
Announcements

• Homework 3 is due tonight (Monday, October 3) at 8pm
• Homework 4 posted, due Wednesday, October 19 at 8pm

• Project group form due tomorrow (Tuesday, October 4) at 8pm)

• Quiz 4 is due Thursday, October 6 at 8pm



Recap: KNN & Decision Trees

• Loss minimization
• What is the model family?
• What is the loss function?

• Not all algorithms fit cleanly into “loss minimization” framework
• Algorithm does not minimize loss, but goal is still to minimize a loss such as 

accuracy of MSE or error rate



Recap: KNN



Recap: KNN

• No learning algorithm!

• Prediction algorithm:
• Input: Feature vector 𝑥
• Step 1: Find 𝑘 neighbors closest to 𝑥 (e.g., in 𝐿! distance)
• Step 2: Combine predictions from these neighbors (e.g., majority, average)
• Output: Combined prediction

• Loss minimization
• What is the model family?
• What is the loss function?



Recap: KNN

• No learning algorithm!

• Prediction algorithm:
• Input: Feature vector 𝑥
• Step 1: Find 𝑘 neighbors closest to 𝑥 (e.g., in 𝐿! distance)
• Step 2: Combine predictions from these neighbors (e.g., majority, average)
• Output: Combined prediction

• Loss minimization
• What is the model family? 𝑓" 𝑥 = KNN 𝑥; 𝛽 , where 𝛽 = 𝑍 is training data
• What is the loss function? Classification accuracy, MSE, etc.



Recap: Decision Trees

# days with fever >= 2?

child age > 3? no
macrolides

no
macrolides

prescribe
macrolides

FT

FT

Decision tree example from: Martignon and Monti. (2010). 
Conditions for risk assessment as a topic for probabilistic 
education. Proceedings of the Eighth International Conference 
on Teaching Statistics (ICOTS8).



Recap: Decision Trees

• Learning algorithm:
• Input: Training dataset 𝑍
• Step 1: Construct decision tree by iteratively splitting 𝑍 using some criterion
• Step 2: Prune tree to avoid overfitting
• Output: Pruned tree

• Prediction algorithm: Label at a leaf node of the tree

• Loss minimization
• What is the model family?
• What is the loss function?



Recap: Decision Trees

• Learning algorithm:
• Input: Training dataset 𝑍
• Step 1: Construct decision tree by iteratively splitting 𝑍 using some criterion
• Step 2: Prune tree to avoid overfitting
• Output: Pruned tree

• Prediction algorithm: Label at a leaf node of the tree

• Loss minimization
• What is the model family? 𝑓" 𝑥 = DecisionTree 𝑥; 𝛽
• What is the loss function? Classification accuracy, MSE, etc.



Recap: Random Forests

• Train many decision trees and average them!
• Increases model capacity, thereby reducing bias

• Very powerful model family in practice



Recap: Random Forests

• Decision trees can be very high-capacity model families!
• If we grow them very large (but we worked very hard to avoid overfitting)
• Naturally capture feature interactions

# days with fever >= 2?

child age > 3? no
macrolides

no
macrolides

prescribe
macrolides

FT

FT

Decision tree example from: Martignon and Monti. (2010). 
Conditions for risk assessment as a topic for probabilistic 
education. Proceedings of the Eighth International Conference 
on Teaching Statistics (ICOTS8).



Recap: Random Forests

…



Recap: Random Forests

• Train many decision trees and average them!
• Increases model capacity, thereby reducing bias

• Very powerful model family in practice

• Today: How to learn ensembles such as random forests



Lecture 9: Learning Ensembles

CIS 4190/5190
Fall 2022



Strategies for Increasing Model Capacity

• Approaches so far:
• Richer model family
• Feature engineering

• Today: Ensembles
• Increase capacity of existing, low capacity models (e.g., decision trees)
• Helps avoid overfitting



Ensemble Learning

• Step 1: Learn a set of “base” models 𝑓!, … , 𝑓"

• Step 2: Construct model 𝐹 𝑥 that combines predictions of 𝑓!, … , 𝑓"



Example: Netflix Movie Recommendations

• Goal: Predict how a user will rate a movie based on:
• The user’s ratings for other movies
• Other users’ ratings for this movie (and others)
• No features!

• Netflix Prize (2007-2009): $1 million for the first team to do 10% 
better than the existing Netflix recommendation system

• Winner: BellKor’s Pragmatic Chaos
• An ensemble of 800+ rating systems



Ensembles of Decision Trees

• Strategy 1: Random forests

• Strategy 2: Gradient boosted decision trees

• Among the most powerful and widely-used models for “tabular” data 
(i.e., not images, text, graphs, or other highly structured data)



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Combining Learned Base Models

• Regression: Average predictions 𝐹 𝑥 = !
"
∑#$!" 𝑓# 𝑥

• Works well if the base models have similar performance

𝑥 𝐹(𝑥)

𝑓!

…

𝑓"

+



Combining Learned Base Models

• Classification: Majority vote 𝐹 𝑥 = 1 ∑#$!" 𝑓# 𝑥 ≥ "
%

(for binary)
• Can also average probabilities for classification

𝑥 𝐹(𝑥)

𝑓!

