CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519

Dan Roth

danroth@seas.upenn.edu

http://www.cis.upenn.edu/~danroth/

461C, 3401 Walnut

Slides were created by Dan Roth (for CIS519/419 at Penn or CS446 at UIUC), Eric Eaton for CIS519/419 at Penn, or from other authors who have made their ML slides available. CIS419/519 Spring '18

Exams

- 1. Overall:
- Mean: 62 (18.6 13.2 18.7 10.5)
- Std Dev: 13.8 (2.5 6.7 4.4 5.8)
- Max: 94, Min: 27.5
- 2. CIS 519 (91 students):
- Mean: 61.48 (18.4 12.8 18.5 10.75)
- Std Dev: 14.7 (2.6 7.1 4.5 5.9)
- Max: 94 Min: 27.5
- 3. CIS 419 (47 students):
- Mean: 63.6 (19 14 19 10)
- Std Dev: 12 (2.2 5.9 4.1 5.8)
- Max: 93, Min: 41

- Solutions are available.
- Midterms will be made available at the recitations, Tuesday and Wednesday.
- This will also be a good opportunity to ask the Tas questions about the grading.

Questions?

Projects

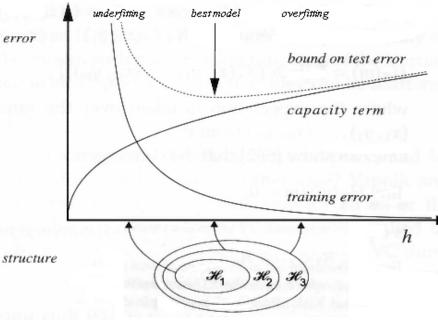
- Please start working!
- Come to my office hours at least once in the next 3 weeks to discuss the project.

COLT approach to explaining Learning

- No Distributional Assumption
- Training Distribution is the same as the Test Distribution
- Generalization bounds depend on this view and affects model selection.
 Err_D(h) < Err_{TR}(h) +

P(VC(H), log(1/Y),1/m)

 This is also called the "Structural Risk Minimization" principle.



COLT approach to explaining Learning

- No Distributional Assumption
- Training Distribution is the same as the Test Distribution
- Generalization bounds depend on this view and affect model selection.

 $\operatorname{Err}_{D}(h) < \operatorname{Err}_{TR}(h) + P(VC(H), \log(1/\Upsilon), 1/m)$

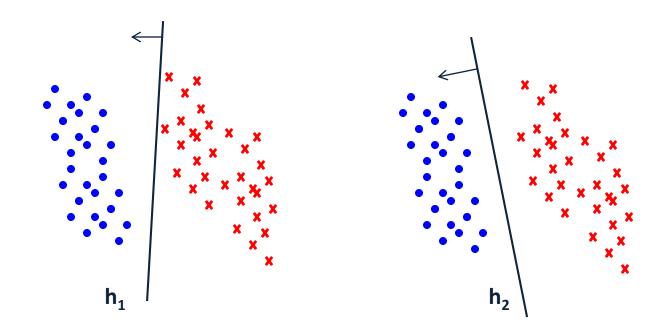
- As presented, the VC dimension is a combinatorial parameter that is associated with a class of functions.
- We know that the class of linear functions has a lower VC dimension than the class of quadratic functions.
- But, this notion can be refined to depend on a given data set, and this way directly affect the hypothesis chosen for a given data set.

Data Dependent VC dimension

- So far we discussed VC dimension in the context of a fixed class of functions.
- We can also parameterize the class of functions in interesting ways.
- Consider the class of linear functions, parameterized by their margin.
 Note that this is a data dependent notion.

Linear Classification

- Let X = R², Y = {+1, -1}
- Which of these classifiers would be likely to generalize better?



