Lecture 8: Decision Trees
and Overfitting

https://tinyurl.com/cis5190-9-28-2022

Osbert Bastani and Zachary G. Ives
CIS 4190/5190 — Fall 2022



Tasks

* Homework 2 due October 3 8pm

®* Project team member submission: due October 4, 8pm
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Recall from Last Time

Two kinds of nonparametric learning: k-Nearest Neighbor and Decision Trees

Decision tree algorithm (C4.5):

Greedy recursive algorithm: successively splits the training data into “hyperrectangles”

Assume Boolean functions as the basis of intermediate notes

Intermediate note splits are chosen based on information gain

Basic scheme: use entropy as a measure of information gain
H(@) — — ZC P(Y — C) lOgZ P(Y — C), for each class c
IG(D, X;) = H(D) — Zvy(z)[xj — v])P(Xj — 1) foreach value vof X
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Revisiting Diabetes Data

UPPER LEG LENGTH BMI HIGH BP EDUCATION FAMILY INCOME RATIO 1\ beric
AGE WAIST HE._CHOLESTEROL WEIGHT RACE ALCOHOL USE GENDER  GLYC |

SEQN |RIDAGEYR BMXWAIST BMXHT LBXTC BMXLEG BMXWT BMXBMI RIDRETH1 BPQ020 ALQ120Q DMDEDUC2 RIAGENDR INDFMPIR
69.0 100.0 171.3 1 167.0 39.2 78.3 26.7 | Non-Hispanic Black | yes 1.0 | high school graduate / GED | male 0.84
54.0 107.6 176.8 | 170.0 40.0 89.5 28.6 Non-Hispanic White | yes 7.0 | high school graduate / GED | male 1.78
72.0 109.2 175.3 | 126.0 40.0 88.9 28.9 | Non-Hispanic White | yes 0.0 | some college or AA degree = male 4.51

DIABETIC

yes
yes
yes
56.0 1231 158.7  226.0 34.2 105.0 41.7 | Mexican American yes 5.0 | some college or AA degree = male 4.79 no
61.0 110.8 161.8 168.0 371 93.4 35.7 | Non-Hispanic White | yes 2.0 | college graduate or above | female 5.0
56.0 85.5 1562.8 278.0 32.4 61.8 26.5 | Non-Hispanic White ' no 1.0 | high school graduate / GED | female 0.48
65.0 93.7 172.4 1 173.0 40.0 65.3 22.0 | Non-Hispanic White | no 4.0 9th-11th grade male 1.2

26.0 73.7 152.5| 168.0 34.4 47 1 20.3 | Non-Hispanic White | no 2.0 | college graduate or above | female 5.0

no
no
no
no
76.0 122.1 172.5| 167.0 35.5 102.4 34.4 | Non-Hispanic White | yes 2.0 | college graduate or above | male 5.0
32.0 100.0 166.2  182.0 36.5 79.7 28.9 | Mexican American no 20.0 | Less than 9th grade male 0.29
50.0 99.3 185.0 | 202.0 42.8 80.9 23.6 | Other or Multi-Racial | no 0.0 college graduate or above | male 5.0
28.0 90.3 iS55 198.0 40.5 92.2 30.1 | Other or Multi-Racial | no 4.0 some college or AA degree = male 2.26
35.0 94.6 172.9| 192.0 39.1 78.3 26.2 | Non-Hispanic White | no 2.0 | high school graduate / GED ' male 1.74
58.0 114.8 175.3 | 165.0 40.1 96.0 31.2 | Other Hispanic no 1.0 | some college or AA degree | male 3.09

yes
no
no
no
no
no
57.0 117.8 164.7  151.0 35.3 104.0 38.3 | Other or Multi-Racial | yes 1.0 | college graduate or above | female 5.0
37.0 122.9 185.1 189.0 48.1 126.2 36.8 | Non-Hispanic Black | yes 2.0 | high school graduate / GED ' male 0.63
69.0 96.6 156.9 208.0 37.0 59.5 24.2 | Non-Hispanic White | no 1.0 | some college or AA degree | female 2.44
75.0 130.5 169.6  161.0 36.5 111.9 38.9 | Non-Hispanic White | yes 0.0 | high school graduate / GED | male 1.08
43.0 102.6 176.8 200.0 38.8 90.2 28.9 | Non-Hispanic White | no 5.0 | college graduate or above  male 2.03
60.0 113.6 163.8 208.0 41.6 104.9 39.1 | Non-Hispanic Black | yes 2.0 9th-11th grade female 5.0

no
yes
no
no
no
no
55.0 90.9 1679 256.0 43.5 60.9 21.6 | Non-Hispanic White | no 0.0 | high school graduate / GED | female 1.29
65.0 100.3 1459 166.0 30.0 55.4 26.0 | Other Hispanic yes 1.0 | Less than 9th grade female 1.22
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Information Gain Example for Diabetes
First Split

