"#, 𝑥"$]

ℓ
!

distance ℓ! distance ℓ" distance
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Different Distances Produce Different Outcomes
Classifier “decision boundary” plots show what class would be 

assigned at every point 𝒙

Also, “Euclidean” distance

Fix  k =1 neighbors

ℓ
!

distance ℓ! distance ℓ" distance

$
#

|𝑥$% − 𝑥!%| max
#

(𝑥$% − 𝑥!%)
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What about Distances between Non-numeric 
Data?  Consider Strings…

Hamming distance (number of characters that are different)
ABCDE vs	AGDDF à 3

Edit distance (number of character inserts/replacements/deletes to go from one to the other)
ROBOT vs BOT à 2

Jaccard distance between sets !∩#
!∪#

between n-grams (n-character substrings of the strings, with (n-1) character padding)

$$ROBOT$$ vs $$BOT$$ à |{BOT,OT$,T$$}| / |{$$R,$RO,ROB,OBO,$$B,$BO,BOT,OT$,T$$}|
3 9
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Beware: Feature Scaling
affects Nearest Neighbors

Our previous study of linear / logistic regression:
• OLS regression was scale-invariant
• Regularization was affected by the scale of 

different features

Even more of a concern with kNN: note that we are using 
a distance measure like L2, which is affected dramatically 
by feature scales!
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What Happens If We Have Many Dimensions?

Predict 𝑦 = acceleration of an object being pushed by a remote-
controlled robot
• What if input features are:

• 𝑥) = mass
• 𝑥* = Force
• 𝑥+ = color of object
• 𝑥, = temperature
• 𝑥- = air pressure
• 𝑥. = what the operator ate for breakfast that morning

…
As you add more irrelevant variables, distance functions, which are so critical for k-NN 

methods, get dominated by irrelevant dimensions in 𝒙
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General Problem: “Curse of Dimensionality”

Adding more dimensions makes lots of things weird and counterintuitive
e.g., the percentage of the volume of a 𝐷-dimensional sphere with radius 𝑟, that lies beyond 
ℓ%distance 0.99𝑟 from the center is:

• 3% at 𝐷 = 3
• 63%  at 𝐷 = 100
• 99.99% at 𝐷 = 1000

also, with enough dimensions most points are of roughly equal distance!
For k-NN, nearest neighbors become very far apart, and of similar distance –
therefore unreliable predictors
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General Advice …

Always worth trying k-nearest neighbors! 
• It’s so simple to code up that it’s worth it. 
• Often works surprisingly well, and is very 

widely used as a simple and reliable baseline, 
even with for really high-dimensional data

https://axon.cs.byu.edu/~martinez/classes/778/Papers/Manifold_Learning.pdf
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How Can We Scale kNN?

High 𝐷 also makes it computationally expensive to compute neighbors. 
Naively, must compute 𝑁 distances between 𝐷-dimensional data pairs to compute 
neighbors before classifying a single new point.  O(|training set||data set|)

Indexing
• Use kd-trees and other multidimensional indices to capture the training data
• Each lookup is O(log n) but on disk

Parallelism (e.g., PANDA, LBL)
• Use multiple cores / processors, and either compare against in-memory data or kd trees

Approximation
• Compare against a sample, not all of the training data
• See, e.g., https://www.kaggle.com/code/pawanbhandarkar/knn-vs-approximate-knn-what-

s-the-difference/notebook
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Stepping back… 
where are the parameters we learn?

Think broadly of the “parameters” as everything required to produce the output, for 
a given model class. i.e.

Model class + parameters + new input 𝒙 → predicted 𝑦

“kNN classifier” ??
A: The full training dataset!

Funnily, methods like these where the parameters are either the training data 
itself, or grow in size “automatically” with the training data, are called “non-
parametric” machine learning approaches.
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Summary of k-Nearest Neighbors

A case of “non-parametric” learning
• Uses	the	full	training	dataset	as	parameters
• Requires	careful	treatment	of	feature	scaling

• Main	decisions:	the	value	of	k,	the	distance	function

Tends to work well in practice. but beware scalability



Decision Trees

CIS	4190/5190	– Fall	2022
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A Motivating Example, with Some Data
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Diabetes Data

Data from NHANES 2013/14 survey 23

label 𝑦0

data matrix 𝑋

sample 𝒙0
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Diabetes Data

columns 𝑋𝑗 denote features

Patient number: should this 
really be a feature?