VC and Linear Classification

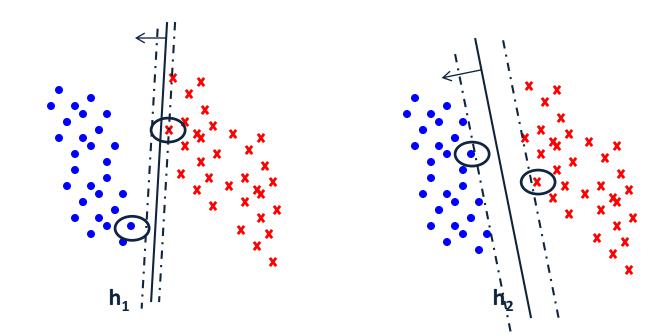
Recall the VC based generalization bound:

 $\operatorname{Err}(h) \cdot \operatorname{err}_{TR}(h) + \operatorname{Poly}\{VC(H), 1/m, \log(1/\Upsilon)\}$

- Here we get the same bound for both classifiers:
- $Err_{TR}(h_1) = Err_{TR}(h_2) = 0$
- $h_1, h_2 2 H_{lin(2)}, VC(H_{lin(2)}) = 3$
- How, then, can we explain our intuition that h₂ should give better generalization than h₁?

Linear Classification

 Although both classifiers separate the data, the distance with which the separation is achieved is different:



Concept of Margin

The margin Υ_i of a point x_i ∈ Rⁿ with respect to a linear classifier h(x) = sign(w^T · x +b) is defined as the distance of x_i from the hyperplane w^T · x +b = 0:

 $\Upsilon_i = |(w^T \cdot x_i + b)/||w|||$

The margin of a set of points {x₁,...x_m} with respect to a hyperplane w, is defined as the margin of the point closest to the hyperplane:

$$\Upsilon = \min_{i} \Upsilon_{i} = \min_{i} |(\mathbf{w}^{\mathsf{T}} \cdot \mathbf{x}_{i} + \mathbf{b})/||\mathbf{w}|| |$$

VC and Linear Classification

• Theorem:

If H_{γ} is the space of all linear classifiers in \mathbb{R}^n that separate the training data with margin at least Υ , then:

 $VC(H_{\gamma}) \leq min(R^2/\Upsilon^2, n) + 1,$

- Where R is the radius of the smallest sphere (in Rⁿ) that contains the data.
- Thus, for such classifiers, we have a bound of the form:

Err(h) · err_{TR}(h) + { $(O(R^2/\Upsilon^2) + \log(4/\delta))/m$ }^{1/2}

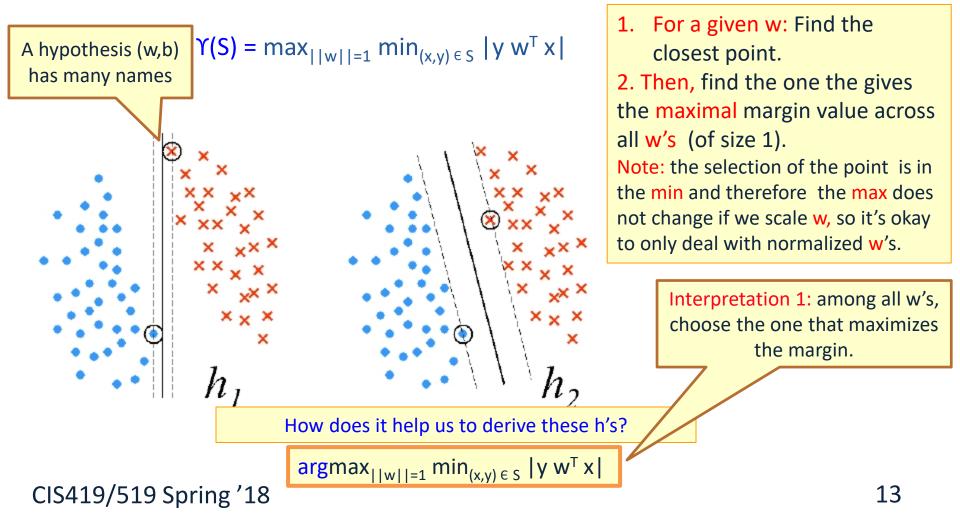
Towards Max Margin Classifiers

- First observation:
- When we consider the class H_γ of linear hypotheses that separate a given data set with a margin Y,
- We see that
 - Large Margin $\Upsilon \rightarrow$ Small VC dimension of H_{Υ}
- Consequently, our goal could be to find a separating hyperplane w that maximizes the margin of the set S of examples.
- A second observation that drives an algorithmic approach is that:
 Small ||w||→ Large Margin
- Together, this leads to an algorithm: from among all those w's that agree with the data, find the one with the minimal size ||w||
 - But, if w separates the data, so does w/7....
 - We need to better understand the relations between w and the margin