ID HIGH_BP EDUCATION (DMDEDUC2) DIABETIC
(SEQN) (BPQ020)
73557 | yes high school graduate / GED | yes m
73558 | yes high school graduate / GED | yes m ye S
73559 | yes some college or AA degree | yes
73562 | yes some college or AA degree | no O e ——— .
73564 | yes college graduate or above no bo
73566 | no high school graduate / GED | no _—
73567 | no 9th-11th grade I n O ' ' ' ' ' '
73568 | no college graduate or above no
73571 | yes college graduate or above yes
73577 | no Less than 9th grade o
73581 | no college graduate or above | no 9 t h 9 th - 1 1 th H S g d I I g I I g d
73585 | no some college or AA degree | no < ra S O m e CO e e CO e e g ra

Education
We compared two candidates:
IG(D,High BP) = H(D)- H (D |High BP) = 0.918 - 0.459 = 0.459 0.459 W
IG(D, Education) = H(D)- H (D| Education) = 0.918 - 0.730 =0.188
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Discounting for Many-Valued Attributes

|G tends toward selecting features that have many values

* e.g., unique identifiers, dates, etc. ' ' ' '
®* unique partitions = minimal impurity —__ -
This scales by the
Gain Ratio scales by entropy of the sub-dataset proportions: entropy of the split
_ _ ~16(px)) itself, ignoring the
GainRatio (D,X ) = Splitinfo(DX;) classes

Splltlnfo(D X) = EP(X = v) log, P(X; = v)

aka Intrinsic Information

o, =
D|
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Gain Ratio Example

Already Computed:

H( )=0.918 e § §
H (D | High BP) = 0.459
D | Education) = 0.730 -b:D
D High BP) = 0.459 omm
D, Education) = 0.188 L

o~ N e~ o~

- H
le
IG

ol ¢ f f f i

<9th 9th-11th HS grad some college college grad
Education

Need to compute:
GainRatio(D, High BP) = IG(D, High BP) / Splitinfo(D, High BP)
GainRatio(D, Education) = IG(D, Education) / SplitInfo(D, Education)
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Gain Ratio Example

. H(D) =0.918

H (D | High BP) = 0.459
D | Education) = 0.730
D High BP) = 0.459
D, Education) = 0.188

Already Computed: | :
yes | : v | i
L

High BP

H
*1G
* 1G

<9th 9th-11th HS grad some ccllmm rallacn mend
Education -~ ©/12186/12

- 6/121g 6/12

Need to compute: 0450 =1
GainRatio(D High BP) = IG(D, High BP) / Splitinfo(D, High BP)

GainRatio(D, Education) = IG(D, Education) / SplitInfo(D, Education)
0.188
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Already Computed:

* H(D) =

*H(D | ngh BP) =

0.459

* H(D | Education) =0.730
* IG(D High BP) = 0.459
* |G(D, Education) = 0.188

Need to compute:
GainRatio(D High BP) =
GainRatio(D, Education)
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High BP

Gain Ratio Example

<9th 9th-11th [

= -1/121g1/12 - 1/121g 1/12

-3/121g 3/12 - 3/121g 3/12

- 4/12 |g 4/12
- 2.1258

IG(D, High BP) / Splitinfo._, .
= |G(D, Education) / Splltlnfo(D, Education)



Gain Ratio Example

Already Computed: i' 1| 1 1| r 1| r -1I r . 1I

« H(D) = 0.918 Q- ves|| Lo L | : ' I : ' :

« H (D | High BP) = 0.459 m : 1o | : , . , | ,

* H (D | Education) = 0.730 e : I : I : I : i : I

e o e N O B O R . .

O , ucation) = L. I no I | i i |
LIRS 11
<9th 9th-11th HS grad some college college grad

Education
Need to compute: ‘

GainRatio(D High BP) = IG(D, High BP) / Splitinfo(D, High BP) =0.459 / 1 = 0.459

GainRatio(D, Education) = IG(D, Education) / SplitInfo(D, Education) = 0.188 / 2.12
= (0.089

Same as before.... But much stronger preference for BP!
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Gain Ratio vs “Standard” Information Gain

Gain ratio is Information Gain scaled discounted by the Intrinsic Information of the split itself

—> Biases against many-valued splits, which otherwise may have less impurity simply due to size

Adds a bit of extra computational overhead, so it is not always used — but it can be helpful in
many real-world use cases!
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Another Alternative: The Gini Index

Issue: choosing a split point by IG is a bit expensive — logarithm is an expensive float operation

Popular alternative to entropy: Gini index, produces similar results and is less expensive to

compute

* Measures how often a randomly chosen element from a set would be incorrectly labeled, if it
was randomly labeled according to the distribution of labels in the subset

* Like entropy, ranges from 0 — 1 with max value at 50%

0.7f

— Gini

Entropy

K
2
Pi
=1

K
Gini(p) = ) pi(1=pi) =1-
=1

used in one common decision-tree algorithm (CaRT) and in SciKit-Learn
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Feature Scaling in Decision Trees

Decision trees are generally univariate -- split one feature (dimension) at a time

While this limits
They are scale invariant, i.e., we don’t need to standardize the scale!
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DT Training for Diabetes



We are Ready to Train the DT for Diabetes!