Data from NHANES 2013/14 survey 24

ID AGE WAIST HEIGHTCHOLESTEROL
UPPER LEG LENGTH

WEIGHT
BMI

RACE
HIGH BP

ALCOHOL USE
EDUCATION

GENDER
FAMILY INCOME RATIO

GLYCOHAEMOGLOBIN
DIABETIC

The diabetes test outcome: 
would make our ML 
pointless …
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Data Dictionary

Data sets are often accompanied by a data dictionary that describes each feature
It is critical to understand the data before analyzing it!

The dictionary for our data: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx

Data from NHANES 2013/14 survey

777 = refused; 999 = don’t 
know

25

https://wwwn.cdc.gov/nchs/nhanes/Default.aspx
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ID AGE WAIST HEIGHTCHOLESTEROL
UPPER LEG LENGTH

WEIGHT
BMI

RACE
HIGH BP

ALCOHOL USE
EDUCATION

GENDER
FAMILY INCOME RATIO

GLYCOHAEMOGLOBIN

This column seems binary, 
but also has “refused to 

answer” and “don’t know” 
categories

Data from NHANES 2013/14 survey 26

numeric nominal ordinal binary
DIABETIC
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Deciding on a Diagnosis /
Prediction

How do we train a human to make a diagnosis?
• Often, a kind of flowchart based on tests! “Decision Tree”

e.g.,	how	we	train	psychiatrists	to	make	diagnoses?

• “Explainable” in a clear way, easy to evaluate

Idea: Let’s create decision trees computationally! (ie learn them)

First: let’s formalize what we mean by a decision tree…

APA DSM Library
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Decision Trees for Humans

Simple decision tree used in medicine:

28

# days with fever

child age no
macrolides

no
macrolides

prescribe
macrolides

<2≥2

≤3>3
Decision tree example from: Martignon and Monti. (2010). 
Conditions for risk assessment as a topic for probabilistic 
education. Proceedings of the Eighth International 
Conference on Teaching Statistics (ICOTS8).



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

A Decision Tree Based on Boolean Tests

For continuous features, we’ll restrict our study to internal nodes that can test the 
value of one attribute. We can generalize to categorical values (binary decision tree).

29

# days with fever >= 2?

child age > 3? no
macrolides

no
macrolides

prescribe
macrolides

FT

FT
Decision tree example from: Martignon and Monti. (2010). 
Conditions for risk assessment as a topic for probabilistic 
education. Proceedings of the Eighth International 
Conference on Teaching Statistics (ICOTS8).
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A Decision Tree Based on Boolean Tests

For continuous features, we’ll restrict our study to internal nodes that can test the 
value of one attribute. We can generalize to categorical values (binary decision tree).

30

# days with fever >= 2?

child age > 3? no
macrolides

no
macrolides

prescribe
macrolides

FT

FT
Decision tree example from: Martignon and Monti. (2010). 
Conditions for risk assessment as a topic for probabilistic 
education. Proceedings of the Eighth International 
Conference on Teaching Statistics (ICOTS8).

Internal nodes: 
test one 
attribute 𝑋𝑗

Each branch: selects one value for 𝑋𝑗

Each leaf node: predict 𝑦
or  𝑝(𝑦|𝑥 ∈ leaf)
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A Decision Tree Interior Node
“Splits” Training Data

ColorOfCoat TypeOfHorse
black thoroughbred

bay Arabian

black thoroughbred

chestnut quarter

black Arabian

ColorOfCoat
= ‘black’

ColorOfCoat TypeOfHorse
bay Arabian

chestnut quarter

ColorOfCoat TypeOfHorse
black thoroughbred

black thoroughbred

black Arabian

N=5; 3 classes

N=2; 2 classes

N=3; 2 classes
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More Generally: Decision Tree Induces a Partition

