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Tasks

• Homework 2 due October 3 8pm

• Project team member submission: due October 4, 8pm
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Recall from Last Time

Two kinds of nonparametric learning: k-Nearest Neighbor and Decision Trees

Decision tree algorithm (C4.5):
Greedy	recursive	algorithm:	successively	splits	the	training	data	into	“hyperrectangles”

Assume	Boolean	functions	as	the	basis	of	intermediate	notes
Intermediate	note	splits are	chosen	based	on	information	gain

Basic scheme:  use entropy as a measure of information gain

𝐻 𝒟 = −∑! 𝑃 𝑌 = 𝑐 log" 𝑃 𝑌 = 𝑐 ,
IG(𝒟,𝑋#) = 𝐻(𝒟) − ∑$𝐻(𝒟 𝑋# = 𝑣 )𝑃(𝑋# = 𝑣)

for each class c

for each value v of Xj
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Revisiting Diabetes Data

Data from NHANES 2013/14 survey 4

ID AGE WAIST HEIGHTCHOLESTEROL
UPPER LEG LENGTH

WEIGHT
BMI

RACE
HIGH BP

ALCOHOL USE
EDUCATION

GENDER
FAMILY INCOME RATIO

GLYCOHAEMOGLOBIN
DIABETIC
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Information Gain Example for Diabetes
First Split

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

We compared two candidates:
𝐼𝐺(𝒟,𝐻𝑖𝑔ℎ 𝐵𝑃) = 𝐻(𝒟) – 𝐻 (𝒟 |𝐻𝑖𝑔ℎ 𝐵𝑃) = 0.918 – 0.459 = 0.459

𝐼𝐺(𝒟, 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) = 𝐻(𝒟) – 𝐻 (𝒟| 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛) = 0.918 – 0.730 = 0.188 
0.459

5
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Discounting for Many-Valued Attributes

IG tends toward selecting features that have many values
• e.g., unique identifiers, dates, etc.
• unique partitions à minimal impurity

Gain Ratio scales by entropy of the sub-dataset proportions:

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 𝒟, 𝑋! = "# 𝒟,&!
𝑺𝒑𝒍𝒊𝒕𝑰𝒏𝒇𝒐 𝓓,𝑿𝒋

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 𝒟, 𝑋! = −?
2

𝑃 𝑋! = 𝑣 log3 𝑃(𝑋! = 𝑣)

6

This scales by the 
entropy of the split 
itself, ignoring the 
classes

𝒟 𝑋# = 𝑣
𝒟

aka Intrinsic Information
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Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

Need to compute:
GainRatio(𝒟, High BP) = IG(𝒟, High BP) / SplitInfo(𝒟, High BP)

GainRatio(𝒟, Education) = IG(𝒟, Education) / SplitInfo(𝒟, Education)

7

Already Computed:
• H(𝒟) = 0.918
• H (𝒟 |  High BP) = 0.459 
• H (𝒟 |  Education) = 0.730
• IG(𝒟 High BP)  =  0.459
• IG(𝒟, Education) = 0.188 



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

= – 6/12 lg 6/12 
– 6/12 lg 6/12 

= 1

8

Need to compute:
GainRatio(𝒟 High BP) = IG(𝒟, High BP) / SplitInfo(𝒟, High BP)

GainRatio(𝒟, Education) = IG(𝒟, Education) / SplitInfo(𝒟, Education)

Already Computed:
• H(𝒟) = 0.918
• H (𝒟 |  High BP) = 0.459 
• H (𝒟 |  Education) = 0.730
• IG(𝒟 High BP)  =  0.459
• IG(𝒟, Education) = 0.188 

0.459

0.188
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Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

9

Already Computed:
• H(𝒟) = 0.918
• H (𝒟 |  High BP) = 0.459 
• H (𝒟 |  Education) = 0.730
• IG(𝒟 High BP)  =  0.459
• IG(𝒟, Education) = 0.188 

Need to compute:
GainRatio(𝒟 High BP) = IG(𝒟, High BP) / SplitInfo(𝒟, High BP)

GainRatio(𝒟, Education) = IG(𝒟, Education) / SplitInfo(𝒟, Education)

= – 1/12 lg 1/12 – 1/12 lg 1/12
– 3/12 lg 3/12 – 3/12 lg 3/12
– 4/12 lg 4/12

=  2.1258 
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Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

10

Already Computed:
• H(𝒟) = 0.918
• H (𝒟 |  High BP) = 0.459 
• H (𝒟 |  Education) = 0.730
• IG(𝒟 High BP)  =  0.459
• IG(𝒟, Education) = 0.188 