SEQN RIDAGEYR BMXWAIST BMXHT LBXTC BMXLEG BMXWT BMXBMI RIDRETH1 BPQ020 ALQ120Q DMDEDUC2 RIAGENDR INDFMPIR LBXGH DIABETIC
73557 69.0 100.0 171.3 | 167.0 39.2 78.3 26.7 Non-Hispanic Black | yes 1.0 | high school graduate / GED | male 0.84 13.9 yes
73558 54.0 107.6 176.8 170.0 40.0 89.5 28.6 | Non-Hispanic White | yes 7.0 | high school graduate / GED | male 1.78 9.1 yes
73559 72.0 109.2 175.3 1 126.0 40.0 88.9 28.9 | Non-Hispanic White | yes 0.0  some college or AA degree | male 4.51 8.9 yes
73562 56.0 1281 158.7 | 226.0 34.2 105.0 41.7 | Mexican American yes 5.0  some college or AA degree | male 4.79 5.5 no
73564 61.0 110.8 161.8 168.0 371 93.4 35.7 | Non-Hispanic White | yes 2.0 | college graduate or above | female 5.0 5.5 no
73566 56.0 85.5 152.8 | 278.0 32.4 61.8 26.5  Non-Hispanic White | no 1.0 | high school graduate / GED | female 0.48 5.4 | no
73567 65.0 93.7 172.4 173.0 40.0 65.3 22.0  Non-Hispanic White ' no 4.0 | 9th-11th grade male 1.2 5.2 no
73568 26.0 73.7 152.5 168.0 34.4 471 20.3 | Non-Hispanic White ' no 2.0  college graduate or above | female 5.0 5.2 no
73571 76.0 1221 172.5 167.0 35.5 102.4 34.4  Non-Hispanic White | yes 2.0  college graduate or above | male 5.0 6.9 yes
73577 32.0 100.0 166.2  182.0 36.5 79.7 28.9 | Mexican American no 20.0 | Less than 9th grade male 0.29 5.3 no
73581 50.0 99.3 185.0 202.0 42.8 80.9 23.6 | Other or Multi-Racial K no 0.0 | college graduate or above | male 5.0 5.0 no
73585 28.0 90.3 1751 198.0 40.5 92.2 30.1 | Other or Multi-Racial | no 4.0 some college or AA degree K male 2.26 5.0 no
73589 35.0 94.6 1729 192.0 39.1 78.3 26.2  Non-Hispanic White ' no 2.0 ' high school graduate / GED | male 1.74 5.5 no
73595 58.0 114.8 175.3 | 165.0 40.1 96.0 31.2 | Other Hispanic no 1.0 some college or AA degree | male 3.09 7.7 no
73596 57.0 117.8 164.7  151.0 35.3 104.0 38.3 | Other or Multi-Racial | yes 1.0  college graduate or above | female 5.0 5.9 no
73600 37.0 122.9 185.1 189.0 48.1 126.2 36.8 Non-Hispanic Black | yes 2.0 | high school graduate / GED ' male 0.63 6.2 yes
73604 69.0 96.6 156.9  203.0 37.0 59.5 24.2  Non-Hispanic White ' no 1.0 some college or AA degree | female 2.44 5.4 no
73607 75.0 130.5 169.6  161.0 36.5 111.9 38.9 | Non-Hispanic White | yes 0.0  high school graduate / GED A male 1.08 5.0 no
73610 43.0 102.6 176.8  200.0 38.8 90.2 28.9  Non-Hispanic White ' no 5.0 | college graduate or above | male 2.03 49 no
73613 60.0 113.6 163.8 | 203.0 41.6 104.9 39.1 | Non-Hispanic Black | yes 2.0 9th-11th grade female 5.0 6.1 no
73614 55.0 90.9 167.9  256.0 43.5 60.9 21.6  Non-Hispanic White ' no 0.0 ' high school graduate / GED | female 1.29 5.0 no
73615 65.0 100.3 1459 166.0 30.0 55.4 26.0 Other Hispanic yes 1.0 | Less than 9th grade female 1.22 6.3  yes
73616 62.0 95.5 172.8  171.0 38.4 71.8 24.0  Non-Hispanic White ' no 2.0 some college or AA degree | female 5.0 5.5 no
73619 36.0 91.1 1731 162.0 38.9 81.7 27.3 | Mexican American no 2.0 | high school graduate / GED | female 0.84 5.0 no
73621 80.0 98.2 176.2 161.0 40.4 76.4 24.6  Non-Hispanic White ' no 5.0 | college graduate or above | male 5.0 5.6 no
73622 72.0 115.6 185.4 1 186.0 39.7 99.5 28.9 | Non-Hispanic White | no 4.0 | colleae araduate or above | male 5.0 6.0 | no
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Recall the Basic Algorithm

function train tree (D)
1. If data D all have the same label y, return new 1eaf node (y), else:

2. Pick the feature Xj to partition D that maximizes Information Gain

w

Setnode = new decision node (Xj)
4. For each value v that X; can take

Recursively create a new child train tree (D[X; = v]) of node

5. Return node
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Entropy-Based Greedy DT Construction

SEQN RIDAGEYR BMXWAIST BMXHT LBXTC BMXLEG BMXWT BMXBMI
73557 69.0 1000 1713 167.0 39.2 783 26.7
73558 54.0 107.6 176.8  170.0 40.0 89.5 28.6
73559 72.0 109.2 1753 126.0 40.0 88.9 28.9
73562 56.0 123.1 158.7  226.0 34.2 105.0 41.7
73564 61.0 1108 161.8 168.0 37.1 934 35.7
73566 56.0 85.5 152.8  278.0 32.4 61.8 26.5
73567 65.0 937 1724 1730 40.0 65.3 22.0
73568 26.0 73.7 152.5  168.0 34.4 471 20.3
73571 76.0 122.1 1725 167.0 35.5 102.4 34.4
73577 32.0 100.0 166.2 182.0 36.5 79.7 28.9
73581 50.0 99.3  185.0 202.0 428 80.9 23.6
73585 28.0 90.3 175.1 198.0 40.5 922 30.1
73589 35.0 94.6 1729 192.0 39.1 78.3 26.2
73595 58.0 1148 1753 165.0 40.1 96.0 31.2
73596 57.0 117.8 1647 151.0 35.3 104.0 38.3
73600 37.0 122.9 185.1 189.0 481 126.2 36.8
73604 69.0 96.6  156.9 203.0 37.0 59.5 242
73607 75.0 1305  169.6 161.0 36.5 111.9 38.9
73610 43.0 102.6 176.8  200.0 38.8 90.2 289
73613 60.0 1136  163.8 203.0 416 104.9 39.1
73614 55.0 90.9 1679 256.0 435 60.9 21.6
73615 65.0 100.3 145.9  166.0 30.0 55.4 26.0

X, X, ...

RIDRETH1
Non-Hispanic Black
Non-Hispanic White
Non-Hispanic White
Mexican American
Non-Hispanic White
Non-Hispanic White
Non-Hispanic White
Non-Hispanic White
Non-Hispanic White
Mexican American
Other or Multi-Racial
Other or Multi-Racial
Non-Hispanic White
Other Hispanic
Other or Multi-Racial
Non-Hispanic Black
Non-Hispanic White
Non-Hispanic White
Non-Hispanic White
Non-Hispanic Black
Non-Hispanic White
Other Hispanic

BPQ020 ALQ120Q
yes 1.0
yes 10
yes 0.0
yes 5.0
yes 2.0
no 1.0
no 4.0
no 2.0
yes 2.0
no 20.0
no 0.0
no 4.0
no 2.0
no 1.0
yes 1.0
yes 2.0
no 1.0
yes 0.0
no 5.0
yes 2.0
no 0.0
yes 1.0

DMDEDUC2

high school graduate / GED
high school graduate / GED
some college or AA degree
some college or AA degree
college graduate or above
high school graduate / GED
9th-11th grade

college graduate or above
college graduate or above
Less than 9th grade
college graduate or above
some college or AA degree
high school graduate / GED
some college or AA degree
college graduate or above
high school graduate / GED
some college or AA degree
high school graduate / GED
college graduate or above
9th-11th grade

high school graduate / GED
Less than 9th grade

RIAGENDR INDFMPIR LBXGH

male

male

male

male

female

female

male

female

male

male

male

male

male

male

female

male

female

male

male

female

female

female

Dataset partition D[LBXGH < 6.15]

SEQN RIDAGEYR BMXWAIST BMXHT LBXTC BMXLEG BMXWT BMXBMI RIDRETH1

73562 56.0 123.1 158.7  226.0 342 105.0 41.7 Mexican American

73564 61.0 110.8 161.8 168.0 371 93.4 35.7 Non-Hispanic White
73566 56.0 85.5 152.8 | 278.0 324 61.8 26.5 Non-Hispanic White
73567 65.0 937 1724 173.0 40.0 65.3 22.0 Non-Hispanic White
73568 26.0 737 1525 168.0 344 474 20.3 Non-Hispanic White
73577 32.0 100.0 1662 182.0 36.5 79.7 28.9 Mexican American

73581 50.0 99.3 186.0  202.0 42.8 80.9 23.6 Other or Multi-Racial
73585 28.0 90.3 1761 198.0 40.5 92.2 30.1 Other or Multi-Racial
73589 35.0 946 1729 192.0 391 78.3 26.2 Non-Hispanic White
73596 57.0 117.8 164.7 1510 353 104.0 38.3 Other or Multi-Racial
73604 69.0 96.6 156.9 203.0 37.0 59.5 24.2 Non-Hispanic White
73607 75.0 130.5 169.6 161.0 36.5 1119 38.9 Non-Hispanic White
73610 43.0 102.6 176.8 | 200.0 38.8 90.2 28.9 Non-Hispanic White
73613 60.0 113.6 163.8 203.0 416 104.9 39.1 Non-Hispanic Black
73614 55.0 909  167.9 256.0 435 60.9 21.6 Non-Hispanic White

