Upcoming Deadlines

* Project Team Formation due tonight
* Quiz 1 due tomorrow

e HW 2 due in one week
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Recap: Maximum Likelihood View of ML

* Two design decisions
* Likelihood: Probability ps(y | x ) of data (x, y) given parameters [
* Optimizer: How do we optimize the NLL? (E.g., gradient descent)

e Corresponding Loss Minimization View:
* Model family: Most likely label /3 (x) = arg max, pg(y | x)
* Loss function: Negative log likelihood (NLL) £(f5; Z) = — i1 logps(y; | x;)

* Very powerful framework for designing cutting edge ML algorithms
* Write down the “right” likelihood, form tractable approximation if needed
* Especially useful for thinking about non-i.i.d. data



Recap: Logistic Regression

* Consider the following choice:

pp(Y=1]x)=0("x;)
pp(Y=0|x)=1-0(f"x)



Recap: Logistic Regression




Recap: Logistic Regression

* Model family: Linear classifiers f;(x) = 1(8'x = 0)

Loss function: Negative log likelihood
n
£(B;7) = — z vi -log(a(BTx)) + (1 —y;) -log(1 — a(Bx))
i=1

* Optimizer: Gradient descent



Feature Maps

* Can use feature maps, just like linear regression
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Regularized Logistic Regression

* We can add L, or L, regularization to the NLL loss, e.g.:
£(B;7) = —2%’ log(a(BTx)) + (1 — ) -log(1 —a(BTx) + 4 lIBII5
i=1

* Is there a more “natural” way to derive the regularized loss?



Regularization as a Prior

* So far, we have not assumed any distribution over the parameters [§
* What if we assume 5 ~ N(0,c°]) (the d dimensional normal distribution)?

e Consider the modified likelihood

L(B;Z) = pypix(V, B 1 X)

— pYIX,,B(Y | XMB) ) N(ﬁ’ 010-21)

= (H?=1pﬁ(yi | Xl)) gy 202




Regularization as a Prior

* So far, we have not assumed any distribution over the parameters [§
* What if we assume 5 ~ N(0,c°]) (the d dimensional normal distribution)?

e Consider the modified NLL

Ilﬁll
~— \r'/

constant regularization!

f(lB;Z)__ n logpﬁ(yllxl

* Obtain L,regularization on [

e WithA =— !

207
* If B; ~ Laplace(0, c2) for each i, obtain L,regularization



Additional Role of Regularization

* In pg, if we replace [ with ¢ - 5, where ¢ > 1 (and ¢ € R), then:

* The decision boundary does not change
* The probabilities pz (v | x ) become more confident

pp(y | x) H P1op(V | X)‘/

o ‘71-‘ - . . 2 4 1 9 1 . 9 y
pp(Y=11x)=0.6 propg(Y =11x) =1




Additional Role of Regularization

* Regularization ensures that [f does not become too large
* Prevents overconfidence

* Regularization can also be necessary

* Without regularization (i.e., A = 0) and data is linearly separable, then
gradient descent diverges (i.e., f = £ )



Multi-Class Classification

 What about more than two classes?
* Disease diagnosis: healthy, cold, flu, pneumonia
* Object classification: desk, chair, monitor, bookcase
* In general, consider a finite space of labels Y
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Multi-Class Classification

* Naive Strategy: One-vs-rest classification
e Step 1: Train |Y| logistic regression models, where model pﬁy(Y =1|x)is
interpreted as the probability that the label for x is y
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Multi-Class Logistic Regression

* Strategy: Include separate 3, for each label y € Y = {1, ..., k}
*Let pp(y | x) « ePr” ie.

By x
pﬁ(y | x) = 5T
Zy’eye g
. _ e?1 eZk
* We define softmax(zy, ..., z;) = [ZIi;l 7o 3E eZi]

* Then, ps(y 1 x) = softmax(ﬁfx, ...,,BRTx)y

* Thus, sometimes called softmax regression



Multi-Class Logistic Regression

* Model family
Byx
* f(x) = argmaxps(y | ¥) = arg max——— = arg max ;] x
y y Zy,ey e:By/X y

* Optimization
 Gradient descent on NLL
e Simultaneously update all t
y up parameters {'By}yey



Classification Metrics

* While we minimize the NLL, we often evaluate using accuracy

* However, even accuracy isn’t necessarily the “right” metric
* 1f 99% of labels are negative (i.e., y; = 0), accuracy of f5(x) = 0is 99%!
* For instance, very few patients test positive for most diseases
* “Imbalanced data”

* What are alternative metrics for these settings?