Need to compute:
GainRatio(𝒟 High BP) = IG(𝒟, High BP) / SplitInfo(𝒟, High BP) = 0.459 / 1 =   0.459
GainRatio(𝒟, Education) = IG(𝒟, Education) / SplitInfo(𝒟, Education) = 0.188 / 2.12 

= 0.089
Same as before…. But much stronger preference for BP!
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Gain Ratio vs “Standard” Information Gain

Gain ratio is Information Gain scaled discounted by the Intrinsic Information of the split itself

à Biases against many-valued splits, which otherwise may have less impurity simply due to size

Adds a bit of extra computational overhead, so it is not always used – but it can be helpful in 
many real-world use cases!
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Another Alternative: The Gini Index

Issue:  choosing a split point by IG is a bit expensive – logarithm is an expensive float operation

Popular alternative to entropy: Gini index, produces similar results and is less expensive to 
compute
• Measures how often a randomly chosen element from a set would be incorrectly labeled, if it 

was randomly labeled according to the distribution of labels in the subset
• Like entropy, ranges from 0 – 1 with max value at 50%

𝐺𝑖𝑛𝑖 𝑝 =?
456

7

𝑝4(1 − 𝑝4) = 1 −?
456

7

𝑝43

used in one common decision-tree algorithm (CaRT) and in SciKit-Learn
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Feature Scaling in Decision Trees

Decision trees are generally univariate -- split one feature (dimension) at a time

While this limits 
They are scale invariant, i.e., we don’t need to standardize the scale!



DT Training for Diabetes
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We are Ready to Train the DT for Diabetes!

15
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Recall the Basic Algorithm

function train_tree(𝒟)
1. If data 𝒟 all have the same label 𝑦, return new leaf_node(y), else:

2. Pick the feature 𝑋! to partition 𝒟 that maximizes Information Gain
3. Set node = new decision_node(𝑋!)
4. For each value 𝑣 that 𝑋! can take

Recursively create a new child train_tree(𝒟[𝑋! = 𝑣]) of		node

5. Return node

16
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Entropy-Based Greedy DT Construction

17

X1 X2 X14. . .

Given dataset 𝒟 = [𝑋, 𝒚]
• Pick feature Xj to split upon with the highest IG 

(or GainRatio) 
• Partition 𝒟 via Xj

• Recurse until nodes are homogenous (0 entropy)

X14 (LBXGH) ≤ 6.15 has 
the highest IG

Dataset partition 𝒟[LBXGH ≤ 6.15] Dataset partition 𝒟[LBXGH > 6.15]
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Diabetes DT – Random vs IG Features

• It is smaller while retaining 100 % accuracy on our training data
• Still rather complex, though, and vulnerable to overfitting (we’ll see in a 

bit)…

• But first: let’s see a sketch of building Decision Trees in Scikit-Learn

DT with random feature splits DT via IG

Accuracy on diabetes data = 100% Accuracy on diabetes data = 100%

18



An Example
Using Pandas, Numpy, Sklearn
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Classifying Mammals
Organism Temp reg.? Live birth? Four legs? Hibernates? Fuzz/hair? Mammal?

bear Y Y Y Y Y Y

dog Y Y Y N Y Y
dolphin Y Y N N N Y

bat Y Y N Y Y Y

platypus Y N Y N Y Y

newt N N Y Y N N

skink N N Y N N N

rat snake N N N Y N N

lobster N N N N N N

kiwi Y N N N Y N

blue shark N Y N N N N
Inspired by an example by Mohsen Afsharchi
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Some Basics: Data into Pandas
animals_train_list = [

{'organism': 'bear', 'endothermic': True, 'live_birth': True, 'four_legs': True, 'hibernates': True, 'fuzz': True,
'mammal': True},

{'organism': 'dog', 'endothermic': True, 'live_birth': True, 'four_legs': True, 'hibernates': False, 'fuzz': True,
'mammal': True},

{'organism': 'dolphin', 'endothermic': True, 'live_birth': True, 'four_legs': False, 'hibernates': False, 'fuzz': False,
'mammal': True},

{'organism': 'bat', 'endothermic': True, 'live_birth': True, 'four_legs': False, 'hibernates': True, 'fuzz': True,
'mammal': True},

{'organism': 'platypus', 'endothermic': True, 'live_birth': True, 'four_legs': True, 'hibernates': False, 'fuzz': True,
'mammal': True},

{'organism': 'newt', 'endothermic': False, 'live_birth': True, 'four_legs': True, 'hibernates': True, 'fuzz': True,
'mammal': False},