…

𝑓"

+



Combining Learned Base Models

• Can use weighted average:

𝐹 𝑥 =,
#$!

"

𝛽# ⋅ 𝑓# 𝑥

• Can fit weights using linear regression on second training set

• More generally, can fit a second layer model

𝐹 𝑥 = 𝑔& 𝑓! 𝑥 ,… , 𝑓" 𝑥



Combining Learned Base Models

• Second model as “mixture of experts”:

𝐹 𝑥 =,
#$!

"

𝑔 𝑥 # ⋅ 𝑓# 𝑥

• Second stage model predicts weights over “experts” 𝑓# 𝑥



Combining Learned Base Models

• Second model as “mixture of experts”:
• Special case: 𝑔 𝑥 is one-hot
• Advantage: Only need to run 𝑔 𝑥 and 𝑓# $ 𝑥

𝑥

𝑓!

…

𝑓"

𝑔

𝐹 𝑥 = 𝑓# 𝑥

𝑖 = 𝑔 𝑥



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Learning Base Models

• Successful ensembles require diversity
• Different model families
• Different training data
• Different features
• Different hyperparameters

• Intuition: Models should make independent mistakes



Learning Base Models

• Intuition: Models should make independent mistakes
𝑥% 𝑥! 𝑥& 𝑥'

acc =
3
4

acc =
3
4

acc =
3
4

acc = 1 − 1 −
3
4

!

− 3 ⋅
3
4 ⋅ 1 −

3
4

"

≈ 0.84𝐹



Learning Base Models

• Intuition: Models should make independent mistakes
𝑥% 𝑥! 𝑥& 𝑥'

acc =
3
4

acc =
3
4

acc =
3
4

𝐹 acc → 1 as 𝑘 → ∞



Learning Base Models

• Ensemble can be built from different learning algorithms
• Example: Decision tree, logistic regression, kNN, …

• What if we want an ensemble of decision trees?
• Issue: Decision tree learning algorithm is deterministic
• Solution: Randomize the learning algorithm (may sacrifice performance)!

• Randomize decisions inside learning algorithm
• Example: Randomize splits weighted (somehow) by information gain
• Issue: Very specific to the algorithm
• Solution: Randomize input to learning algorithm (i.e., training data)!



Randomizing Learning Algorithms

• Bagging: Randomize training data (“Boostrap Aggregating”)
• Random examples: Subsample examples 𝑥, 𝑦 (obtain 𝑋 ∈ ℝ8!×:) 

Random features: Subsample features 𝑥; (obtain 𝑋 ∈ ℝ8×:!)

• Meta-strategy that can build ensembles from arbitrary base learners

• Can be thought of as a form of regularization



Aside: Bootstrap

• Subsample examples 𝑥, 𝑦 with replacement (obtain 𝑋 ∈ ℝ'×))

• Excludes 1 − !
'

'
of the training examples

• Separately in each of the replicates
• As 𝑛 → ∞, excludes → %

<
≈ 36.8% examples

• Has good statistical properties



Randomizing Learning Algorithms

...
Original

Training Data
Bootstrap Replicates
of the Training Data



Ensemble Learning

• Step 1: Create bootstrap replicates of the original training dataset

• Step 2: Train a classifier for each replicate

• Step 3 (Optional): Use held-out validation set to weight models
• Can just use average predictions



Ensemble Learning

Original
Training Data ...

𝛽% 𝛽! 𝛽=

...



Random Forests

• Ensemble of decision trees using bagging
• Typically use simple average (over probabilities for classification)

• Often among the best performing models

• Intuition:
• Large decision trees are good nonlinear models, but high variance
• Random forests average over many decision trees to reduce variance without 

increasing bias



Random Forests

• Tweak 1: Randomize features in learning algorithm instead of bagging
• At DT node splitting step, subsample ≈ 𝑑 features
• Allows each tree to use all features, but not at every node
• Aside: If a few features are highly predictive, then they will be selected in 

many trees, causing the base models to be highly correlated

• Tweak 2: Train unpruned decision trees
• Ensures base models have higher capacity
• Intuition: Skipping pruning increases variance (randomness increases bias)



Bias Variance Tradeoff for Random Forests

• Naïvely, skipping pruning yields high variance

• Introduce randomness to increase bias
• Without randomness, all models in the random forest would be the same 

(large) decision tree, so the random forest would still have very large variance

• Carefully select randomness to tune bias variance tradeoff



AdaBoost (Freund & Schapire 1997)

• Like bagging, meta-algorithm that turns base models into ensemble
• Provably learns for base models achieving any error rate > 0.5

• Uses different training example weights (instead of different 
subsamples or different features) to introduce diversity
• In particular, upweights currently incorrectly predicted examples

• Base models should satisfy the following:
• High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)
• Able to incorporate sample weights during learning
• Specific to classification (discuss general losses later)



Aside: Learning with Weighted Examples

• Many algorithms can directly incorporate weights into the loss

• For maximum likelihood estimation:

ℓ 𝛽; 𝑍, 𝑤 =,
#$!