Classification Metrics

* Classify test examples as follows:
* True positive (TP): Actually positive, predictive positive
* False negative (FN): Actually positive, predicted negative
* True negative (TN): Actually negative, predicted negative
* False positive (FP): Actually negative, predicted positive

* Many metrics expressed in terms of these; for example:

TP+ TN FP + FN

dCCUuracy = error = 1 — dCCUuracy =
n n




Confusion Matrix
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Classification Metrics

* For imbalanced metrics, we roughly want to disentangle:
* Accuracy on “positive examples”
* Accuracy on “negative examples”

* Different definitions are possible (and lead to different meanings)!



Sensitivity & Specificity

* Sensitivity: What fraction of actual positives are predicted positive?
* Good sensitivity: If you have the disease, the test correctly detects it
* Also called true positive rate

* Specificity: What fraction of actual negatives are predicted negative?
* Good specificity: If you do not have the disease, the test says so
* Also called true negative rate

* Commonly used in medicine



Sensitivity & Specificity
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Sensitivity & Specificity
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Sensitivity & Specificity
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Precision & Recall

* Recall: What fraction of actual positives are predicted positive?
* Good recall: If you have the disease, the test correctly detects it
* Also called the true positive rate (and sensitivity)

* Precision: What fraction of predicted positives are actual positives?
* Good precision: If the test says you have the disease, then you have it
* Also called positive predictive value

e Used in information retrieval, NLP



Precision & Recall
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Precision & Recall
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Precision & Recall
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Classification Metrics

* How to obtain a single metric?

2-precision-recall .

* Combination, e.g., F; score = — is the harmonic mean
precision+recall

 More on this later

* How to choose the “right” metric?
* No generally correct answer
* Depends on the goals for the specific problem/domain



Optimizing a Classification Metric

* We are training a model to minimize NLL, but we have a different
“true” metric that we actually want to optimize

* Two strategies (can be used together):
* Strategy 1: Optimize prediction threshold threshold
 Strategy 2: Upweight positive (or negative) examples



Optimizing Prediction Threshold

* Consider hyperparameter 7 for the threshold:

fp(x) =1(F"'x = 0)



Optimizing Prediction Threshold

* Consider hyperparameter 7 for the threshold:

fp(x)=1("x = 1)



Optimizing Prediction Threshold
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Visualization: ROC Curve

Each point on this
curve corresponds
to a choice of T
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Optimizing Prediction Threshold

* Consider hyperparameter 7 for the threshold:
fp(x)=1("x = 1)

* Unlike most hyperparameters, we choose this one after we have
already fit the model on the training data
* Then, choose the value of T that optimizes the desired metric
 Fit using validation data (training data is OK if needed)



Optimizing Prediction Threshold

« Step 1: Compute the optimal parameters 3 (Z;;.:1,)
* Using gradient descent on NLL loss over the training dataset

* Resulting model: ff?(Ztrain)(x) = 1(ﬁ(Ztrain)Tx > O)

* Step 2: Modify threshold 7 in model to optimize desired metric
e Search over a fixed set of 7 on the validation dataset

* Resultingmodel: 5., ., y(x)=1 (ﬁ(Ztrain)Tx > f(Zval))

* Step 3: Evaluate desired metric on test set



Choice of Metric Revisited

 Common strategy: Optimize one metric at fixed value of another

Choose 7 corresponding 0sl J_j/
to model at this point :

—— NetChop C-term 3.0
— TAP + ProteaSMM-i
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Optimizing a Classification Metric

* We are training a model to minimize NLL, but we have a different
“true” metric that we actually want to optimize

* Two strategies (can be used together):
* Strategy 1: Optimize prediction threshold threshold
 Strategy 2: Upweight positive (or negative) examples



Class Re-Weighting

* Weighted NLL: Include a class-dependent weight w,:
n

25 7) == ) wy, -logps(yi 1 %)
i=1

* Intuition: Tradeoff between accuracy on negative/positive examples
* To improve sensitivity (true positive rate), upweight positive examples
* To improve specificity (true negative rate), upweight negative examples

* Can use this strategy to learn 3, and the first strategy to choose ©



Classification Metrics

* NLL isn’t usually the “true” metric
* |Instead, frequently used due to good computational properties

* Many choices with different meanings

* Typical strategy:
* Learn 5 by minimizing the NLL loss
* Choose class weights w,, and threshold 7 to optimize desired metric