BPQ020 ALQ120Q

yes 5.0
yes 2.0
no 1.0
no 4.0
no 2.0
no 20,0
no 0.0
no 4.0
no 2.0
yes 1.0
no 1.0
yes 0.0
no 5.0
yes 2.0
no 0.0

some college or A degree
college graduate or above
high school graduate / GED
9th-11th grade

college graduate or above
Less than 9th grade
college graduate or above
some college or AA degree
high school graduate / GED
college graduate or above
some college or AA degree
high school graduate / GED
college graduate or above
9th-11th grade

high school graduate / GED

LBXGH
male 4.79 55
female 5.0 55
female 0.48 5.4
male 1.2 52
female 5.0 52
male 0.29 5.3
male 5.0 5.0
male 2.26 5.0
male 1.74 55
female 5.0 5.9
female 2.44 5.4
male 1.08 5.0
male 2.03 4.9
female 5.0 6.1
female 1.29 5.0

DIABETIC

no

4.79 5.5 no

0.48 5.48no

0.29 5.3 Bno

2.26 5.0 8no
1.74 5.58no
3.09 7.7 Bno

0.63 6.2 Byes
2.44 5.48no
1.08 5.0 fno
2.03 4.98no

1.29 5.0 fno
1.22 6.3 fyes

DIABETIC
0.84 13.9 fyes
1.78 9.1 Byes
4.51 8.9 flyes

5.0 5.58no

12 5.2 fno

5.0 5.28no

5.0 6.9 flyes

5.0 5.0 fno

5.0 5.9 fno

5.0 6.1 8no

X14

Given dataset D = [X,y

Pick feature X; to split upon with the highest IG

(or GainRatio)

Partition D via Xj
Recurse until nodes are homogenous (0 entropy)

GLYCOHEMOGLOBIN (LBXGH) <6.15
entropy = 0.92
samples = 1082

" X,, (LBXGH) < 6.15 has

the highest IG

value =[720, 362]
class = None

True

entropy = 0.533
samples = 792
value = [696, 96]

class = None

False
SEQN RIDAGEYR BMXWAIST BMXHT
73557 69.0 100.0 171.3
73558 54.0 107.6 176.8
73559 72.0 109.2 175.3
73571 76.0 122.1 1725
73595 58.0 114.8 175.3
73600 37.0 122.9 185.1
73615 65.0 100.3 145.9

LBXTC BMXLEG BMXWT BMXBMI RIDRETH1

167.0
170.0
126.0
167.0
165.0
189.0
166.0

39.2
40.0
40.0
355
40.1
48.1
30.0

78.3
89.5
88.9
102.4
96.0
126.2
56.4

26.7 | Non-Hispanic Black
286
289

Non-Hispanic White
Non-Hispanic White
34.4 Non-Hispanic White
31.2 | Other Hispanic

36.8 | Non-Hispanic Black

26.0  Other Hispanic

BPQ020 ALQ120Q

1.0
40
0.0
20
1.0
2.0
1.0

DMDEDUC2

high school graduate / GED
high school graduate / GED
some college or AA degree
college graduate or above
some college or AA degree
high school graduate / GED
Less than 9th grade

RIAGENDR INDFMPIR LBXGH
male 0.84 13.9
male 1.78 9.1
male 451 8.9
male 5.0 6.9
male 3.09 7.7
male 0.63 6.2
female 122 6.3

17

Dataset partition D[LBXGH > 6.15]

DIABETIC
yes

yes

yes

yes

no

yes

yes



Diabetes DT - Random vs |G Features

DT with random feature splits DT via IG

= =5

TECT = = TEET = =
=D = e Ehe =Y E = - _ !'?1’1" | . — 1 'ff‘f- = EEINEs
CEZ.IL_EIL- _'I ﬁ D = [ [ e ] Fﬁ" == EEEl= ﬂ--"ﬁ‘ [ | 7 B
I HD =202 Ene [ = TCED = :&"’E] - ------ =l [ Jowanl Bl Teale ol [ [ [}
- ..- FET ..u-@.._'l ----- B = EE —.“ = --_%E"--- =
= = -E- S SRS e = -------- T E - £ B I3 i = ,-. -
.g-..--- EEEDE Y S EEs -. E=|e = ") . = -. [T ] (=L =4 =i 1 e -
= ] L] ] rETE EE .I [Tl = = --m.-- - )
-- rEus rEE L1 ] = 2. .=
== --

CEOmE @arEr
EasrEn as
[ L] ®E sErE

Accuracy on diabetes data = 100% Accuracy on diabetes data = 100%

* [tis smaller while retaining 100 % accuracy on our training data

« Still rather complex, though, and vulnerable to overfitting (we’ll see in a
bit)...