The distance between a point x and the hyperplane defined by (w; b) is: $|w^T x + b|/||w||$

Maximal Margin

- This discussion motivates the notion of a maximal margin.
- The maximal margin of a data set S is define as:



Recap: Margin and VC dimension

<u>Theorem (Vapnik)</u>: If H_γ is the space of all linear classifiers
 Believe in Rⁿ that separate the training data with margin at least Υ, then

$VC(H_{\gamma}) \leq R^2/\Upsilon^2$

- where R is the radius of the smallest sphere (in Rⁿ) that contains the data.
- This is the first observation that will lead to an algorithmic approach.

We'll Prove

The second observation is that:

Small $||w|| \rightarrow$ Large Margin

Consequently: the algorithm will be: from among all those w's that agree with the data, find the one with the minimal size ||w||

From Margin to ||W||

- We want to choose the hyperplane that achieves the largest margin.
 That is, given a data set S, find:
 - $w^* = \operatorname{argmax}_{||w||=1} \min_{(x,y) \in S} |y w^T x|$
- How to find this w*?

Interpretation 2: among all w's that separate the data with margin 1, choose the one with minimal size.

 Claim: Define w₀ to be the solution of the optimization problem: w₀ = argmin {||w||² : ∀ (x,y) ∈ S, y w^T x ≥ 1 }.
 Then:

 $w_0 / ||w_0|| = \operatorname{argmax}_{||w||=1} \min_{(x,y) \in S} y w^T x$

That is, the normalization of w_0 corresponds to the largest margin separating hyperplane.

From Margin to ||W||(2)

 Claim: Define w₀ to be the solution of the optimization problem: w₀ = argmin {||w||² : ∀ (x,y) ∈ S, y w^T x ≥ 1 } (**) Then:

 $w_0 / ||w_0|| = \operatorname{argmax}_{||w||=1} \min_{(x,y) \in S} y w^T x$

That is, the normalization of w_0 corresponds to the largest margin separating hyperplane.

• Proof: Define w' = $w_0/||w_0||$ and let w^{*} be the largest-margin separating hyperplane of size 1. We need to show that w' = w^{*}.

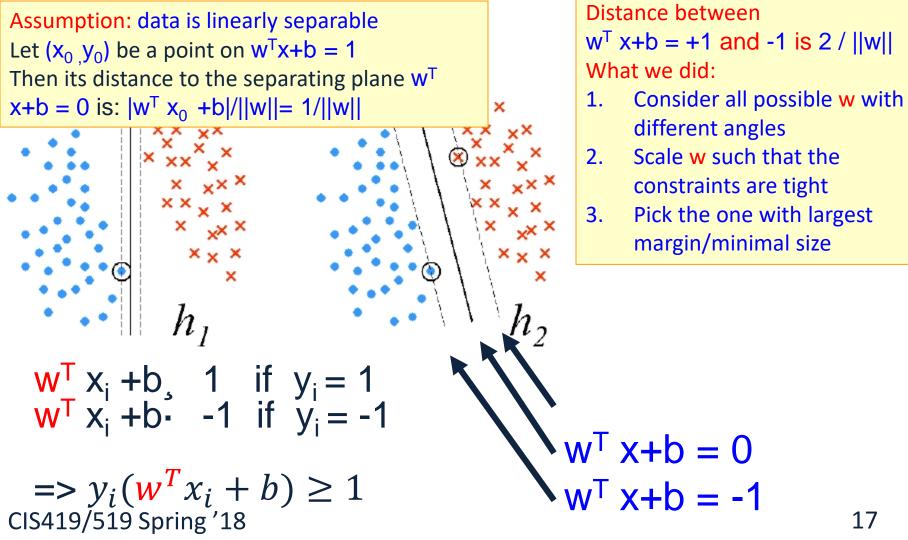
Def. of w_0 Note first that $w^*/\Upsilon(S)$ satisfies the constraints in (**); therefore: $||w_0|| \le ||w^*/\Upsilon(S)|| = 1/\Upsilon(S)$.