Decisions trees generated on Wisconsin 
Breast Cancer dataset in sklearn 32

|--- worst perimeter <= 105.95
| |--- worst concave points <= 0.135
| | |--- class: benign
| |--- worst concave points > 0.135
| | |--- worst concave points < 0.16
| | | |--- class: benign
| | |--- worst concave points > 0.16
| | | | --- worst perimeter > 80
| | | | | --- class: malignant
| | | | --- worst perimeter < 80
| | | | | --- class: benign

…
…

Decision trees divide the feature space into axis-aligned “hyperrectangles”

So what is the hypothesis class 
expressed by a DT?
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Decision Trees and Boolean Tests
Decision trees can represent any Boolean function of the features

In the worst case, the tree will require 
exponentially many nodes

A
FT

B

TF

FT
B

FT

FT

A B A xor B
T T F
T F T
F T T
F F F

33
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Decision Trees and Boolean Tests
Decision trees can represent any Boolean function of the features

In the worst case, the tree will require 
exponentially many nodes

A
FT

B

TF

FT
B

FT

FT

A B A xor B
T T F
T F T
F T T
F F F

34

row = path to leaf
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Decision Trees and Boolean Tests

DTs have a variable-sized hypothesis space based on their depth
• Depth 1:  any Boolean function based on one feature
• Depth 2:  any Boolean function based on two features
• . . . A

FT

B

TF

FT
B

FT

FT

A

TF

FT
DTs of depth 1 
are also called 
decision stumps

35



Training Decision Trees
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Decision Tree Training – Grow Top-Down

A
FT

TF

B
FT

FT

B
FT
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Top-Down Decision Tree Induction 
[ID3 (1986), C4.5(1993) by Quinlan]

Let 𝒟 be a set of labeled instances; 𝒟 = (𝒙& , 𝑦&) &'(
) = [𝑋)×+ , 𝒚)×(]

Let 𝒟[𝑋, = 𝑣] be the subset of 𝒟 where feature 𝑋, has value 𝑣

function train_tree(𝒟)
1. If data 𝒟 all have the same label 𝑦, return new leaf_node(y), else:

2. Pick the “best” feature 𝑋, to partition 𝒟
3. Set node = new decision_node(𝑋,)
4. For each value 𝑣 that 𝑋, can take

Recursively create a new child train_tree(𝒟[𝑋% = 𝑣]) of		node

5. Return node

38

D

Xj=v?

y n

Xj=? Xj=?

D[Xj=v] D[Xj≠v]
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Top-Down Decision Tree Training

A
FT

TF

B
FT

FT

B
FT

Do we think this is going to be optimal, or greedy?
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Top-Down Decision Tree Induction 
[ID3 (1986), C4.5(1993) by Quinlan]

Let 𝒟 be a set of labeled instances; 𝒟 = (𝒙& , 𝑦&) &'(
) = [𝑋)×+ , 𝒚)×(]

Let 𝒟[𝑋, = 𝑣] be the subset of 𝒟 where feature 𝑋, has value 𝑣

function train_tree(𝒟)
1. If data 𝒟 all have the same label 𝑦, return new leaf_node(y), else:

2. Pick the “best” feature 𝑋, to partition 𝒟
3. Set node = new decision_node(𝑋,)
4. For each value 𝑣 that 𝑋, can take

Recursively create a new child train_tree(𝒟[𝑋% = 𝑣]) of		node

5. Return node

40

How do we choose which feature is 
best?
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Choosing the Best Feature
Key problem: how should we choose which feature to split the data?

Possibilities:

??Random

Choose 
any 
feature at 
random 

41
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DT to Predict Diabetes – Random Features

Is this really the best way to choose decision nodes?

42
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What Might be Better?
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Learning Bias: Occam’s Razor

Principle stated by William of Ockham (1285-1347)
• “non	sunt	multiplicanda entia	praeter necessitatem” --

”entities	are	not	to	be multiplied	beyond	necessity”

• also	called	Ockham’s	Razor,	Law	of	Economy,	or	Law	of	Parsimony

Key Idea:  The simplest consistent explanation is the best 

https://en.wikipedia.org/wiki/William_of_Ockham 44

https://en.wikipedia.org/wiki/William_of_Ockham
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? ? ?
Choosing the Best Feature

Key problem: how should we choose which feature to split the data?

