Lecture 7: Nearest Neighbors and Decision Trees

https://tinyurl.com/cis5190-9-26-2022

Osbert Bastani and Zachary G. Ives
CIS 4190/5190 - Fall 2022

A Different Kind of Learning

To this point: parametric learning
Given a predetermined family of functions that maps from input features to prediction, learn a set of parameters for this function
.. one way: by optimizing against the loss function
linear regression - continuous-valued output
logistic regression - Boolean-valued output
But this is not the only kind of ML algorithm - now, we'll see two variations on this theme

- k-Nearest Neighbors
- Decision trees

Our Default Setup: Training for Binary Classification

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Height (cm)	Weight (kg)	Large (vs Medium) t-shirt?
158	58	F
158	59	F
158	63	F
160	59	F
160	60	F
163	60	F
163	61	F
160	64	T
163	64	T
165	61	T
165	62	T
165	65	T
168	62	T
168	63	T
168	66	T
170	63	T
170	64	T
170	68	T

Input matrix X with $\mathrm{d}=2$ features

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html
© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Height (cm) Weight (kg)
Large (vs .Medium) t-shirt?

158	58	F
158	59	F
158	63	F
160	59	F
160	60	F
163	60	F
163	61	T
160	64	T
163	64	T
165	61	T
165	62	T
165	65	T
168	62	T
168	63	T
168	66	T
170	63	64
170	68	T
170	63	

Our Default Setup: Training for Binary Classification

Our Default Setup: Binary Classification for

 New Data - What Label?Large T-shirt?

Based on data from https://www.listendata.com/2017/12/k-nearest-neighbor-step-by-step-tutorial.html

Height (cm)	Weight (kg)	Large (vs Medium) t-shirt?
158	58	F
158	59	F
158	63	F
160	59	F
160	60	F
163	60	F
163	61	F
160	64	T
163	64	T
165	61	T
165	62	T
165	65	T
168	62	T
168	63	T
168	66	63
170	64	T
170	68	T
170		T

k-Nearest Neighbors (kNN)

To predict category label y of a new point \boldsymbol{x} (classification):

- Find k nearest neighbors (according to some distance metric)
- Assign the majority label to the new point

To predict numeric value y of a new point \boldsymbol{x} (regression):

- Find k nearest neighbors
- "Average" the values associated with the neighbors

If we change k we may get a different prediction

kNN Prediction: What Label?

Height (cm)	Weight (kg)	Large (vs Medium) t-shirt?
158	58	F
158	59	F
158	63	F
160	59	F
160	60	F
163	60	F
163	61	F
160	64	T
163	64	T
165	61	T
165	62	T
165	65	T
168	62	T
168	63	T
168	66	T
170	63	T
170	64	T
170	68	T

kNN Prediction: What Label?

Height (cm)	Weight (kg)	Large (vs Medium) t-shirt?
158	58	F
158	59	F
158	63	F
160	59	F
160	60	F
163	60	F
163	61	F
160	64	T
163	64	T
165	61	T
165	62	T
165	65	T
168	62	T
168	63	T
168	66	T
170	63	T
170	64	T
170	68	T

kNN Prediction: What Label?

Height (cm)	Weight (kg)	Large (vs Medium) t-shirt?
158	58	F
158	59	F
158	63	F
160	59	F
160	60	F
163	60	F
163	61	F
160	64	T
163	64	T
165	61	T
165	62	T
165	65	T
168	62	T
168	63	T
168	66	T
170	63	64
170	68	T
170		T

What Does "Nearest" Mean?

Must define a "distance function" between any two samples $\boldsymbol{x}_{\mathbf{1}}$ and $\boldsymbol{x}_{\mathbf{2}}$
Note: boldface \boldsymbol{x} denotes a vector in widely used notation. In our case, each of these is a 2D vector: $\boldsymbol{x}_{\boldsymbol{i}}=\left[x_{i 1}, x_{i 2}\right]$
"Nearest neighbor" = sample with least "distance". Some commonly used distances:
$\left(\sum_{d}\left(x_{1 j}-x_{2 j}\right)^{1}\right)^{\frac{1}{1}}$
ℓ_{1} distance
$\sum_{d}\left|x_{1 j}-x_{2 j}\right|$

$$
\left(\sum_{d}\left(x_{1 j}-x_{2 j}\right)^{2}\right)^{\frac{1}{2}} \quad\left(\sum_{d}\left(x_{1 j}-x_{2 j}\right)^{\rightarrow \infty}\right)^{\rightarrow 0}
$$

ℓ_{2} distance
Also, "Euclidean" distance

$$
\ell_{\infty} \text { distance }
$$

$$
\max _{d}\left(x_{1 j}-x_{2 j}\right)
$$

Different Distances Produce Different Outcomes

Fix $\mathrm{k}=1$ neighbors

x1

ℓ_{2} distance
Also, "Euclidean" distance

ℓ_{∞} distance

$$
\max _{d}\left(x_{1 j}-x_{2 j}\right)
$$

What about Distances between Non-numeric Data? Consider Strings...

Hamming distance (number of characters that are different)

$$
\underline{A B C} \underline{D E} \text { vs } \underline{A} G D \underline{D F} \quad \rightarrow
$$

Edit distance (number of character inserts/replacements/deletes to go from one to the other)
ROBOT vs BOT $\quad \rightarrow \quad 2$
Jaccard distance between sets $\quad \frac{|A \cap B|}{|A \cup B|}$
between n -grams (n -character substrings of the strings, with ($\mathrm{n}-1$) character padding)
\$\$ROBOT\$\$ vs \$̧sBOT\$\$ $\quad \rightarrow \quad|\{B O T, O T \$, T \$\}| / \mid\{\$ \$ R, \$ R O, R O B, O B O, \$ \$ B, \$ B O, B O T, O T \$, T \$ \$\}$

Beware: Feature Scaling affects Nearest Neighbors

Our previous study of linear / logistic regression:

- OLS regression was scale-invariant
- Regularization was affected by the scale of different features

Even more of a concern with kNN: note that we are using a distance measure like L2, which is affected dramatically by feature scales!

What Happens If We Have Many Dimensions?