'

𝑤# ⋅ log 𝑝& 𝑦# 𝑥#

• Alternatively, can subsample the data proportional to weights 𝑤#



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

size represents weight 𝑤>



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+ –

focus on linear classifiers 𝑓?

𝑡 = 1



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+ –

𝑡 = 1
𝛽? becomes larger as 
𝜖? becomes smaller



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+ –

𝑡 = 1
Use convention 𝑦> ∈ −1,+1
If correct (𝑦> = 𝑓? 𝑥> ) then multiply by 𝑒@""
If incorrect (𝑦> ≠ 𝑓? 𝑥> ) then multiply by 𝑒""



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

𝑡 = 1



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –
+–

𝑡 = 2



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –
+–

𝑡 = 2



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –
+   –

𝑡 = 2



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

+ –

+   –

𝑡 = 3



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

+ –

+   –

𝑡 = 3



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  –

+  –

+   –

𝑡 = 3



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  

+ 

+ 
+  

+ 

+  

+  + 
+ 

+ + 

𝑡 = 𝑇Under certain assumptions, training error 
goes to zero in 𝑂 log 𝑛 iterations



AdaBoost

1. 𝑤! ←
!
'
, … , !

'
(𝑤!,# weight for 𝑥# , 𝑦# )

2. for 𝑡 ∈ 1,… , 𝑇
3. 𝑓+ ← Train 𝑍, 𝑤+
4. 𝜖+ ← Error 𝑓+ , 𝑍, 𝑤+
5. 𝛽+ ←

!
%
ln !,-!

-!
6. 𝑤+.!,# ∝ 𝑤+,# ⋅ 𝑒,&!⋅0"⋅1! 2" (for all 𝑖)
7. return 𝐹 𝑥 = sign(∑+$!3 𝛽+ ⋅ 𝑓+(𝑥))

+  

+ 

+ 
+  

+ 

+  

+  + 
+ 

+ + 

final model is average of base models 
weighted by their performance



AdaBoost Weighting Strategy

• On each iteration:
• Misclassified examples are upweighted
• Correctly classified are downweighted

• If an example is repeatedly misclassified, it will eventually be 
upweighted so much that it is correctly classified

• Emphasizes “hardest” parts of the input space
• Instances with highest weight are often outliers



AdaBoost and Overfitting

• Basic ML theory predicts AdaBoost always overfits as 𝑇 → ∞
• Hypothesis keeps growing more complex!
• In practice, AdaBoost often does not overfit

𝑇 = 5
𝑇 = 100
𝑇 = 1000

Train

Test
AdaBoost on OCR data with 

C4.5 as the base learner



AdaBoost Summary

• Strengths:
• Fast and simple to implement
• No hyperparameters (except for 𝑇)
• Very few assumptions on base models

• Weaknesses:
• Can be susceptible to noise/outliers when there is insufficient data
• No way to parallelize
• Small gains over complex base models
• Specific to classification!



Boosting as Gradient Descent

• Both algorithms: newmodel = old model + update

• Gradient Descent:

𝜃+.! = 𝜃+ − 𝛼 ⋅ ∇4𝐿 𝜃+; 𝑍

• Boosting:

𝐹+.! 𝑥 = 𝐹+ 𝑥 + 𝛽+.! ⋅ 𝑓+.! 𝑥

• Here, 𝐹+ 𝑥 = ∑#$!' 𝛽+ ⋅ 𝑓+ 𝑥



Boosting as Gradient Descent

• Suppose that:
• 𝛽? = 1 for all 𝑡
• 𝐹?C% 𝑥> = 𝑦> is a perfect predictor on the training data

• Then, boosting has the form

𝑓+.! 𝑥# = 𝑦# − 𝐹+ 𝑥#

• Idea: Train 𝑓+.! to predict residuals 𝑦# − 𝐹+ 𝑥#

“residuals”, i.e., error of the current model



Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1,… , 𝑇 :
• Step 1: Train 𝑓?C% using dataset

𝑍+.! = 𝑥# , 𝑦# − 𝐹+ 𝑥# #$!
'

• Step 2: Take

𝐹+.! 𝑥 = 𝐹+ 𝑥 + 𝑓+.! 𝑥

• Return the final model 𝐹3



Boosting as Gradient Descent

• Residuals are the gradient of the squared error 𝐿 𝑦, Z𝑦 = !
%
𝑦 − Z𝑦 %:

residual5 = 𝑦# − 𝐹+ 𝑥 = −
𝜕𝐿
𝜕 Z𝑦 6! 2

• For general losses, we can train 𝑓+.! using

𝑍+.! = 𝑥# , −
𝜕𝐿
𝜕 Z𝑦 6! 2 #$!

'



Gradient Boosting in Practice

• Gradient boosting with depth-limited decision trees (e.g., depth 3) is 
one of the most powerful off-the-shelf classifiers available
• Caveat: Inherits decision tree hyperparameters

• XGBoost is a very efficient implementation suitable for production use
• A popular library for gradient boosted decision trees
• Optimized for computational efficiency of training and testing
• Used in many competition winning entries, across many domains
• https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