Possibilities:Random

Choose any 
feature at 
random 

Least-Values

Choose the 
feature with the 
fewest possible 
values 

Most-Values

Choose the 
feature with the 
most possible 
values 

Max-Gain

Choose the 
feature with the 
largest expected 
information gain

i.e., the feature that is expected to result in the 
shortest subtree

45
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Choosing Features for Short Decision Trees

Key Idea: good features partition the data into subsets that are either “all 
positive” or “all negative” (ideally)

NoYes

High Blood Pressure?

< 9t
h

9t
h -1

1t
h

H
S 

gr
ad

some college
college grad

Education

Subset of Data

Which split is more informative?

47
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Formalizing this: Impurity

48

maximally impure minimally impure

Note: All x’s is also “pure”

Could we come up with an “impurity function” of a set of samples?
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A Candidate For An “Impurity Function”: Entropy

Let Y be any discrete random variable that can take on n values
The entropy of Y is given by

𝐻 𝑌 = −$
01$

2

𝑃 𝑌 = 𝑖 log! 𝑃 𝑌 = 𝑖

49

Strictly, the entropy 𝐻(𝑌) maps from a probability distribution (over the 
class label random variable 𝑌) to an impurity score

↕
We’ll denote 𝐻(𝒟) to map from a data subset 𝒟 to the impurity score, 

by setting probability distribution ≈ distribution of labels 𝑌 in 𝒟
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Max Impurity
Instances split evenly among 

classes

𝐻 𝒟 = −0.5 log 0.5 − 0.5 log 0.5
= 1

Entropy of Binary Classes

Min Impurity
All instances in 

same class

𝐻 𝒟 = −1 log 1
= 0

50

Entropy 𝐻 𝒟 = −∑3 𝑃 𝑌 = 𝑐 log! 𝑃 𝑌 = 𝑐 , 
where different 𝑐4𝑠 correspond to different class labels 

11 

Sample Entropy 

Entropy 

Entropy H(X) of a random variable X 

Specific conditional entropy H(X|Y=v) of X given Y=v : 

Conditional entropy H(X|Y) of X given Y : 

Mututal information (aka Information Gain) of X and Y : 

En
tr

op
y

proportion of positive class

Image: Tom Mitchell
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Choosing Features for Short Decision Trees

Recall: Ask questions such that the answers will reduce impurity in child nodes
When considering splitting on attribute / feature 𝑋% ,
• Need to estimate the “expected drop in impurity” after “getting the 

answer”/partitioning the data
• “Information Gain” based on our entropy function:

IG(𝒟,𝑋2) = 𝐻(𝒟) − ∑3𝐻(𝒟 𝑋2 = 𝑣 )𝑃(𝑋2 = 𝑣)

NoYes

High Blood Pressure?

< 9
th

9
th -1

1
th

H
S 

gr
ad

som
e college

college grad

Education

51
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Information Gain

IG(𝒟,𝑋2) = 𝐻(𝒟) − ∑3𝐻(𝒟 𝑋2 = 𝑣 )𝑃(𝑋2 = 𝑣)

The second term is sometimes called the “conditional entropy”:

𝐻 𝒟 𝑋, =9
-

𝐻(𝒟 𝑋, = 𝑣 )𝑃(𝑋, = 𝑣)

The information gain may then also be written as: 
𝐼𝐺 𝒟, 𝑋, = 𝐻 𝒟 − 𝐻(𝒟|𝑋,)

Entropy 𝐻 𝒟 = −∑3 𝑃 𝑌 = 𝑐 log! 𝑃 𝑌 = 𝑐 , 
where different 𝑐4𝑠 correspond to different class labels

52
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13 blue 
4 orange

1 blue 
12 orange

Example IG Calculation
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Returning to the Diabetes Example Use Case
Which split is more informative?

Now we can solve it computationally via information gain

54

NoYes

High Blood Pressure?