Predict $y=$ acceleration of an object being pushed by a remotecontrolled robot

- What if input features are:
- $x_{1}=$ mass
- $x_{2}=$ Force
- $x_{3}=$ color of object
- $x_{4}=$ temperature
- $x_{5}=$ air pressure
- $x_{6}=$ what the operator ate for breakfast that morning

As you add more irrelevant variables, distance functions, which are so critical for k-NN methods, get dominated by irrelevant dimensions in \boldsymbol{x}

[^0]
General Problem: "Curse of Dimensionality"

Adding more dimensions makes lots of things weird and counterintuitive
e.g., the percentage of the volume of a D-dimensional sphere with radius r, that lies beyond ℓ_{2} distance $0.99 r$ from the center is:

- 3% at $D=3$
- 63% at $D=100$
- 99.99% at $D=1000$
also, with enough dimensions most points are of roughly equal distance!
For k-NN, nearest neighbors become very far apart, and of similar distance therefore unreliable predictors

General Advice ...

Always worth trying k-nearest neighbors!

- It's so simple to code up that it's worth it.
- Often works surprisingly well, and is very widely used as a simple and reliable baseline, even with for really high-dimensional data

How Can We Scale kNN?

High D also makes it computationally expensive to compute neighbors. Naively, must compute N distances between D-dimensional data pairs to compute neighbors before classifying a single new point. O(|training set||data set|)

Indexing

- Use kd-trees and other multidimensional indices to capture the training data
- Each lookup is $O(\log n)$ but on disk

Parallelism (e.g., PANDA, LBL)

- Use multiple cores / processors, and either compare against in-memory data or kd trees

Approximation

- Compare against a sample, not all of the training data
- See, e.g., https://www.kaggle.com/code/pawanbhandarkar/knn-vs-approximate-knn-what-s-the-difference/notebook
© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Stepping back...

where are the parameters we learn?

Think broadly of the "parameters" as everything required to produce the output, for a given model class. i.e.

Model class + parameters + new input $\boldsymbol{x} \rightarrow$ predicted y
"kNN classifier" ??

A: The full training dataset!

Funnily, methods like these where the parameters are either the training data itself, or grow in size "automatically" with the training data, are called "nonparametric" machine learning approaches.

Summary of k-Nearest Neighbors

A case of "non-parametric" learning

- Uses the full training dataset as parameters
- Requires careful treatment of feature scaling
- Main decisions: the value of k, the distance function

Tends to work well in practice. but beware scalability

Decision Trees

CIS 4190/5190 - Fall 2022

A Motivating Example, with Some Data

Need help modeling diabetes risks!

Over the years, l've collected data from lots of patients, recording their physical information, their demographic information, habits, and done their lab work to diagnose diabetes. I'm wondering now: from all this data, could I model the risk of other people with similar characteristics having diabetes given all this other information about them? And would your applied ML class be able to help? I've attached the data here for you to take a look.

Eventually, we'll want to explain our findings to patients, and point out any behavioral changes that would mitigate their risk for diabetes. Even if the risk factors we find are non-modifiable, insurance companies would be interested in understanding and estimating this risk. Either way, it'd be great to have something that we can understand and interpret well!

Diabetes Data

data matrix X

SEQN	RIDAGEYR	BMXWAIST	BMXHT	LBXTC	BMXLEG	BMXWT	BMXBMI	RIDRETH1	BPQ020	ALQ120Q	DMDEDUC2	RIAGENDR	INDFMPIR	LBXGH	DIABETIC
73557	69.0	100.0	171.3	167.0	39.2	78.3	26.7	Non-Hispanic Black	yes	1.0	high school graduate / GED	male	0.84	13.9	yes
73558	54.0	107.6	176.8	170.0	40.0	89.5	28.6	Non-Hispanic White	yes	7.0	high school graduate / GED	male		9.1	yes
73559	72.0	109.2	175.3	126.0	40.0	88.9	28.9	Non-Hispanic White	yes	0.0	some college or AA degree	male	$2 \cdot$	8.3	*
73562	56.0	123.1	158.7	226.0	34.2	105.0	41.7	Mexican American	yes	5.0	some college or AA degree	male	4.19		no
73564	61.0	110.8	161.8	168.0	37.1	93.4	35.7	Non-Hispanic White	yes	2.0	college graduate or above	female	5.0		
73566	56.0	85.5	152.8	278.0	32.4	61.8	26.5	Non-Hispanic White	no	1.0	high school graduate / GED	female	0.48	5.4	no
73567	65.0	93.7	172.4	173.0	40.0	65.3	22.0	N ¢ - -lispanic W_{4}		4.0	9th-11th grade	male	1.2	5.2	no
73568	26.0	73.7	152.5	168.0	34.4	47.1	20.3	Non-ssaionto		2.0	college graduate or above	female	5.0	5.2	no
73571	76.0	122.1	172.5	167.0	35.5	102.4	34.4	Nom-tiosparic vilite	yos	2.0	college graduate or above	male	5.0	6.9	yes
73577	32.0	100.0	166.2	182.0	36.5	79.7	28.9	Mexican American	no	20.0	Less than 9th grade	male	0.29	5.3	no
73581	50.0	99.3	185.0	202.0	42.8	80.9	23.6	Other or Multi-Racial	no	0.0	college graduate or above	male	5.0	5.0	no
73585	28.0	90.3	175.1	198.0	40.5	92.2	30.1	Other or Multi-Racial	no	4.0	some college or AA degree	male	2.26	5.0	no
73589	35.0	94.6	172.9	192.0	39.1	78.3	26.2	Non-Hispanic White	no	2.0	high school graduate / GED	male	1.74	5.5	no
73595	58.0	114.8	175.3	165.0	40.1	96.0	31.2	Other Hispanic	no	1.0	some college or AA degree	male	3.09	7.7	no
73596	57.0	117.8	164.7	151.0	35.3	104.0	38.3	Other or Multi-Racial	yes	1.0	college graduate or above	female	5.0	5.9	no
73600	37.0	122.9	185.1	189.0	48.1	126.2	36.8	Non-Hispanic Black	yes	2.0	high school graduate / GED	male	0.63	6.2	yes
73604	69.0	96.6	156.9	203.0	37.0	59.5	24.2	Non-Hispanic White	no	1.0	some college or AA degree	female	2.44	5.4	no
73607	75.0	130.5	169.6	161.0	36.5	111.9	38.9	Non-Hispanic White	yes	0.0	high school graduate / GED	male	1.08	5.0	no
73610	43.0	102.6	176.8	200.0	38.8	90.2	28.9	Non-Hispanic White	no	5.0	college graduate or above	male	2.03	4.9	no
73613	60.0	113.6	163.8	203.0	41.6	104.9	39.1	Non-Hispanic Black	yes	2.0	9th-11th grade	female	5.0	6.1	no
73614	55.0	90.9	167.9	256.0	43.5	60.9	21.6	Non-Hispanic White	no	0.0	high school graduate / GED	female	1.29	5.0	no
73615	65.0	100.3	145.9	166.0	30.0	55.4	26.0	Other Hispanic	yes	1.0	Less than 9th grade	female	1.22	6.3	yes
--..	-. -	---	--	-.			-.			-					

[^1]Diabetes Data

UPPER LEG LENGTH BMI
AGE WAIST HE.CHOLESTEROL WEIGHT

ID

SEQN

 DIABETIC

The diabetes test outcome: would make our ML pointless ...