> • Consequently: $\forall (x,y) \in S \ y \ w'^{\top} x = 1/||w_0|| \ y \ w_0^{\top} x \ge 1/||w_0|| \ge \Upsilon(S)$ But since ||w'|| = 1 this implies that w' corresponds to the largest

margin, that is $w' = w^*$

Margin of a Separating Hyperplane

A separating hyperplane: $w^T x+b = 0$



margin/minimal size

Janother separating plane: w= (1,0) b=-1/2 For the second plane w= (1,0), b=-1/2: Separating plane A Check <(1,1),+>: (1,0)(1)-1/2=1/2. $w^{T}X+b=-1$ $|v|^{(-1)}-1=1$ $|v|^{(-1)}-1=1$ Not good, since we want to separate the positive points better, so we scale <w, 6> <((1, 1)+> <(+1,1),-> (0,1) $(c, o)(1) - \frac{c}{2} = 1 \iff That's what we want$ < (0,0), -> (1,0) (1,0) +> =) c-1/2=1 c=2 Distance from $\langle 1,1\rangle + >$ to the plane $\langle W=(1,1), b=-1 >$ => We rename the plane to be w=(2,0), 5=-1 Now: $+: (2, 0) \binom{1}{1} - 1 = 1$ is: $(1,1)\begin{pmatrix} 1\\ 1 \end{pmatrix} - 1$ $\int 2 = \int 2 = \int 2 \begin{pmatrix} 1\\ 1 \\ 1 \\ 1 \end{pmatrix}$ + : $(2, 0) \begin{pmatrix} z \\ z \end{pmatrix} - 1 = 3$ -: (2,0)(-1) = 1 = -3We could have represented X+Y-1=0 as -: (2,0)(0) = |= -|(w=(2,2) b=-2); 2×+2y-2=0 6000 Then the plane would be WX+6=3_ Brt, now ||w|| = 1/(2,0)||= 2 (2,2)(1)-7=2 Before we had ||w|| = ((,1)|| = 2, Better ⊖ plane would be (2,2)(-1)-2=-2 w * x + 5 = -2

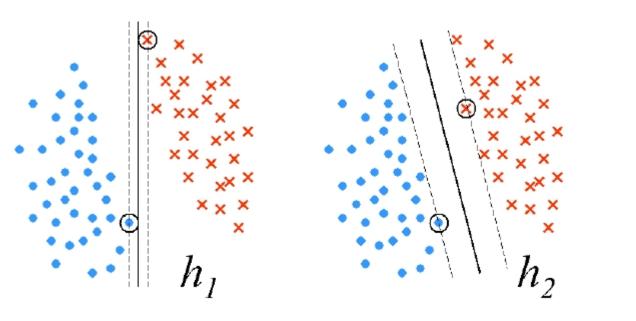
Hard SVM Optimization

- We have shown that the sought after weight vector w is the solution of the following optimization problem:
- SVM Optimization: (***)

```
■ Minimize: \frac{1}{2} ||w||^2
Subject to: \forall (x,y) \in S: y w<sup>T</sup> x ≥ 1
```

- This is a quadratic optimization problem in (n+1) variables, with |S|=m inequality constraints.
- It has a unique solution.

Maximal Margin



The margin of a linear separator $w^T x+b = 0$ is 2 / ||w||max 2 / ||w|| = min ||w|

 $\max 2 / ||w|| = \min ||w||$ = min $\frac{1}{2} w^{T} w$

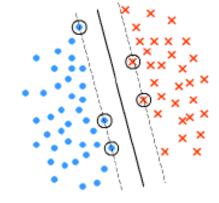
$$\min_{w,b} \frac{1}{2} w^T w$$

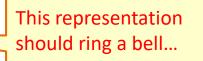
s.t $y_i(w^T x_i + b) \ge 1, \forall (x_i, y_i) \in S$