< 9
th

9
th -1

1
th

H
S 

gr
ad

som
e college

college grad

Education



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Information Gain Example for Diabetes

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

Need to compute:
𝐼𝐺(𝒟,𝐻𝑖𝑔ℎ 𝐵𝑃) = 𝐻(𝒟) – 𝐻 (𝒟 |𝐻𝑖𝑔ℎ 𝐵𝑃)

𝐼𝐺(𝒟, 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) = 𝐻(𝒟) – 𝐻 (𝒟| 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛)

55



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Information Gain Example for Diabetes

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

Need to compute:
𝐼𝐺(𝒟,𝐻𝑖𝑔ℎ 𝐵𝑃) = 𝐻(𝒟) – 𝐻 (𝒟 |𝐻𝑖𝑔ℎ 𝐵𝑃)

𝐼𝐺(𝒟, 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) = 𝐻(𝒟) – 𝐻 (𝒟| 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛)

𝐻(𝒟) = – 4/12 lg 4/12 
– 8/12 lg 8/12 
= 0.918  
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Information Gain Example for Diabetes

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

= (6/12) * (-2/6 lg 2/6 
- 4/6 lg 4/6) 

+ (6/12) * (0)
= 0.459

57

Need to compute:
𝐼𝐺(𝒟,𝐻𝑖𝑔ℎ 𝐵𝑃) = 𝐻(𝒟) – 𝐻 (𝒟 |𝐻𝑖𝑔ℎ 𝐵𝑃)

𝐼𝐺(𝒟, 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) = 𝐻(𝒟) – 𝐻 (𝒟| 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛)
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Information Gain Example for Diabetes

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

= (1/12) * 0 + (1/12) * 0 
+ (3/12) * (–1/3 lg 1/3 

– 2/3 lg 2/3)
+ (3/12) * (–2/3 lg 2/3 

– 1/3 lg 1/3)
+ (4/12) * (–3/4 lg 3/4 

– 1/4 lg 1/4)
= 0.730

Need to compute:
𝐼𝐺(𝒟,𝐻𝑖𝑔ℎ 𝐵𝑃) = 𝐻(𝒟) – 𝐻 (𝒟 |𝐻𝑖𝑔ℎ 𝐵𝑃)

𝐼𝐺(𝒟, 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) = 𝐻(𝒟) – 𝐻 (𝒟| 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛)
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Information Gain Example for Diabetes

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

Need to compute:
𝐼𝐺(𝒟,𝐻𝑖𝑔ℎ 𝐵𝑃) = 𝐻(𝒟) – 𝐻 (𝒟 |𝐻𝑖𝑔ℎ 𝐵𝑃) = 0.918 – 0.459 = 0.459

𝐼𝐺(𝒟, 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) = 𝐻(𝒟) – 𝐻 (𝒟| 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) = 0.918 – 0.730 = 0.188 
0.459

59



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Information Gain Example for Diabetes

Patient ID

Need to compute:
𝐼𝐺(𝒟, 𝐼𝐷) = 𝐻(𝒟) – 𝐻 (𝒟 |𝐼𝐷)

=1/12*0+1/12*0+….
= 0

IG = 0.918 … highest 
possible!
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Compensating for Features with Many Values

IG tends toward selecting features that have many values
• e.g., unique identifiers, dates, etc.
• For deterministic f ’s, splitting on a unique identifier would immediately maximize the IG!

Gain Ratio can compensate for this:

𝐺𝑅 𝒟, 𝑋! = "# 𝒟,&!
'()*+",-. 𝒟,&!

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 𝒟, 𝑋, = −7
-

𝑃 𝑋, = 𝑣 log% 𝑃(𝑋, = 𝑣)

61

This scales by the 
entropy of the split, 
ignoring classes

𝒟 𝑋% = 𝑣
𝒟
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Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

Need to compute:
GainRatio(𝒟 High BP) = IG(𝒟, High BP) / SplitInfo(𝒟, High BP)

GainRatio(𝒟, Education) = IG(𝒟, Education) / SplitInfo(𝒟, Education)

62

Already Computed:
• H(𝒟) = 0.918
• H (𝒟 |  High BP) = 0.459 
• H (𝒟 |  Education) = 0.730
• IG(𝒟 High BP)  =  0.459
• IG(𝒟, Education) = 0.188 
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Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

= – 6/12 lg 6/12 
– 6/12 lg 6/12 

= 1

63

Need to compute:
GainRatio(𝒟 High BP) = IG(𝒟, High BP) / SplitInfo(𝒟, High BP)