FAMILY INCOME RATIO GENDER GLYCOHAE
EDUCATION
BP COHOL USE
RACE
HIGH BP

20 ALQ120Q DMDEDUC2 RIAGENDR INDFMPIR

[^2]
Data Dictionary

Data sets are often accompanied by a data dictionary that describes each feature It is critical to understand the data before analyzing it! The dictionary for our data: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx

ID (SEQN)	AGE (RIDAGEYR)	WAIST CIRCUM (BMXWAIST)	HEIGHT (BMXHT)	CHOLESTEROL (LBXTC)	UPPER LEG LEN (BMXLEG)	WEIGHT (BMXWT)	BMI (BMXBMI)	RACE (RIDRETH1)	HIGH BP (BPQ020)	ALCOHOL USE (ALQ120Q)	EDUCATION (DMDEDUC2)	GENDER (RIAGENDR)	FAMILY INCOME_RATIO (INDFMPIR)	GLYCOHEMOGLOBIN (LBXGH)	diabetic			
73557	69.0	100.0	171.3	167.0	39.2	78.3	26.7	Non-Hispanic Black	yes	1.0	high school graduate / GED	male	0.84	13.9	yes			
73558	54.0	107.6	176.8	170.0	40.0	89.5	28.6	Non-Hispanic White	yes	7.0	high school graduate / GED	male	1.78	9.1	yes			
73559	72.0	109.2	175.3	126.0	40.0	88.9	28.9	Non-Hispanic White	yes	0.0	some college or AA degree	male	4.51	8.9	yes			
73562	56.0	1231	1587	2260	342	1050	41.7	Mexican American	ves	5.0	some college or AA degree	male	4.79	5.5	no			
73564	61.0			refused;			aOn't			2.0	college graduate or above	female	5.0	5.5	no			
73566	56.0			1.0	high school graduate / GED	female				0.48	5.4	no						
73567	65.0			4.0	9th-11th grade	male				1.2	5.2	no						
73568	26.0			2.0	college graduate or above	female				5.0	5.2	no						
73571	76.0	122.1	172.5				167.0	35.5	102.4				2.0	college graduate or above	male	5.0	6.9	yes
73577	32.0	100.0	166.2				182.0	36.5	79.7	28.9	Mexican American	no	20.0	Less than 9th grade	male	0.29	5.3	no
73581	50.0	99.3	185.0				202.0	42.8	80.9	23.6	Other or Multi-Racial	no	0.0	college graduate or above	male	5.0	5.0	no

[^3]| ID | AGE | WAIST | HE. CHOLESTEROL
 WEIGHT | | | | numeric | | nomina
 ALCOHOL US | | ordina | RIAGEN | DIABETIC | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEQN | RIDAGEYR | BMXWAIST | BMXHT | LBXTC | BMXLEG | BMXWT | BN | IDRETH | | ALQ120Q | | | INDFMPIR | | BETIC |
| 73557 | 69.0 | 100.0 | 171.3 | 167.0 | 39.2 | 78.3 | 26.7 | Non-Hispanic Black | yes | 1.0 | high school graduate / GED | male | 0.84 | 13.9 | yes |
| 73558 | 54.0 | 107.6 | 176.8 | 170.0 | 40.0 | 89.5 | 28.6 | Non-Hispanic White | yes | 7.0 | high school graduate / GED | male | 1.78 | 9.1 | yes |
| 73559 | 72.0 | 109.2 | 175.3 | 126.0 | 40.0 | 88.9 | 28.9 | Non-Hispanic White | yes | 0.0 | some college or AA degree | male | 4.51 | 8.9 | yes |
| 73562 | 56.0 | 123.1 | 158.7 | 226.0 | 34.2 | 105.0 | 41.7 | Mexican American | yes | 5.0 | some college or AA degree | male | 4.79 | 5.5 | no |
| 73564 | 61.0 | 110.8 | 161.8 | 168.0 | 37.1 | 93.4 | 35.7 | Non-Hispanic White | yes | 2.0 | college graduate or above | female | 5.0 | 5.5 | no |
| 73566 | 56.0 | 85.5 | 152.8 | 278.0 | 32.4 | 61.8 | 26.5 | Non-Hispanic White | no | 1.0 | high school graduate / GED | female | 0.48 | 5.4 | no |
| 73567 | 65.0 | 93.7 | 172.4 | 173.0 | 40.0 | 65.3 | 22.0 | Non-Hispanic White | no | 4.0 | 9th-11th grade | male | 1.2 | 5.2 | no |
| 73568 | 26.0 | 73.7 | 152.5 | 168.0 | 34.4 | 47.1 | 20.3 | Non-Hispanic White | no | 2.0 | college graduate or above | female | 5.0 | 5.2 | no |
| 73571 | 76.0 | 122.1 | 172.5 | 167.0 | 35.5 | 102.4 | 34.4 | Non-Hispanic White | yes | 2.0 | college graduate or above | male | 5.0 | 6.9 | yes |
| 73577 | 32.0 | 100.0 | 166.2 | 182.0 | 36.5 | 79.7 | 28.9 | Mexican American | no | 20.0 | Less than 9th grade | male | 0.29 | 5.3 | no |
| 73581 | 50.0 | 99.3 | 185.0 | 202.0 | 42.8 | 80.9 | 23.6 | Other or Multi-Racial | no | 0.0 | college graduate or above | male | 5.0 | 5.0 | no |
| 73585 | 28.0 | 0 | 4 | 0 | $\underline{406}$ | \bigcirc | 204 | Qtherspr Multi-Racial | no | 4.0 | some college or AA degree | male | 2.26 | 5.0 | no |
| 73589 | 35.0 | | | n | - | S | 3 | On-Hspon | 10 | 2.0 | high school graduate / GED | male | 1.74 | 5.5 | no |
| 73595 | 58.0 | 114. | | 165. | 40 | 96.0 | - | , ther His | no | 1.0 | some college or AA degree | male | 3.09 | 7.7 | no |
| 73596 | 57.0 | Ol | a | | S re | US | a to | Other pr Multi-Racial | yes | 1.0 | college graduate or above | female | 5.0 | 5.9 | no |
| 73600 | 37.0 | -17S | 185 | | 11 | $1 \rightarrow$? | | \#ln-Hspanic Black | yes | 2.0 | high school graduate / GED | male | 0.63 | 6.2 | yes |
| 73604 | 69.0 | | | | | | | Non-H spanic White | no | 1.0 | some college or AA degree | female | 2.44 | 5.4 | no |
| 73607 | 75.0 | 130.5 | 69.6 | | agori | es | 38.9 | Non-H spanic White | yes | 0.0 | high school graduate / GED | male | 1.08 | 5.0 | no |
| 73610 | 43.0 | | | | | | | Wortirspanic White | no | 5.0 | college graduate or above | male | 2.03 | 4.9 | no |
| 73613 | 60.0 | 113.6 | 163.8 | 203.0 | 41.6 | 104.9 | 39.1 | Non-Hispanic Black | yes | 2.0 | 9th-11th grade | female | 5.0 | 6.1 | no |
| 73614 | 55.0 | 90.9 | 167.9 | 256.0 | 43.5 | 60.9 | 21.6 | Non-Hispanic White | no | 0.0 | high school graduate / GED | female | 1.29 | 5.0 | no |
| 73615 | 65.0 | 100.3 | 145.9 | 166.0 | 30.0 | 55.4 | 26.0 | Other Hispanic | yes | 1.0 | Less than 9th grade | female | 1.22 | 6.3 | yes |
| | nn n | nr r | 1-3n | 1740 | nn 1 | 740 | n^ n | | 1-- | $\bigcirc \mathrm{n}$ | -...-.-...... ... ^ ^ ı-..... | s...-.- | rn | r- | -- |