{'organism': 'skink', 'endothermic': False, 'live_birth': True, 'four_legs': True, 'hibernates': False, 'fuzz': True,
'mammal': False},

{'organism': 'rat_snake', 'endothermic': False, 'live_birth': False, 'four_legs': False, 'hibernates': True, 'fuzz': False,
'mammal': False},

{'organism': 'lobster', 'endothermic': False, 'live_birth': False, 'four_legs': False, 'hibernates': False, 'fuzz': False,
'mammal': False},

{'organism': 'kiwi', 'endothermic': True, 'live_birth': False, 'four_legs': False, 'hibernates': False, 'fuzz': True,
'mammal': False},

{'organism': 'blue_shark', 'endothermic': False, 'live_birth': True, 'four_legs': True, 'hibernates': True, 'fuzz': False,
'mammal': False},

]

animals_train_df = pd.DataFrame(animals_train_list)
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Some Basics: 
Identifying Features
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Getting Training Data
into Form

X_train_df = animals_train_df[['endothermic', 'live_birth', 'four_legs', 'hibernates', 'fuzz']]
y_train_df = animals_train_df['mammal']

X_train = X_train_df.to_numpy()
y_train = y_train_df.to_numpy()

clf = tree.DecisionTreeClassifier()

trained = clf.fit(X_train,y_train)

tree.plot_tree(trained)
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The Trained DT Model

Temp reg.? Live birth? Four legs? Hibernates? Fuzz/hair?
0 1 2 3 4

T

T
F

F

nonmammal

nonmammal

mammal

Temp Reg = False?

Live birth = False?

X matrix columns

mammal

T F



Overfitting and 
Decision Trees
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Looks Perfect, Until We Test…

array([ True, True, True, True, False, False, False])

trained.predict(X_test_df.to_numpy())

X_test_df:
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Similarly: with Diabetes Decision Tree

Original Patient Data: 100.00 %      (n = 1082)

New Patient Data: 82.796 %      (n = 465)
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The Overfitting Problem

What is happening?
• Our	algorithm	has	chosen	some	model	representing	hypothesis	h
• But	there	(likely)	exists	another	hypothesis	h’ such	that:

𝑒𝑟𝑟𝑜𝑟 ℎ 𝐷"#$%& < 𝑒𝑟𝑟𝑜𝑟 ℎ' 𝐷"#$%&

𝑒𝑟𝑟𝑜𝑟 ℎ' 𝐷 < 𝑒𝑟𝑟𝑜𝑟(ℎ 𝐷 )
(or else our heuristics are in fact
preventing us from finding h’: our
greedy algorithm doesn’t consider
all possible trees)
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What Causes Overfitting?

• Noisy training data:  noise/errors can cause contradictory labels for data 
with the same features

• Training data is non-representative, or does not include unusual cases 
(e.g., egg-laying mammals, non-endothermic mammals)
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Avoiding Overfitting

How can we avoid overfitting?
1. Acquire more training data (might be very hard)
2. Remove irrelevant attributes  (manual process, not always possible)

3. Keep our model from getting too complex

30Based on Slide by Pedro Domingos
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Recall Occam’s Razor

Key Idea:  The simplest consistent explanation is the best 

https://en.wikipedia.org/wiki/William_of_Ockham 31

https://en.wikipedia.org/wiki/William_of_Ockham
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What this Entails

• Have a less complex decision tree!

• This might actually look worse on training 
data but may generalize better!



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Avoiding Overfitting

How can we avoid overfitting?
1. Acquire more training data
2. Remove irrelevant attributes  (manual process, not always possible)
3. Stop growing, e.g., when data split is not statistically significant
4. Grow full tree, then post-prune

Try various tree hyperparameters (e.g., tree depth, splitting criterion, 
termination criterion) and pick the one with the best estimated 
generalization performance. How to estimate?
• Cross-validation
• Add a complexity penalty to performance measure e.g., training  

accuracy – average depth of leaf node
33Based on Slide by Pedro Domingos
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Stopping Growth

• Set a maximum depth to the decision tree (max_depth in Scikit-Learn)

• Set a minimum number of samples in a node, for us to split (e.g., 2) (min_samples_split in skl)
• Set a minimum number of samples in a leaf (min_samples_leaf)

(Again: we might use k-fold cross-validation to compare)

But alternatively, we can build “the perfect tree” and then prune back, based on validation set
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Reduced-Error Pruning

Split the original training data into training and validation sets

Training Stage
Grow the decision tree based on the training set

Pruning Stage
Loop until further pruning hurts validation performance:

• Measure the validation performance of pruning each node (and its children)
• Greedily remove the node that most improves validation performance

