Announcements

* Homework 3 due in one week

e Quiz 3 due tomorrow

Project

* Everyone should be on a project team now!
* Email me ASAP if not!

* Project Milestone 1 due in 2 weeks (10/18) at 8pm
* 1 page plan (details shortly)
* Should be easy, but please don’t procrastinate!

Project

* Project Instructions
* https://docs.google.com/document/d/1q iR-EH28eqwq20Ci9uSpBnWRKP8XFrN/

* Project Milestone 1
* https://docs.google.com/document/d/1R8SL6gcl0GIgmeB p8fv jVX7b62mlZ5/

https://docs.google.com/document/d/1q_iR-EH28eqwq2oCi9uSpBnWRKP8XFrN/
https://docs.google.com/document/d/1R8SL6gcI0GlqmeB_p8fv_jVX7b62mIZ5/

Goal

* Build experience experimenting with machine learning algorithms on
real-world datasets
* Lots of insights that you don’t get from lectures, or even homework!
* Build intuition for relative importance of different design decisions
* Learn to start simple and increment from there

Datasets

 Computer vision
* CIFAR-10 dataset
» 10-class classification dataset (cat, dog, deer, car, truck, etc.)
e https://www.cs.toronto.edu/~kriz/cifar.html

* Natural language processing (NLP)
* IMDB reviews dataset
» Sentiment prediction dataset (binary classification)

* https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-
movie-reviews

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

Datasets

e Strongly encourage subsetting data while prototyping algorithms
* Typically, a thousand examples is plenty to train on for prototyping

* You should scale up the dataset when performing final
training/evaluation runs

* However, if you have limited compute, you are free to subset the dataset
even for final training/evaluation runs to a reasonable extent

* E.g., you should probably have at least a few thousand training examples)

Compute

* You are strongly encouraged to use (relatively) small architectures
* Thus, you should be able to use Google Colab for all evaluations

* You may also consider signing up for Amazon SageMaker Studio Lab
* https://studiolab.sagemaker.aws

https://studiolab.sagemaker.aws/

Implementation

* For each dataset, you must implement:
* One traditional pipeline (e.g., logistic/softmax regression, etc.)
* One deep learning pipeline (e.g., CNNs, RNNs, transformers, etc.)

* Four pipelines total

Traditional Pipeline

* For NLP:
* You should use feature engineering in the traditional pipeline
* You are allowed (but not required) to use pretrained word embeddings
* You may want to try using PCA or LASSO regularization for feature selection
* You should experiment with different sets of features

* For computer vision:
* You should try softmax regression
* You should make sure to standardize your features as described in class

Deep Learning Pipeline

* For at least one of the two datasets, you should build your own
architecture from scratching in PyTorch
* MLPs do not count!

* If using a preexisting architecture, you should compare training from
scratch vs. finetuning a pretrained model

* For architectures that you build yourself, you should compare varying
hyperparameters including the dimension of intermediate layers and

the number of intermediate layers

Keep It Simple!

* For the architecture(s) you implement yourself, keep it simple!

* Even very simple architectures such as a single convolutional or LSTM
layer can already be very effective

Evaluation

* You are expected to perform two evaluations:

» Standard evaluation: Evaluate performance on test set, including different
hyperparameter choices

* Robustness evaluation: Evaluate performance on dataset shifts

Test Set Performance

* Report the test set performance of your approach

* Hyperparameter variations
* Traditional pipeline: At least one hyperparameter of your learning algorithm
* Deep learning pipeline: Hyperparameters described on a previous slide

Dataset Shifts

* For each dataset, you should try some kind of shift to the inputs,
ideally finding one that breaks your model
* Computer vision: Change contrast or brightness of images, rotate images, etc.

* NLP: Train on short reviews and test on long reviews, swap out words with
their synonyms, etc.

Grading

* Most of your grade is on completing all the tasks described above

* A part is on comprehensive exploration of design choices
* Milestone 2: 2/10 points
* Milestone 3: 3/15 points
* Tentative breakdown

* Examples:
* Trying interesting features or feature selection techniques
* Comparing interesting variations of neural network architectures
* Devise interesting choices of dataset shift

Project Milestone 1 (1 Page)

* Part 1: Implementation
* Provide plans for feature engineering
* Brainstorm neural network architectures (optional)

* Part 2: Evaluation
* Describe hyperparameters you intend to vary
* Brainstorm dataset shifts

* Describe how you are going to split work among your group
* Everyone should contribute to each part!

Lecture 10: Learning Ensembles

CIS 4190/5190
Fall 2023

Recap: Ensemble Design Decisions

* How to learn the base models?
* Bagging (randomize dataset)
* Boosting (weighted dataset)

e How to combine the learned base models?
* Averaging (regression) or majority vote (classification)

Recap: Bagging
» Step 1: Create bootstrap replicates of the original training dataset

» Step 2: Train a classifier for each replicate

 Step 3 (Optional): Use held-out validation set to weight models
* Can just use average predictions

Recap: Bagging

Recap: Random Forests

* Ensemble of decision trees using bagging
* Typically use simple average (over probabilities for classification)

* Intuition:
* Large decision trees are good nonlinear models, but high variance

 Random forests average over many decision trees to reduce variance without
increasing bias

Recap: Random Forests

* Tweak 1: Randomize features in learning algorithm instead of bagging

* At DT node splitting step, subsample = Vd features
* Allows each tree to use all features, but not at every node

* Aside: If a few features are highly predictive, then they will be selected in
many trees, causing the base models to be highly correlated

* Tweak 2: Train unpruned decision trees
* Ensures base models have higher capacity
* Intuition: Skipping pruning increases variance

Recap: AdaBoost

* Input
* Training dataset /
* Learning algorithm Train(Z, w) that can handle weights w
* Hyperparameter T indicating number of models to train