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Deciding on a Diagnosis / Prediction

How do we train a human to make a diagnosis?

- Often, a kind of flowchart based on tests! "Decision Tree" e.g., how we train psychiatrists to make diagnoses?
- "Explainable" in a clear way, easy to evaluate

Idea: Let's create decision trees computationally! (ie learn them)

First: let's formalize what we mean by a decision tree...

Decision Trees for Humans

Simple decision tree used in medicine:

A Decision Tree Based on Boolean Tests

For continuous features, we'll restrict our study to internal nodes that can test the value of one attribute. We can generalize to categorical values (binary decision tree).

A Decision Tree Based on Boolean Tests

For continuous features, we'll restrict our study to internal nodes that can test the value of one attribute. We can generalize to categorical values (binary decision tree).

A Decision Tree Interior Node "Splits" Training Data

More Generally: Decision Tree Induces a Partition

```
|--- worst perimeter <= 105.95
| |--- worst concave points <= 0.135
| | |--- class: benign
| |--- worst concave points > 0.135
| | |--- worst concave points < 0.16
| | | |--- class: benign
| | |--- worst concave points > 0.16
| | | | --- worst perimeter > 80
| | | | | --- class: malignant
| | | | --- worst perimeter < 80
| | | | | --- class: benign
```

So what is the hypothesis class expressed by a DT?

Decision trees divide the feature space into axis-aligned "hyperrectangles"

Decision Trees and Boolean Tests

Decision trees can represent any Boolean function of the features

In the worst case, the tree will require exponentially many nodes

Decision Trees and Boolean Tests

Decision trees can represent any Boolean function of the features

In the worst case, the tree will require exponentially many nodes

Decision Trees and Boolean Tests

DTs have a variable-sized hypothesis space based on their depth

- Depth 1: any Boolean function based on one feature
- Depth 2: any Boolean function based on two features

DTs of depth 1 are also called decision stumps

Training Decision Trees

Decision Tree Training - Grow Top-Down

Top-Down Decision Tree Induction [ID3 (1986), C4.5(1993) by Quinlan]

Let \mathcal{D} be a set of labeled instances; $\mathcal{D}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}=\left[X_{N \times D}, \boldsymbol{y}_{N \times 1}\right]$ Let $\mathcal{D}\left[X_{j}=v\right]$ be the subset of \mathcal{D} where feature X_{j} has value v
functiontrain_tree (\mathcal{D})

1. If data \mathcal{D} all have the same label y, return new leaf_node (y), else:
2. Pick the "best" feature X_{j} to partition \mathcal{D}
3. Set node $=$ new decision_node (X_{j})
4. For each value v that X_{j} can take

Recursively create a new child train_tree ($\mathcal{D}\left[X_{j}=v\right]$) of node
5. Return node

Top-Down Decision Tree Training

Do we think this is going to be optimal, or greedy?

Top-Down Decision Tree Induction [ID3 (1986), C4.5(1993) by Quinlan]

Let \mathcal{D} be a set of labeled instances; $\mathcal{D}=\left\{x_{i}, H^{N}\right.$ Let $\mathcal{D}\left[X_{j}=v\right]$ be the subset of \mathcal{D} where feature X_{j} has value v best?
functiontrain_tree (\mathcal{D})

1. If data \mathcal{D} all have the same labely, return new leaf_node (y), else:
2. Pick the "best" feature X_{j} to partition \mathcal{D}
3. Set node $=$ new decision_node $\left(X_{j}\right)$
4. For each value v that X_{j} can take

Recursively create a new child train_tree ($\mathcal{D}\left[X_{j}=v\right]$) of node
5. Return node

Choosing the Best Feature

Key problem: how should we choose which feature to split the data?

Possibilities:

DT to Predict Diabetes - Random Features

Is this really the best way to choose decision nodes?

What Might be Better?

Learning Bias: Occam's Razor

Principle stated by William of Ockham (1285-1347)

- "non sunt multiplicanda entia praeter necessitatem" --
 "entities are not to be multiplied beyond necessity"
- also called Ockham's Razor, Law of Economy, or Law of Parsimony

Key Idea: The simplest consistent explanation is the best

Choosing the Best Feature

Key problem: how should we choose which feature to split the data?

Random	Least-Values
Choose any feature at random	Choose the feature with the fewest possible values

Choosing Features for Short Decision Trees

Subset of Data

Key Idea: good features partition the data into subsets that are either "all positive" or "all negative" (ideally)

Which split is more informative?