Support Vector Machines

- The name "Support Vector Machine" stems from the fact that w* is supported by (i.e. is the linear span of) the examples that are exactly at a distance 1/||w*|| from the separating hyperplane. These vectors are therefore called support vectors.
- Theorem: Let w* be the minimizer of the SVM optimization problem (***) for S = {(x_i, y_i)}. Let I= {i: w*Tx = 1}. Then there exists coefficients ®_i >0 such that:

$$w^* = \sum_{i \in I} \alpha_i y_i x_i$$

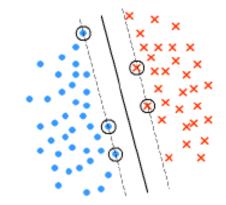




Duality

- This, and other properties of Support Vector Machines are shown by moving to the <u>dual problem</u>.
- Theorem: Let w* be the minimizer of the SVM optimization problem (***) for S = {(x_i, y_i)}. Let I= {i: y_i (w*Tx_i +b)= 1}. Then there exists coefficients α_i >0 such that:

$$\mathbf{w}^* = \sum_{i \in I} \alpha_i y_i x_i$$



(recap) Kernel Perceptron

Examples : $x \in \{0,1\}^n$; **Nonlinear mapping :** $x \to t(x), t(x) \in \mathbb{R}^{n'}$

Hypothesis: $w \in \mathbb{R}^{n'}$; Decision function: $f(x) = sgn(\sum_{i=1}^{n'} w_i t(x)_i) = sgn(w \bullet t(x))$

If
$$f(\mathbf{x}^{(k)}) \neq \mathbf{y}^{(k)}$$
, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{r} \mathbf{y}^{(k)} t(\mathbf{x}^{(k)})$

If n' is large, we cannot represent w explicitly. However, the weight vector w can be written as a linear combination of examples:

$$\mathbf{w} = \sum_{j=1}^{m} \mathbf{r} \alpha_{j} \mathbf{y}^{(j)} \mathbf{t}(\mathbf{x}^{(j)})$$

- Where α_j is the number of mistakes made on $x^{(j)}$
- Then we can compute f(x) based on $\{x^{(j)}\}$ and α

$$\mathbf{f}(\mathbf{x}) = \mathbf{sgn}(\mathbf{w} \bullet \mathbf{t}(\mathbf{x})) = \mathbf{sgn}(\sum_{j=1}^{m} \mathbf{r} \alpha_{j} \mathbf{y}^{(j)} \mathbf{t}(\mathbf{x}^{(j)}) \bullet \mathbf{t}(\mathbf{x})) = \mathbf{sgn}(\sum_{j=1}^{m} \mathbf{r} \alpha_{j} \mathbf{y}^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x}))$$

(recap) Kernel Perceptron

Examples : $x \in \{0,1\}^n$; Nonlinear mapping : $x \to t(x), t(x) \in \mathbb{R}^{n'}$ Hypothesis : $w \in \mathbb{R}^{n'}$; Decision function : $f(x) = sgn(w \bullet t(x))$

- In the training phase, we initialize α to be an all-zeros vector.
- For training sample $(x^{(k)}, y^{(k)})$, instead of using the original Perceptron update rule in the $R^{n'}$ space

If
$$f(\mathbf{x}^{(k)}) \neq \mathbf{y}^{(k)}$$
, $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{r} \mathbf{y}^{(k)} t(\mathbf{x}^{(k)})$

we maintain α by

$$\text{if } \mathbf{f}(\mathbf{x}^{(k)}) = \mathbf{sgn}(\sum_{j=1}^{m} \mathbf{r} \alpha_{j} \mathbf{y}^{(j)} K(\mathbf{x}^{(j)}, \mathbf{x}^{(k)})) \neq \mathbf{y}^{(k)} \quad \text{then } \alpha_{k} \leftarrow \alpha_{k} + 1$$

based on the relationship between w and $oldsymbol{lpha}$:

$$\mathbf{w} = \sum_{j=1}^{m} \mathbf{r} \alpha_{j} \mathbf{y}^{(j)} \mathbf{t}(\mathbf{x}^{(j)})$$

Footnote about the threshold

- Similar to Perceptron, we can augment vectors to handle the bias term $\bar{x} \leftarrow (x, 1); \ \bar{w} \leftarrow (w, b)$ so that $\bar{w}^T \bar{x} = w^T x + b$
- Then consider the following formulation

$$\min_{\overline{w}} \frac{1}{2} \overline{w}^T \overline{w} \quad \text{s.t} \quad y_i \overline{w}^T \overline{x}_i \ge 1, \forall (x_i, y_i) \in S$$