* Output
* Ensemble of models F(x) = X.I_; B¢ - f+(x)

AdaBoost

size represents weight w;

1 .
Wy « (l, ...,g) (w4 ; weight for (x;, v;))

n

fort €{1,..., T}
f; « Train(Z, w;)
€ < Error(ft: Z; Wt)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(X=1 B¢ - f(x))

No v AwNPE

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

NOoO U AWM E

AdaBoost

1

1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

n
fort {1 T3}
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(X¢=q B¢ - (%))

focus on linear classifiers f;

AdaBoost

1
W1 < (_) (wq ; weight for (x;,y;))

fort € {1,..,T}
fr < Traln(Z, w;)
e; < Error(f;, Z,w;)

oo pwn e

B; becomes largeras| .~
€; becomes smaller | |

AdaBoost

Wep1i X Wy - e —Beyifexi) (for all i)

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,.., T}
3. f; « Traln(Z, W;)
4. € Error(ft,Z, W;)
5. [, « —ln -t
€t
6.
/.

return () = s1gn}&t_1ﬁt 70

Use convention y; € {—1,+1}
If correct (y; = f,(x;)) then multiply by e =P t=1
If incorrect (v; # f;(x;)) then multiply by et

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

NOoO U AWM E

AdaBoost

1 1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

n
fort {1 T}
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

AdaBoost

wi (=, ., =) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-
Bt _ln Et
€T

Wep1i X Wy - e —Beyifexd) (for all i)

NS |V AN E

return () = SIgn(%{=q ;" /: (X))

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=q B¢ « f (%))

NOoO U AWM E

AdaBoost

1 1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

n
fort {1 T3}
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(X¢=q B¢ - (%))

AdaBoost

wi (=, ., =) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-
Bt _ln Et
€T

Wep1i X Wy - e —Beyifexd) (for all i)

NS |V AN E

return () = SIgn(%{=q ;" /: (X))

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

NOoO U AWM E

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

NOoO U AWM E

AdaBoost

Wi & (l) (Wll weight for (xu yl))

fort € {1,...,T}
fi < Traln(Z , We)
€ < Error(ft: Z; Wt)

1 1— €t
Be < ln .

6 W . o l_/I_IL e :Bt Vi fr(x;) {fnr al)
7. return F(x) = 51gn(2 _1 B ft(x))

Al e

AdaBoost Summary

* Strengths:
e Fast and simple to implement
* No hyperparameters (except for T)
* Very few assumptions on base models

* Weaknesses:
» Can be susceptible to noise/outliers when there is insufficient data
* No way to parallelize
* Small gains over complex base models
 Specific to classification!

Boosting as Gradient Descent

* Both algorithms: new model = old model 4+ update

 Gradient Descent:

Or41 =0 —a-VoL(6;; Z)

* Boosting:

Frp1(x) = Fo(x) + Braq - fraa(x)

* Here, Fi(x) = f=1 Bi - fi(x)

Boosting as Gradient Descent

* Assuming 5y = 1 for all t, then:

Fe(x;) + fee1(x;) = Frpq (%)

Boosting as Gradient Descent

* Assuming 5y = 1 for all t, then:
Fr(xi) + fear(x) = Frya (%) =y
* Rewriting this equation, we have

fee1(x;) = Frya1(xy) — Fe(x;) = y; — Fe(x;)
W_/

“residuals”, i.e., error of the current model

Boosting as Gradient Descent

* In other words, at each step, boosting is training the next model f;, ;
to approximate the residual:

fer1(x;) = vy — Fe(x;)
—

“residuals”, i.e., error of the current model

* Idea: Train f;,; directly to predict residuals y; — F; (x;)

* This strategy works for regression as well!

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;, using dataset

Zorr = (20 i — Ft(xi))}:;l
* Step 2: Take

Fii1(x) = Fr(x) + fre1(x)

* Return the final model F;-

Boosting as Gradient Descent

e Consider losses of the form
1 n
L(F;2) = —) L(F(x);)
i=1

* In other words, sum of individual label-level losses L(7; y) of a
prediction ¥ = F(x) if the ground truth label is y

* For example, L(7;y) = %(y“ — v)? yields the MSE loss

Boosting as Gradient Descent

* Residuals are the gradient of the squared error L(y,§) = %(y — 9)%:

~

oL
T A~ (Ft(xl); yl) = Vi — Ft(xi) — reSiduali
oy

* For general L, instead of {(xi,yl- — Ft(xl-))}?=1 we can train f;,, on

(oL "
Liy1 =3\ Xi,— (9—37 (Fi(x;); i)
i=1

\

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;,4 using dataset

Liiq = {(xi,yi — Ft(xi))}?=1

* Step 2: Take
Ft+1(x) — Ft(x) T ft+1(x)

* Return the final model F;-

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;, using dataset

(oL "
Liy1 =3\ Xi,— (3_37 (Fi(x;); i)
i=1

\

* Step 2: Take
Ft+1(x) — Ft(x) T ft+1(x)

* Return the final model F;-

Boosting as Gradient Descent

e Casts ensemble learning in the loss minimization framework
* Model family: Sum of base models Fr(x) = XI_, fi (x)
* Loss: Any differentiable loss expressed as

L(F; 2) =) L(FG,)

* Gradient boosting is a general paradigm for training ensembles with
specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

* Gradient boosting with depth-limited decision trees (e.g., depth 3) is
one of the most powerful off-the-shelf classifiers available

* Caveat: Inherits decision tree hyperparameters

* XGBoost is a very efficient implementation suitable for production use
* A popular library for gradient boosted decision trees
* Optimized for computational efficiency of training and testing
* Used in many competition winning entries, across many domains
 https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