GainRatio(𝒟, Education) = IG(𝒟, Education) / SplitInfo(𝒟, Education)

Already Computed:
• H(𝒟) = 0.918
• H (𝒟 |  High BP) = 0.459 
• H (𝒟 |  Education) = 0.730
• IG(𝒟 High BP)  =  0.459
• IG(𝒟, Education) = 0.188 
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Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

64

Already Computed:
• H(𝒟) = 0.918
• H (𝒟 |  High BP) = 0.459 
• H (𝒟 |  Education) = 0.730
• IG(𝒟 High BP)  =  0.459
• IG(𝒟, Education) = 0.188 

Need to compute:
GainRatio(𝒟 High BP) = IG(𝒟, High BP) / SplitInfo(𝒟, High BP)

GainRatio(𝒟, Education) = IG(𝒟, Education) / SplitInfo(𝒟, Education)

= – 1/12 lg 1/12 – 1/12 lg 1/12
– 3/12 lg 3/12 – 3/12 lg 3/12
– 4/12 lg 4/12

=  2.1258 



DT Training via Information 
Gain
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We are Ready to Train the DT for Diabetes!

66
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Entropy-Based Greedy DT Construction

67

X1 X2 X14. . .

Given dataset 𝒟 = [𝑋, 𝒚]
• Pick feature Xj to split upon with the highest IG 

(or GainRatio) 
• Partition 𝒟 via Xj

• Recurse until nodes are homogenous

X14 (LBXGH) ≤ 6.15 has 
the highest IG

Dataset partition 𝒟[LBXGH ≤ 6.15] Dataset partition 𝒟[LBXGH > 6.15]
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Diabetes DT – Random vs IG Features

• Well, it is smaller while retaining 100 % accuracy on our training data
• Still rather complex, though …

DT with random feature splits DT via IG

Accuracy on diabetes data = 100% Accuracy on diabetes data = 100%

69



Overfitting and 
Decision Trees
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Accuracy – Decision Tree (Version 1)

Original Patient Data: 100.000 %      (n = 1082)

New Patient Data: 82.796 %      (n = 465)



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Avoiding Overfitting

How can we avoid overfitting?
1. Stop growing when data split is not statistically significant
2. Acquire more training data
3. Remove irrelevant attributes  (manual process – not always possible)
4. Grow full tree, then post-prune

Try various tree hyperparameters (e.g., tree depth, splitting criterion, 
termination criterion) and pick the one with the best estimated 
generalization performance. How to estimate?
• Cross-validation
• Add a complexity penalty to performance measure e.g. training  

accuracy – average depth of leaf node
72Based on Slide by Pedro Domingos
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Reduced-Error Pruning

Split the original training data into training and validation sets

Training Stage
Grow the decision tree based on the training set

Pruning Stage
Loop until further pruning hurts validation performance:

• Measure the validation performance of pruning each node (and its children)
• Greedily remove the node that most improves validation performance

73
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Reduced-Error Pruning
• Pruning replaces a whole subtree with a leaf node
• Replacement occurs if the expected error rate of the subtree is 

greater than that of the leaf

74

original subtree

Predicting the majority 
class (negative) has a 
lower validation error

pruned subtree

SpO2

normal low

SpO2
vs

Validation

SpO2

normal low

Training

Subtree should 
be pruned(error rate = 4/6)

(error rate = 2/6)
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Accuracy – Decision Trees

DT unpruned      DT pruned
Original Patient Data: 100.000 %           88.909 %    (n = 1082)
New Patient Data: 82.796 %           85.591 %       (n = 465)

DT unpruned DT pruned 
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The Final Diabetes DT
Our Pruned Decision Tree How Diabetes is Actually Diagnosed

(screenshot from diabetes.org)

Strong similarity to how diabetes is actually diagnosed!
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Decision Tree Algorithms

ID3
• Information gain on nominal 

features

C4.5
• Can use info gain or gain ratio
• Nominal or numeric features
• Missing values
• Post-pruning
• Rule generation

CART (Classification and Regression Tree)
• Similar to C4.5
• Can handle continuous target prediction 