This is very helpful for our Diabetes data
35



© 2019-22 D. Jayaraman, O. Bastani, Z. Ives

Reduced-Error Pruning
• Pruning replaces a whole subtree with a leaf node
• Replacement occurs if the error rate of the subtree is greater than 

that of the leaf

36

original subtree

Predicting the majority 
class (negative) has a 
lower validation error

pruned subtree

SpO2

normal low

SpO2
vs

Validation

SpO2

normal low

Training

Subtree should 
be pruned(error rate = 4/6)

(error rate = 2/6)
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Accuracy – Decision Trees

DT unpruned      DT pruned
Original Patient Data: 100.000 %           88.909 %    (n = 1082)
New Patient Data: 82.796 %           85.591 %       (n = 465)

DT unpruned DT pruned 
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The Final Diabetes DT
Our Pruned Decision Tree How Diabetes is Actually Diagnosed

(screenshot from diabetes.org)

Strong similarity to how diabetes is actually diagnosed!

38
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Decision Tree Algorithms

ID3
• Information gain on nominal 

features

C4.5
• Can use info gain or gain ratio
• Nominal or numeric features
• Missing values
• Post-pruning
• Rule generation

CART (Classification and Regression Tree)
• Similar to C4.5
• Can handle continuous target prediction 

(regression)
• No rule sets
• Sklearn’s DecisionTreeClassifier is 

based on CART, but can’t handle nominal 
features (as of version 0.22.1)

Many Other Algorithms …

39
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Strengths and Weaknesses of DTs
Strengths
👍Widely used in practice 
👍 Fast and simple to implement
👍 Small trees are easily interpretable 
👍 Handles a variety of feature types
👍 Can convert to rules
👍 Handles noisy / missing data 
👍 Insensitive to feature scaling
👍 Handles irrelevant features
👍 Handles large datasets

Weaknesses
👎 Univariate partitions limit potential trees
👎 Heuristic-Based greedy training

40
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Another Idea to Prevent Overfitting

A single decision tree can be prone to overfitting to the training data

What if we use randomization to create multiple decision trees, each a bit different:
• Each is trained on a sample of the training data
• Each splits along a subset of the possible features
• Each is a small decision tree (“stump”)

Then we rely on voting to make this work!
• Intuition:  the most predictive features will be selected in many decision stumps!

(Note we now give up the “explainability” property)
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Random Forests

X (X_train, y_train): training data

X1 X2 X3 X4

c1 c2 c3 c4

subsets (with replacement) of 
(X_train, y_train)

separately
trained decision tree 

classifiers using 
subsets of features

cfinal
classifier combines

votes of ensemble members
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Training a Decision Tree in a Random Forest

1. Draw a random bootstrap data sample of size n, with replacement
2. Build (“grow”) a small decision tree (often just a “stump”)

• At each split point node, randomly select d candidate features (w/o 
replacement)

• Split the node using the feature with best split according to objective 
function  (e.g. information gain)

3. Repeat to produce k decision trees (a forest!)

4. For prediction, use majority vote to predict a class for new data
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Benefits of Random Forests

One of the most popular and accurate classifiers for big data (more in a moment)
• Scale-invariant
• Much	less	susceptible	to	overfitting	than	“plain”	decision	trees
• Can	be	generalized	to	continuous	data	(random	forests	of	CaRT trees)

Also:  training is highly parallelizable!
• Take	a	data	set,	draw	samples	of	size	n with	replacement
• Train	a	separate	decision	tree	on	this,	at	each	split	point	selecting	from	a	subset	of	the	features

(without	replacement	for	this	tree)

Let’s see a case study…
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Case Study: Seizure Prediction on Kaggle

Litt, Wagenaar
et al. 2014
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Multi-Channel Time Series Data
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The Data

Data was broken into small fixed-length segments (labeled by a 
human expert)

Essentially	just	a	2D	matrix:	voltage	levels	per	channel	vs	time

Kaggle divided data into training, leaderboard, and actual test sets
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Features

• Just using the data samples wasn’t really enough!

• A few examples of techniques for extracting features from EEG timeseries:
• Spectral	analysis:		use	Fourier	transforms	to	re-express	the	signal	as	a	composition	of	sine	waves,	

identify	the	frequency	bands	with	the	most	power

• look	at	the	area	under	the	curve	or	the	derivative	of	the	curve

• etc.
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Two Notes Here

• We saw from the competition that Random Forests – which used randomization to reduce 
overfitting (variance) in decision trees – were useful

• But additionally they combined many other kinds of classifiers

Are there some basic principles here?

Ensembles, next…