Formalizing this: Impurity

Could we come up with an "impurity function" of a set of samples?

maximally impure

minimally impure
Note: All x's is also "pure"

A Candidate For An "Impurity Function": Entropy

Let Y be any discrete random variable that can take on n values The entropy of Y is given by

$$
H(Y)=-\sum_{i=1}^{n} P(Y=i) \log _{2} P(Y=i)
$$

Strictly, the entropy $H(Y)$ maps from a probability distribution (over the class label random variable Y) to an impurity score

We'll denote $H(\mathcal{D})$ to map from a data subset \mathcal{D} to the impurity score, by setting probability distribution \approx distribution of labels Y in \mathcal{D}

Entropy of Binary Classes

$$
\text { Entropy } H(\mathcal{D})=-\sum_{c} P(Y=c) \log _{2} P(Y=c) \text {, }
$$

where different $c^{\prime} s$ correspond to different class labels

Choosing Features for Short Decision Trees

Recall: Ask questions such that the answers will reduce impurity in child nodes When considering splitting on attribute / feature X_{j},

- Need to estimate the "expected drop in impurity" after "getting the answer"/partitioning the data
- "Information Gain" based on our entropy function:

$$
\operatorname{IG}\left(\mathcal{D}, X_{j}\right)=H(\mathcal{D})-\sum_{v} H\left(\mathcal{D}\left[X_{j}=v\right]\right) P\left(X_{j}=v\right)
$$

Information Gain

$$
\text { Entropy } H(\mathcal{D})=-\sum_{c} P(Y=c) \log _{2} P(Y=c) \text {, }
$$ where different $c^{\prime} s$ correspond to different class labels

$$
\operatorname{IG}\left(\mathcal{D}, X_{j}\right)=H(\mathcal{D})-\sum_{v} H\left(\mathcal{D}\left[X_{j}=v\right]\right) P\left(X_{j}=v\right)
$$

The second term is sometimes called the "conditional entropy":

$$
H\left(\mathcal{D} \mid X_{j}\right)=\sum_{v} H\left(\mathcal{D}\left[X_{j}=v\right]\right) P\left(X_{j}=v\right)
$$

The information gain may then also be written as:

$$
I G\left(\mathcal{D}, X_{j}\right)=H(\mathcal{D})-H\left(\mathcal{D} \mid X_{j}\right)
$$

Example IG Calculation

$$
\begin{gathered}
H(\mathcal{D})=-\sum_{c} P(Y=c) \log _{2} P(Y=c), \\
\operatorname{IG}\left(\mathcal{D}, X_{j}\right)=H(\mathcal{D})-\sum_{v} H\left(\mathcal{D}\left[X_{j}=v\right]\right) P\left(X_{j}=v\right)
\end{gathered}
$$

Returning to the Diabetes Example Use Case

| ID
 (SEQN) | HIGH_BP
 (BPQ020) | | EDUCATION (DMDEDUC2) |
| :--- | :--- | :--- | :--- | DIABETIC \mid (

Which split is more informative?

$11 / 1 / 1$
Hill

High Blood Pressure?

"H!
Hill

Now we can solve it computationally via information gain

Information Gain Example for Diabetes

ID (SEQN)	HIGH_BP (BPQO20)	EDUCATION (DMDEDUC2)	DIABETIC
$\mathbf{7 3 5 5 7}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 8}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 9}$	yes	some college or AA degree	yes
$\mathbf{7 3 5 6 2}$	yes	some college or AA degree	no
$\mathbf{7 3 5 6 4}$	yes	college graduate or above	no
$\mathbf{7 3 5 6 6}$	no	high school graduate / GED	no
$\mathbf{7 3 5 6 7}$	no	9th-11th grade	no
$\mathbf{7 3 5 6 8}$	no	college graduate or above	no
$\mathbf{7 3 5 7 1}$	yes	college graduate or above	yes
$\mathbf{7 3 5 7 7}$	no	Less than 9th grade	no
$\mathbf{7 3 5 8 1}$	no	college graduate or above	no
$\mathbf{7 3 5 8 5}$	no	some college or AA degree	no

Need to compute:

$$
\begin{gathered}
I G(\mathcal{D}, \text { High } B P)=H(\mathcal{D})-H(\mathcal{D} \mid \text { High } B P) \\
I G(\mathcal{D}, \text { Education })=H(\mathcal{D})-H(\mathcal{D} \mid \text { Education })
\end{gathered}
$$

Information Gain Example for Diabetes

ID (SEQN)	HIGH_BP (BPQ020)	EDUCATION (DMDEDUC2)	DIABETIC
$\mathbf{7 3 5 5 7}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 8}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 9}$	yes	some college or AA degree	yes
$\mathbf{7 3 5 6 2}$	yes	some college or AA degree	no
$\mathbf{7 3 5 6 4}$	yes	college graduate or above	no
$\mathbf{7 3 5 6 6}$	no	high school graduate / GED	no
$\mathbf{7 3 5 6 7}$	no	9th-11th grade	no
$\mathbf{7 3 5 6 8}$	no	college graduate or above	no
$\mathbf{7 3 5 7 1}$	yes	college graduate or above	yes
$\mathbf{7 3 5 7 7}$	no	Less than 9th grade	no
$\mathbf{7 3 5 8 1}$	no	college graduate or above	no
$\mathbf{7 3 5 8 5}$	no	some college or AA degree	no

<9th $9^{\text {th }}-11^{\text {th }}$ HS grad some college college grad Education

Need to compute:

$$
\begin{gathered}
I G(\mathcal{D}, \text { High } B P)=H(\mathcal{D})-\Pi(\mathcal{D} \mid \text { High DP }) \\
I G(\mathcal{D}, \text { Education })=H(\mathcal{D})-H(\mathcal{D} \mid \text { Education })
\end{gathered}
$$

$$
\begin{aligned}
H(\mathcal{D})= & -4 / 12 \lg 4 / 12 \\
& -8 / 12 \lg 8 / 12 \\
= & 0.918
\end{aligned}
$$

Information Gain Example for Diabetes

ID (SEQN)	HIGH_BP (BPQ020)	EDUCATION (DMDEDUC2)	DIABETIC
$\mathbf{7 3 5 5 7}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 8}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 9}$	yes	some college or AA degree	yes
$\mathbf{7 3 5 6 2}$	yes	some college or AA degree	no
$\mathbf{7 3 5 6 4}$	yes	college graduate or above	no
$\mathbf{7 3 5 6 6}$	no	high school graduate / GED	no
$\mathbf{7 3 5 6 7}$	no	9th-11th grade	no
$\mathbf{7 3 5 6 8}$	no	college graduate or above	no
$\mathbf{7 3 5 7 1}$	yes	college graduate or above	yes
$\mathbf{7 3 5 7 7}$	no	Less than 9th grade	no
$\mathbf{7 3 5 8 1}$	no	college graduate or above	no
$\mathbf{7 3 5 8 5}$	no	some college or AA degree	no

<9th $9^{\text {th }}-11^{\text {th }}$ HS grad some college college grad Education