(regression)
• No rule sets
• Sklearn’s DecisionTreeClassifier is 

based on CART, but can’t handle nominal 
features (as of version 0.22.1)

Many Other Algorithms …
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Strengths and Weaknesses of DTs
Strengths
👍Widely used in practice 
👍 Fast and simple to implement
👍 Small trees are easily interpretable 
👍 Handles a variety of feature types
👍 Can convert to rules
👍 Handles noisy / missing data 
👍 Insensitive to feature scaling
👍 Handles irrelevant features
👍 Handles large datasets

Weaknesses
👎 Univariate partitions limit potential trees
👎 Limited predictive power
👎 Heuristic-Based Greedy Training
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Comparison of Learning Methods

79[Table 10.3 from Hastie, et al. Elements 
of Statistical Learning, 2nd Edition]

10.7 “Off-the-Shelf” Procedures for Data Mining 351

TABLE 10.1. Some characteristics of different learning methods. Key: ▲= good,
◆=fair, and ▼=poor.

Characteristic Neural SVM Trees MARS k-NN,

Nets Kernels

Natural handling of data
of “mixed” type

▼ ▼ ▲ ▲ ▼

Handling of missing values ▼ ▼ ▲ ▲ ▲

Robustness to outliers in
input space

▼ ▼ ▲ ▼ ▲

Insensitive to monotone
transformations of inputs

▼ ▼ ▲ ▼ ▼

Computational scalability
(large N)

▼ ▼ ▲ ▲ ▼

Ability to deal with irrel-
evant inputs

▼ ▼ ▲ ▲ ▼

Ability to extract linear
combinations of features

▲ ▲ ▼ ▼ ◆

Interpretability ▼ ▼ ◆ ▲ ▼

Predictive power ▲ ▲ ▼ ◆ ▲

siderations play an important role. Also, the data are usually messy: the
inputs tend to be mixtures of quantitative, binary, and categorical vari-
ables, the latter often with many levels. There are generally many missing
values, complete observations being rare. Distributions of numeric predic-
tor and response variables are often long-tailed and highly skewed. This
is the case for the spam data (Section 9.1.2); when fitting a generalized
additive model, we first log-transformed each of the predictors in order to
get a reasonable fit. In addition they usually contain a substantial fraction
of gross mis-measurements (outliers). The predictor variables are generally
measured on very different scales.

In data mining applications, usually only a small fraction of the large
number of predictor variables that have been included in the analysis are
actually relevant to prediction. Also, unlike many applications such as pat-
tern recognition, there is seldom reliable domain knowledge to help create
especially relevant features and/or filter out the irrelevant ones, the inclu-
sion of which dramatically degrades the performance of many methods.

In addition, data mining applications generally require interpretable mod-
els. It is not enough to simply produce predictions. It is also desirable to
have information providing qualitative understanding of the relationship
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of gross mis-measurements (outliers). The predictor variables are generally
measured on very different scales.

In data mining applications, usually only a small fraction of the large
number of predictor variables that have been included in the analysis are
actually relevant to prediction. Also, unlike many applications such as pat-
tern recognition, there is seldom reliable domain knowledge to help create
especially relevant features and/or filter out the irrelevant ones, the inclu-
sion of which dramatically degrades the performance of many methods.

In addition, data mining applications generally require interpretable mod-
els. It is not enough to simply produce predictions. It is also desirable to
have information providing qualitative understanding of the relationship
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TABLE 10.1. Some characteristics of different learning methods. Key: ▲= good,
◆=fair, and ▼=poor.

Characteristic Neural SVM Trees MARS k-NN,

Nets Kernels

Natural handling of data
of “mixed” type

▼ ▼ ▲ ▲ ▼
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input space

▼ ▼ ▲ ▼ ▲
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transformations of inputs

▼ ▼ ▲ ▼ ▼

Computational scalability
(large N)

▼ ▼ ▲ ▲ ▼

Ability to deal with irrel-
evant inputs

▼ ▼ ▲ ▲ ▼

Ability to extract linear
combinations of features

▲ ▲ ▼ ▼ ◆

Interpretability ▼ ▼ ◆ ▲ ▼

Predictive power ▲ ▲ ▼ ◆ ▲
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