« But first: let’s see a sketch of building Decision Trees in Scikit-Learn
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An Example
Using Pandas, Numpy, Sklearn



Classifying Mammals
Organism | Temp reg.? | Live birth? | Four legs? | Hibernates? | Fuzzlhair? | Mammal?
Y Y Y Y Y Y

bear
dog Y Y Y N Y Y
dolphin Y Y N N N Y
bat Y Y N Y Y Y
platypus Y N Y N Y Y
newt N N Y Y N N
skink N N Y N N N
rat snake N N N Y N N
lobster N N N N N N
Kiwi Y N N N Y N
blue shark N Y N N N N

Inspired by an example by Mohsen Afsharchi
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animals train list =

]

{'organism': 'beat

'mammal': Tz

{'organism': 'dog

'mammal': Tz

{'organism': 'dolg

'mammal': Tz

{'organism': 'bat

'mammal': Tz

{'organism': 'plat

'mammal': Tz

{'organism': 'newt

'mammal': Fé

{'organism': 'skir

'mammal': Fé

{'organism': 'rat,

'mammal': Fé

{'organism': 'lobs

'mammal': Fé

{'organism': '"kiw3i

'mammal': Fé

{'organism': 'blue

'mammal': Fé

animals train df = pd

Some Basics: Data into Pandas

organism endothermic live_birth four_legs hibernates

0 bear
1 dog
2 dolphin
3 bat
4 platypus
5 newt
6 skink

7 rat_snake
8 lobster
9 Kiwi

10 Dblue_shark

True

True

True

True

True

False

False

False

False

True

False

True

True

True

True

True

True

True

False

False

False

True

True

True

False

False

True

True

True

False

False

False

True

True

False

False

True

False

True

False

True

False

False

True

fuzz
True
True
False
True
True
True
True
False
False
True

False

mammal

True

True

True

True

True

False

False

False

False

False

False
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'fuzz': True,

'fuzz': True,
"alse, 'fuzz': False,

'fuzz': True,
"alse, 'fuzz': True,
>, 'fuzz': True,
lse, 'fuzz': True,
3': True, 'fuzz': False,
False, 'fuzz': False,
lse, 'fuzz': True,

True, 'fuzz': False,



Some Basics:
Identifying Features

endothermic live birth four_legs hibernates fuzz

0 True True True True True
1 True True True False True
2 True True False False False
3 True True False True True
- True True True False True
5 False True True True True
6 False True True False True
7 False False False True False
8 False False False False False
9 True False False False True
10 False True True True False
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Getting Training Data
into Form

X train df = animals train df[['endothermic', 'live birth', 'four legs', 'hibernates',6 'fuzz']]
y train df = animals train df['mammal']

X train = X train df.to numpy ()
y train = y train df.to numpy ()

[ True, True, True, True, True], array([ True, True, True, True, True, False, False, False, False,
[ True, True, True, False, True], False, False])

[ True, True, False, False, False],

[ True, True, False, True, True],
[ True, True, True, False, True],
[False, True, True, True, True],
[False, True, True, False, True],
[False, False, False, True, False],
[False, False, False, False, False],
[ True, False, False, False, True], tree.plot_tree(trained)

[False, True, True, True, False]])

array([

clf = tree.DecisionTreeClassifier ()

trained = clf.fit(X train,y train)
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0 1 2 3 4

The Trained DT Model

= ?
X[0] <= 0.5 Temp Reg = False”
gini = 0.496
samples = 11 bear
newt value=[6,5]| F
U X[1] 0.5 700
i i <= 0. Live birth = False?
skink gini = 0.0 gini = 0.278 dolphin
rat snake samples =2 samples = 6
_ value = [5. 0] value = [1' 5] F bat
nonmammal
lobster Xé%glizooss gini = 0.0 platypus
blue_shark samples = 2 samples = 4
value = [1, 1] value = [0, 4]
F mammal Kiwi
gini=0.0 gini=0.0
samples = 1 samples = 1
value = [1, 0] value = [0, 1]
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nonmammal

mammal



Overfitting and
Decision Trees



Looks Perfect, Until We Test...

X test df:

organism endothermic 1live_birth four_legs hibernates fuzz mammal

0 dolphin True True False False False True
1 human True True False False True True
2 hairless_cat True True True False False True
3 whale True True False False False True
4 echidna True False True False False True
5 therizinosaurus True False True False True False
6 bald_eagle True False False False False False

trained.predict (X test df.to numpy())

array ([ True, True, True, True, False, False, False])
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Similarly: with Diabetes Decision Tree

Original Patient Data: 100.00% (n = 1082)

New Patient Data: 82.796% (n =465)
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The Overfitting Problem

What is happening?
*  QOur algorithm has chosen some model representing hypothesis h
*  But there (likely) exists another hypothesis h’ such that:

error(h(Dtmin)) <err OT(h'(Dtrain))

error(h'(D)) < error(h(D))
(or else our heuristics are in fact
preventing us from finding h’: our
greedy algorithm doesn’t consider

all possible trees)
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What Causes Overfitting?

* Noisy training data: noise/errors can cause contradictory labels for data
with the same features

* Training data is non-representative, or does not include unusual cases
(e.g., egg-laying mammals, non-endothermic mammals)
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Avoiding Overfitting

How can we avoid overfitting?
1. Acquire more training data (might be very hard)
2. Remove irrelevant attributes (manual process, not always possible)

3. Keep our model from getting too complex

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives Based on Slide by Pedro Domingos
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Recall Occam’s Razor

Key Idea: The simplest consistent explanation is the best

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives
https://en.wikipedia.org/wiki/William_of Ockham 31



https://en.wikipedia.org/wiki/William_of_Ockham

What this Entails

* Have aless complex decision tree!