Need to compute:

$$
\begin{gathered}
I G(\mathcal{D}, \text { High } B P)=H(\mathcal{D})-H(\mathcal{D} \mid \text { High BP }) \\
I G(\mathcal{D}, \text { Education })=H(\mathcal{D})-H(\mathcal{D} \mid \text { Education })
\end{gathered}
$$

$$
\begin{aligned}
= & (6 / 12) *(-2 / 6 \lg 2 / 6 \\
& -4 / 6 \lg 4 / 6) \\
& +(6 / 12) *(0) \\
= & 0.459
\end{aligned}
$$

Information Gain Example for Diabetes

ID (SEQN)	HIGH_BP (BPQO20)	EDUCATION (DMDEDUC2)	DIABETIC
$\mathbf{7 3 5 5 7}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 8}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 9}$	yes	some college or AA degree	yes
$\mathbf{7 3 5 6 2}$	yes	some college or AA degree	no
$\mathbf{7 3 5 6 4}$	yes	college graduate or above	no
$\mathbf{7 3 5 6 6}$	no	high school graduate / GED	no
$\mathbf{7 3 5 6 7}$	no	9th-11th grade	no
$\mathbf{7 3 5 6 8}$	no	college graduate or above	no
$\mathbf{7 3 5 7 1}$	yes	college graduate or above	yes
$\mathbf{7 3 5 7 7}$	no	Less than 9th grade	no
$\mathbf{7 3 5 8 1}$	no	college graduate or above	no
$\mathbf{7 3 5 8 5}$	no	some college or AA degree	no

(POS

$$
E d u=(1 / 12) * 0+(1 / 12) * 0
$$

Need to compute:

$$
+(3 / 12) *(-1 / 3 \lg 1 / 3
$$

$$
\begin{gathered}
I G(\mathcal{D}, \text { High } B P)=H(\mathcal{D})-H(\mathcal{D} \mid \text { High } B P) \\
I G(\mathcal{D}, \text { Education })=H(\mathcal{D})-H(\mathcal{D} \mid \text { Education })
\end{gathered}
$$

$$
-2 / 3 \lg 2 / 3)
$$

$$
+(3 / 12) *(-2 / 3 \lg 2 / 3
$$

$$
-1 / 3 \lg 1 / 3)
$$

$$
+(4 / 12) *(-3 / 4 \lg 3 / 4
$$

$$
-1 / 4 \lg 1 / 4)
$$

$$
=0.730
$$

Information Gain Example for Diabetes

ID (SEQN)	HIGH_BP (BPQO20)	EDUCATION (DMDEDUC2)	DIABETIC
$\mathbf{7 3 5 5 7}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 8}$	yes	high school graduate / GED	yes
$\mathbf{7 3 5 5 9}$	yes	some college or AA degree	yes
$\mathbf{7 3 5 6 2}$	yes	some college or AA degree	no
$\mathbf{7 3 5 6 4}$	yes	college graduate or above	no
$\mathbf{7 3 5 6 6}$	no	high school graduate / GED	no
$\mathbf{7 3 5 6 7}$	no	9th-11th grade	no
$\mathbf{7 3 5 6 8}$	no	college graduate or above	no
$\mathbf{7 3 5 7 1}$	yes	college graduate or above	yes
$\mathbf{7 3 5 7 7}$	no	Less than 9th grade	no
$\mathbf{7 3 5 8 1}$	no	college graduate or above	no
$\mathbf{7 3 5 8 5}$	no	some college or AA degree	no

<9th $9^{\text {th }}-11^{\text {th }}$ HS grad some college college grad Education

Need to compute:

$$
\begin{aligned}
& I G(\mathcal{D}, \text { High } B P)=H(\mathcal{D})-H(\mathcal{D} \mid \text { High BP })=0.918-0.459=0.459 \\
& I G(\mathcal{D}, \text { Education })=H(\mathcal{D})-H(\mathcal{D} \mid \text { Education })=0.918-0.730=0.188
\end{aligned}
$$

$$
0.459
$$

Information Gain Example for Diabetes

| ID
 (SEQN) | HIGH_BP
 (BPQ020) | | EDUCATION (DMDEDUC2) |
| :--- | :--- | :--- | :--- | DIABETIC \mid (

Patient ID

Need to compute:

$$
I G(\mathcal{D}, I D)=H(\mathcal{D})-H(\mathcal{D} \mid I D)
$$

$$
\begin{aligned}
& =1 / 12^{*} 0+1 / 12^{*} 0+\ldots \\
& =0
\end{aligned}
$$

IG = 0.918 ... highest possible!

Compensating for Features with Many Values

IG tends toward selecting features that have many values

- e.g., unique identifiers, dates, etc.
- For deterministic f^{\prime} s, splitting on a unique identifier would immediately maximize the IG!

Gain Ratio can compensate for this:

$$
\begin{array}{r}
G R\left(\mathcal{D}, X_{j}\right)=\frac{\operatorname{IG}\left(\mathcal{D}, X_{j}\right)}{\operatorname{SplitInfo(\mathcal {D},X_{j})}} \\
\operatorname{Split\operatorname {lnfo}(\mathcal {D},X_{j})=-\sum _{v}P(X_{j}=v)\operatorname {log}_{2}P(X_{j}=v)} \\
\frac{\left|\mathcal{D}\left[X_{j}=v\right]\right|}{|\mathcal{D}|}
\end{array}
$$

This scales by the entropy of the split, ignoring classes

Gain Ratio Example

Need to compute:
GainRatio(D High BP) $=\operatorname{IG}(\mathcal{D}$, High BP) / SplitInfo(D, High BP)
GainRatio(D, Education) $=\mathrm{IG}(\mathcal{D}$, Education) / SplitInfo(D, Education)

Gain Ratio Example

<9th $9^{\text {th }}-11^{\text {th }}$ HS grad some ccllnan mallnan mman Education $=-6 / 12 \lg 6 / 12$
$-6 / 12 \lg 6 / 12$
$=1$

Need to compute:
GainRatio(D High BP) $=\operatorname{IG}(\mathcal{D}$, High BP) $/$ SplitInfo(\mathcal{D}, High BP)
GainRatio(D, Education) $=\mathrm{IG}(\mathcal{D}$, Education) $/$ SplitInfo(D, Education)

Gain Ratio Example

<9 th $9^{\text {th }}-11^{\text {th }}$

$$
\begin{array}{r}
=-1 / 12 \lg 1 / 12-1 / 12 \lg 1 / 12 \\
-3 / 12 \lg 3 / 12-3 / 12 \lg 3 / 12
\end{array}
$$

$$
-4 / 12 \lg 4 / 12
$$

$$
=2.1258
$$

Need to compute:
GainRatio(D High BP) $=\operatorname{IG}(\mathcal{D}$, High BP) $/$ Splitl $=2.125$
GainRatio(D, Education) $=\mathrm{IG}(\mathcal{D}$, Education) $/$ SplitInfo(D, Education)

DT Training via Information
 Gain

We are Ready to Train the DT for Diabetes!

SEQN RIDAGEYR BMXWAIST BMXHT LBXTC BMXLEG BMXWT BMXBMI RIDRETH1

73557	69.0	100.0	171.3	167.0	39.2	78.3	26.7	Non-Hispanic Black	ye
73558	54.0	107.6	176.8	170.0	40.0	89.5	28.6	Non-Hispanic White	ye
73559	72.0	109.2	175.3	126.0	40.0	88.9	28.9	Non-Hispanic White	ye
73562	56.0	123.1	158.7	226.0	34.2	105.0	41.7	Mexican American	ye
73564	61.0	110.8	161.8	168.0	37.1	93.4	35.7	Non-Hispanic White	ye
73566	56.0	85.5	152.8	278.0	32.4	61.8	26.5	Non-Hispanic White	no
73567	65.0	93.7	172.4	173.0	40.0	65.3	22.0	Non-Hispanic White	no
73568	26.0	73.7	152.5	168.0	34.4	47.1	20.3	Non-Hispanic White	no
73571	76.0	122.1	172.5	167.0	35.5	102.4	34.4	Non-Hispanic White	ye
73577	32.0	100.0	166.2	182.0	36.5	79.7	28.9	Mexican American	no
73581	50.0	99.3	185.0	202.0	42.8	80.9	23.6	Other or Multi-Racial	no
73585	28.0	90.3	175.1	198.0	40.5	92.2	30.1	Other or Multi-Racial	no
73589	35.0	94.6	172.9	192.0	39.1	78.3	26.2	Non-Hispanic White	no
73595	58.0	114.8	175.3	165.0	40.1	96.0	31.2	Other Hispanic	no
73596	57.0	117.8	164.7	151.0	35.3	104.0	38.3	Other or Multi-Racial	y
73600	37.0	122.9	185.1	189.0	48.1	126.2	36.8	Non-Hispanic Black	ye
73604	69.0	96.6	156.9	203.0	37.0	59.5	24.2	Non-Hispanic White	no
73607	75.0	130.5	169.6	161.0	36.5	111.9	38.9	Non-Hispanic White	
73610	43.0	102.6	176.8	200.0	38.8	90.2	28.9	Non-Hispanic White	no
73613	60.0	113.6	163.8	203.0	41.6	104.9	39.1	Non-Hispanic Black	
73614	55.0	90.9	167.9	256.0	43.5	60.9	21.6	Non-Hispanic White	no
73615	65.0	100.3	145.9	166.0	30.0	55.4	26.0	Other Hispanic	
73616	62.0	95.5	172.8	171.0	38.4	71.8	24.0	Non-Hispanic White	
73619	36.0	91.1	173.1	162.0	38.9	81.7	27.3	Mexican American	no
73621	80.0	98.2	176.2	161.0	40.4	76.4	24.6	Non-Hispanic White	no
73622	72.0	115.6	185.4	186.0	39.7	99.5	28.9	Non-Hispanic White	no

[^4]BPQ020 ALQ120Q DMDEDUC2

yes	1.0	high school graduate / GED
yes	7.0	high school graduate / GED
yes	0.0	some college or AA degree
yes	5.0	some college or AA degree
yes	2.0	college graduate or above
no	1.0	high school graduate / GED
no	4.0	9th-11th grade
no	2.0	college graduate or above
yes	2.0	college graduate or above
no	20.0	Less than 9th grade
no	0.0	college graduate or above
no	4.0	some college or AA degree
no	2.0	high school graduate / GED
no	1.0	some college or AA degree
yes	1.0	college graduate or above
yes	2.0	high school graduate / GED
no	1.0	some college or AA degree
yes	0.0	high school graduate / GED
no	5.0	college graduate or above
yes	2.0	9th-11th grade
no	0.0	high school graduate / GED
yes	1.0	Less than 9th grade
no	2.0	some college or AA degree
no	2.0	high school graduate / GED
no	5.0	college graduate or above
no	4.0	colleqe araduate or above

Entropy-Based Greedy DT Construction

sean	RIDAGEY	BmxWalst	вмхнт	Lвxtc	вмxLEG	вмхWт	вмх	RIDRETH1	BP0020	ALOR200	dmoEduc	RIAGENDR	INDFMPIR	Lexar	DIABETIC
73557	69.0	100.0	${ }^{177.3}$	167.0	39.2	${ }^{78.3}$. 7	Non-Hispanic Black	yes	1.0	high school graduate / GED	male	0.84	13.9	yes
73558	54.0	107.6	176.8	170.0	40.0	89.5	28.6	6 Non-Hispanic White	yes	7.0	high school grauate / GEC	male	1.78	9.1	yes
73559	72.0	109.2	175.3	126.0	40.0	88.9	28.9	Non-Hispanic White	yes	0.0	some college or A d degree	male	4.51	8.9	yes
73562	56.0	123.1	158.7	226.0	34.2	105.0	41.7	Mexican American	yes	5.0	some college or A d degree	male	4.79	5.5	no
73564	61.0	-10.8	161.8	168.0	37.1	93.4	35.7	Non-Hispanic White	yes	2.0	college grauate or above	female	5.0	5.5	no
73566	56.0	${ }^{85.5}$	2.8	278.0	32.4	61.8	26.5	Non-Hisparic White	no	1.0	high school graduate / GEL	female	. 48	5.4	no
73667	65.0	93.7	2.4	173.0	40.0	65.3	22.0	Non-Hispa	no	4.0	9th-11th grade	male	1.2	5.2	no
73568	26.0	73.7	152.5	168.0	34.4	4.1	20.3	3 Non-Hispanic White	no	2.0	college graduate or abve	fema	5.0	5.2	no
73571	76.0	${ }^{122.1}$	72.5	167.0	35.5	102.4	34.4	4 Non-Hispanic White	yes	2.0	college graduate or abve	male	5.0	6.9	yes
73577	32.0	100.0	166.2	182.0	36.5	79.7	28.9	Mexican American	no	20.0	Less than 9th grade	male	0.29	5.3	no
73581	50.0	99.3	185.0	2020	42.8	80.8	23.6	6 Other	no	0.0	college grauate or above	male	5.0	5.0	no
73585	28.0	90.3	75.1	198.0	40.5	${ }^{92.2}$	${ }^{30.1}$	Other or Mutili-	no	4.0	some college or AA degree	male	2.26	5.0	no
73589	35.0	94.6	172.9	192.0	39.1	78.3	26.2	2 Non-Hispanic White	no		high school grauate/ GEL	male	1.74	5.5	no
73595	58.0	-1148	75.3	165.0	40.1	99.0	31.2	2 Other Hispanic	no		some college or AA degree	male	3.09	7.7	no
73596	57.0	117.8	164.7	151.0	35.3	104.0	38.3	Other or Mutit-Racia	yes	1.0	college gracuate or above	female	5.0	5.9	no
73600	37.0	122.9	185.1	189.0	48.1	126.2	36.8	Non-Hispanic Black	yes		high school graduate/ GEL	male	0.63	6.2	yes
73604	69.0	96.6	156.9	203.0	37.0	59.5	24.2	2 Non-Hispanic White	no		some college or AA degree	female	2.44	5.4	no
73607	5.0	30.5	69.6	161.0	36.5	111.9	38.9	Non-Hispanic White	yes		high school graduate / GEL	male	1.08	5.0	no
73610	43.0	-102.6	76.8	200.0	38.8	90.2	28.9	Non-Hispanic White	no	5.0	college graduate or above	male	2.03	4.9	no
73613	60.0	13.6	63.8	203.0	41.6	104.9	39.1	Non-Hispanic Black	yes		9th-11th grade	female	5.0	6.1	no
73614	55.0	0.9	167.9	256.0	43.5	60.9	21.6	Non-Hispanic White	no	0.0	high school graduate / GEC	female	1.29	5.0	no
73615	65.0	100.3	145.9	166.0	30.0	5.4	26.0	Other Hispanic	yes		-ess than 9th grade	female	1.22	${ }^{6.3}$	yes