* This might actually look worse on training
data but may generalize better!
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X[0] <= 0.5
gini = 0.496
samples = 11
value = [6, 5]

L _
gini = 0.0 X.[l.]_<_ g.2
> gini = 0.278
samples =5 -
value = [5, 0] samples = 6
’ value = [1, 5]

I
gini = 0.5 gini = 0.0
samples = 2 samples = 4
value = [1, 1] value = [0, 4]

]




Avoiding Overfitting

How can we avoid overfitting?

1. Acquire more training data

2. Remove irrelevant attributes (manual process, not always possible)
3. Stop growing, e.g., when data split is not statistically significant

4. Grow full tree, then post-prune

Try various tree hyperparameters (e.g., tree depth, splitting criterion,
termination criterion) and pick the one with the best estimated
generalization performance. How to estimate?

« Cross-validation

« Add a complexity penalty to performance measure e.g., training
accuracy — average depth of leaf node

© 2019-22 D. Jayaraman, O. Bastani, Z. Ives Based on Slide by Pedro Domingos
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Stopping Growth

* Set a maximum depth to the decision tree (max_depth in Scikit-Learn)

e Set a minimum number of samples in a node, for us to split (e.g., 2) (min_samples_split in skl)
* Set a minimum number of samples in a leaf (min_samples_leaf)

(Again: we might use k-fold cross-validation to compare)

But alternatively, we can build “the perfect tree” and then prune back, based on validation set
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Reduced-Error Pruning

Split the original training data into training and validation sets

Training Stage
Grow the decision tree based on the training set
Pruning Stage

Loop until further pruning hurts validation performance:
 Measure the validation performance of pruning each node (and its children)
* Greedily remove the node that most improves validation performance

This is ver helgful for our Diabetes data

© 2019-22 D. Jayaraman, O. Bastani, ves
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Reduced-Error Pruning

®* Pruning replaces a whole subtree with a leaf node

* Replacement occurs if the error rate of the subtree is greater than

that of the leaf
Training

Sp0O2

normal
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Validatm

original subtree

normal

(error rate = 4/6)

Predicting the majority
class (negative) has a
lower validation error

pruned subtree

* Caod
i1t

(error rate = 2/6)

Subtree should
be pruned
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Accuracy - Decision Trees

DT unpruned DT pruned
Original Patient Data: 100.000 % 88.909 % (n=1082)
New Patient Data: 82.796 % 85.591 % (n =465)
DT unpruned DT pruned

entropy = 0.92
samples = 1082
value =[720, 362]

GLYCOHEMOGLOBIN (LBXGH) <6.15
class = None

False

IU
EE

entropy = 0.857
samples = 224
value = [161, 63]

class = None




The Final Diabetes DT

Our Pruned Decision Tree How Diabetes is Actually Diagnosed

{GLYCOHEMOGLOBIN (LBXGH) < 6.15}

entropy = 0.92
samples = 1082
value = [720, 362]
class = None

NORMAL ‘ PREDIABETES DIABETES

False

 If your A1C level is between 5.7 and less than 6.5%, your levels have

been in the prediabetes range.

 If you have an A1C level of 6.5% or higher, your levels were in the
diabetes range.

entropy = 0.857
samples = 224
value =[161, 63]

class = None

(screenshot from diabetes.org)

Strong similarity to how diabetes is actually diagnosed!

©2019-22 D. Jayaraman, O. Bastani, Z. Ives
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Decision Tree Algorithms

ID3

* Information gain on nominal
features

C4.5

®* (Canuseinfo gain or gain ratio
°* Nominal or numeric features
* Missing values

®* Post-pruning

* Rule generation
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CART (Classification and Regression Tree)

Similar to C4.5

Can handle continuous target prediction
(regression)

No rule sets

Sklearn’s DecisionTreeClassifieris

based on CART, but can’t handle nominal
features (as of version 0.22.1)

Many Other Algorithms ...
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Strengths and Weaknesses of DTs

Strengths
£ Widely used in practice
“£ Fast and simple to implement

“& Small trees are easily interpretable
Y P Weaknesses

£ Handles a variety of feature types e - o ,
¥ Univariate partitions limit potential trees

& Can convert to rules . o .
f , o V" Heuristic-Based greedy training
“& Handles noisy / missing data
& Insensitive to feature scaling
£ Handles irrelevant features

£ Handles large datasets
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Another Idea to Prevent Overfitting

A single decision tree can be prone to overfitting to the training data

What if we use randomization to create multiple decision trees, each a bit different:
* Eachis trained on a sample of the training data

* Each splits along a subset of the possible features

®* Eachis a small decision tree (“stump”)

Then we rely on voting to make this work!

* |Intuition: the most predictive features will be selected in many decision stumps!

(Note we now give up the “explainability” property)
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Random Forests

v

i

X1

- = =
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X2

v

¥

X3

X4

Cﬁnal

L

(X_train, y_train): training data

subsets (with replacement) of
(X_train, y_train)

separately
trained decision tree
classifiers using
subsets of features

classifier combines

votes of ensemble members



Training a Decision Tree in a Random Forest

1. Draw a random bootstrap data sample of size n, with replacement
2. Build (“grow”) a small decision tree (often just a “stump”)

« At each split point node, randomly select d candidate features (w/o
replacement)

« Split the node using the feature with best split according to objective
function (e.g. information gain)
3. Repeat to produce k decision trees (a forest!)

4. For prediction, use majority vote to predict a class for new data
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Benefits of Random Forests

One of the most popular and accurate classifiers for big data (more in a moment)
* Scale-invariant
®*  Much less susceptible to overfitting than “plain” decision trees
* (Can be generalized to continuous data (random forests of CaRT trees)

Also: training is highly parallelizable!

* Take a data set, draw samples of size n with replacement

* Train a separate decision tree on this, at each split point selecting from a subset of the features
(without replacement for this tree)

Let’s see a case study...
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Case Study: Seizure Prediction on Kaggle

(&) Research Prediction Competition

American Epilepsy Society Seizure Prediction Challenge $25,000
Predict seizures in intracranial EEG recordings Prize Money

504 t ' ~ \ Implantable Telemetry Unit (ITU)
e i device receives data from the
usmganalgomnm,andsends
advisory de

alert to a personal
cell phone, pager, etc.).

- Implanta Ludllmmbly(lu)

Detects and relays electrical
activity in the brain to the ITU.

Single warning

"I.....Threshold

R

et e e full seizure [ ; Litt, Wagenaar
) I | 1 1

§ = - ! et al. 2014

True alarm (seizure occurs)
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False alarm (no seizure occurs)



Detects and relays electrical
activity in the brain to the ITU.
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Data was broken into small fixed-length segments (labeled by a

human expert)

The Data

Essentially just a 2D matrix: voltage levels per channel vs time

Kaggle divided data into training, leaderboard, and actual test sets

@ Prize Winners

# A Team
| 1 — Medrr
| 2 a2 QMSDP
| 3 -5 Birchwood
4 -1 ESAI CEU-UCH
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Members

CIOIOIOR),
O
@®9 0

® © & ¢

experiment

Subject

Dog 1

Dog 2

Dog 3

Dog 4

Sampling Recorded Seizures Lead

rate (Hz)

400

400

400

400

Score

0.83993

0.81962

0.80078

0.79347

data (h)

1920

8208

5112

7152

Entries

264

501

160

182

22

47

104

29

seizures

40

18

27

Last

8Y

8Y

8Y

8Y

Training
clips (%
interictal)

504 (95.2)
542 (92.3)
1512

(95.2)

901(89.2)

Code

Testing
clips (%
interictal)
502 (95.2)
1000

(91.0)

907 (95.4)

990 (94.2)

3.7)

1.9)

).7)

Table 1 Data characteristics for the Kaggle.com seizure forecasting contest and held-out data

Held-out
clips (%
interictal)

2000
(99.7)

1000
(100)

1000
(100)

1000
(95.8)

0

0



Features

® Just using the data samples wasn’t really enough!

* A few examples of techniques for extracting features from EEG timeseries:

* Spectral analysis: use Fourier transforms to re-express the signal as a composition of sine waves,
identify the frequency bands with the most power

* Jook at the area under the curve or the derivative of the curve

¢ etc.
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BRAIN Table 3 AUC scores for the held-out data experiment compared to scores on the public and
private leader boards

Teamname Window Features Machine Ensemble Public Private
Ta (overlap) learning method leader leader

Issues Subject v More Content v Submit v Purchase About v Brain

algorithm board board

QMSDP 60s(0%),  Spectral LassoGLM, Weighted 0.86 0.82 ies
Crowdsourcing reproducible seizure forecasting in 85(97%)  power, Bagged SYM,  average

. . 1 spectral Random
human and canine epilepsy 3 entropy, i

Benjamin H. Brinkmann, Joost Wagenaar, Drew Abbot, Phillip Adkins, 2 correlation,

JOURNAL ARTICLE

Simone C. Bosshard, Min Chen, Quang M. Tieng, Jialune He, F. J. Mufioz-Almaraz, fractal
Paloma Botella-Rocamora, Juan Pardo, Francisco Zamora-Martinez, Michael Hills, dimensions,

Volume 139, Issue 6 Wei Wu, Iryna Korshunova, Will Cukierski, Charles Vite, Edward E. Patterson, Brian Litt, 3 Hjorth
June 2016 Gregory A. Worrell parameters,

Author Notes 4 distribution

. statistics,
Article Contents Brain, Volume 139, Issue 6, June 2016, Pages 1713-1722, signal

Abstract https://doi.org/10.1093/brain/aww045 variance
Published: 31 March 2016  Article history v

Introduction

QMSDP 60s Spectral LassoGLM 0.84 0.81
(0%) entropy,
correlation,
fractal
dimensions,
Hjorth
parameters,
distribution
statistics

QMSDP 8s Spectral Bagged SVM 0.79 0.76
(97%) power,
correlation,
signal
variance

QMSDP 8s Spectral Random 0.79 0.72
(97%) power, Forest
correlation,
signal
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Two Notes Here

* We saw from the competition that Random Forests — which used randomization to reduce
overfitting (variance) in decision trees — were useful

* But additionally they combined many other kinds of classifiers

Are there some basic principles here?

Ensembles, next...
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