Given dataset $\mathcal{D}=[X, y]$

- \quad Pick feature X_{j} to split upon with the highest IG (or GainRatio)
- Partition \mathcal{D} via X_{j}
- Recurse until nodes are homogenous

χ_{14}	S
	the highest IG

Dataset partition $\mathcal{D}[\mathrm{LBXGH} \leq 6.15]$

maleemalemalenaleemalenalenalenaleemaleemalenalenale
:---

38.3 Otheror Mutil Reacal yos
24.2 Non-Hispanic White no

28.9 Non-Hsspanic White no no $\quad 0.0$ nigh school gratuate/ 6 ED

Dataset partition $\mathcal{D}[L B X G H$ > 6.15]
 73571
73595
73500
73615

 | | 1.0 |
| :--- | :--- | :--- |

Diabetes DT - Random vs IG Features

DT with random feature splits

Accuracy on diabetes data $=100 \%$

DT via IG

Accuracy on diabetes data $=100 \%$

- Well, it is smaller while retaining 100 \% accuracy on our training data
- Still rather complex, though ...

Overfitting and
 Decision Trees

Accuracy - Decision Tree (Version 1)

Original Patient Data: $100.000 \% \quad(n=1082)$
New Patient Data: $\quad 82.796$ \% $\quad(n=465)$

Avoiding Overfitting

How can we avoid overfitting?

1. Stop growing when data split is not statistically significant
2. Acquire more training data
3. Remove irrelevant attributes (manual process - not always possible)
4. Grow full tree, then post-prune

Try various tree hyperparameters (e.g., tree depth, splitting criterion, termination criterion) and pick the one with the best estimated generalization performance. How to estimate?

- Cross-validation
- Add a complexity penalty to performance measure e.g. training accuracy - average depth of leaf node

Reduced-Error Pruning

Split the original training data into training and validation sets

Training Stage

Grow the decision tree based on the training set

Pruning Stage

Loop until further pruning hurts validation performance:

- Measure the validation performance of pruning each node (and its children)
- Greedily remove the node that most improves validation performance

Reduced-Error Pruning

- Pruning replaces a whole subtree with a leaf node
- Replacement occurs if the expected error rate of the subtree is

Predicting the majority class (negative) has a lower validation error greater than that of the leaf

Training

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Accuracy - Decision Trees

	DT unpruned	DT pruned	
Original Patient Data:	100.000%	88.909%	$(\mathrm{n}=1082)$
New Patient Data:	82.796%	85.591%	$(\mathrm{n}=465)$

The Final Diabetes DT

Our Pruned Decision Tree

How Diabetes is Actually Diagnosed

NORMAL
PREDIABETES

- If your A1C level is between 5.7 and less than 6.5%, your levels have been in the prediabetes range.
- If you have an A1C level of 6.5% or higher, your levels were in the diabetes range.
(screenshot from diabetes.org)

Strong similarity to how diabetes is actually diagnosed!

Decision Tree Algorithms

ID3

- Information gain on nominal features

C4.5

- Can use info gain or gain ratio
- Nominal or numeric features
- Missing values
- Post-pruning
- Rule generation

CART (Classification and Regression Tree)

- Similar to C4.5
- Can handle continuous target prediction (regression)
- No rule sets
- Sklearn's DecisionTreeClassifier is based on CART, but can't handle nominal features (as of version 0.22.1)

Many Other Algorithms ...

Strengths and Weaknesses of DTs

Strengths

Widely used in practice
4 Fast and simple to implement
Small trees are easily interpretable
4. Handles a variety of feature types

Can convert to rules
Handles noisy / missing data
${ }^{4}$ Insensitive to feature scaling
Handles irrelevant features
4 Handles large datasets

Weaknesses

Univariate partitions limit potential trees
Limited predictive power
Heuristic-Based Greedy Training

Comparison of Learning Methods

Characteristic	Trees	k-NN, Kernels
Natural handling of data of "mixed" type	A	∇
Handling of missing values	A	Δ
Robustness to outliers in input space	A	-
Insensitive to monotone transformations of inputs	-	∇
Computational scalability (large N)	A	∇
Ability to deal with irrelevant inputs	\wedge	∇
Ability to extract linear combinations of features	∇	-
Interpretability	*	∇
Predictive power	∇	-

[^0]: © 2019-22 D. Jayaraman, O. Bastani, Z. Ives

[^1]: © 2019-22 D. Jayaraman, O. Bastani, Z. Ives

[^2]: © 2019-22 D. Jayaraman, O. Bastani, Z. Ives

[^3]: © 2019-22 D. Jayaraman, O. Bastani, Z. Ives

[^4]: © 2019-22 D. Jayaraman, O. Bastani, Z. Ives