 However, this formulation is slightly different from (***), because it is equivalent to

$$\min_{w,b} \frac{1}{2} w^T w + \frac{1}{2} b^2 \quad \text{s.t} \quad y_i(w^T x_i + b) \ge 1, \forall (x_i, y_i) \in S$$

The bias term is included in the regularization. This usually doesn't matter

For simplicity, we ignore the bias term

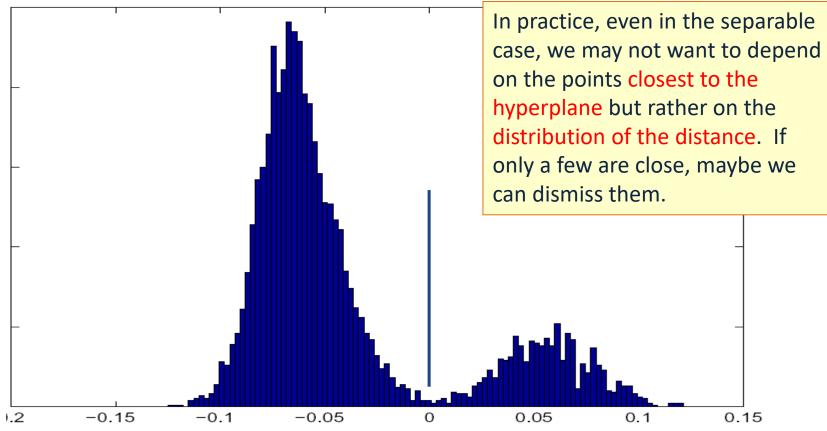
Key Issues

- Computational Issues
 - Training of an SVM used to be is very time consuming solving quadratic program.
 - Modern methods are based on Stochastic Gradient Descent and Coordinate Descent and are much faster.

- Is it really optimal?
 - Is the objective function we are optimizing the "right" one?

Real Data

17,000 dimensional context sensitive spelling Histogram of distance of points from the hyperplane



Soft SVM

- The hard SVM formulation assumes linearly separable data.
- A natural relaxation:
 - maximize the margin while minimizing the # of examples that violate the margin (separability) constraints.
- However, this leads to non-convex problem that is hard to solve.
- Instead, we relax in a different way, that results in optimizing a surrogate loss function that is convex.

Soft SVM

Notice that the relaxation of the constraint:

$$y_i w^T x_i \ge 1$$

• Can be done by introducing a slack variable ξ_i (per example) and requiring:

$$y_i w^T x_i \ge 1 - \xi_i$$
; $\xi_i \ge 0$

Now, we want to solve:

$$\min_{w,\xi_i} \frac{1}{2} w^T w + C \sum_i \xi_i <$$

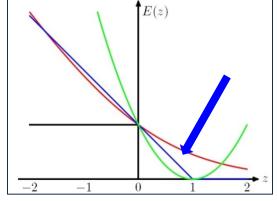
A large value of C means that misclassifications are bad – we focus on a small training error (at the expense of margin). A small C results in more training error, but hopefully better true error.

s.t $y_i w^T x_i \ge 1 - \xi_i$; $\xi_i \ge 0 \quad \forall i$

Soft SVM (2)

Now, we want to solve:

$$\min_{w,\xi_i} \ \frac{1}{2} w^T w + C \sum_i \xi_i$$



s.t $\xi_i \ge 1 - y_i w^T x_i; \xi_i \ge 0 \quad \forall i$

In optimum,
$$\xi_i = \max(0, 1 - y_i w^T x_i)$$

Which can be written as:

$$\min_{w} \ \frac{1}{2}w^{T}w + C\sum_{i} \max(0, 1 - y_{i}w^{T}x_{i}).$$

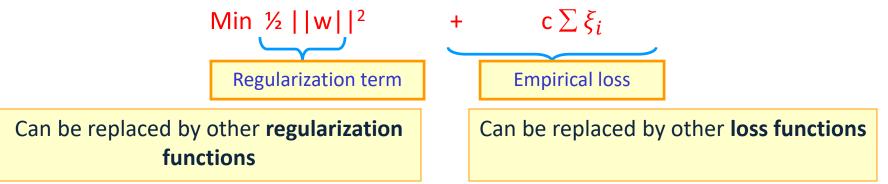
What is the interpretation of this?

SVM Objective Function

• The problem we solved is:

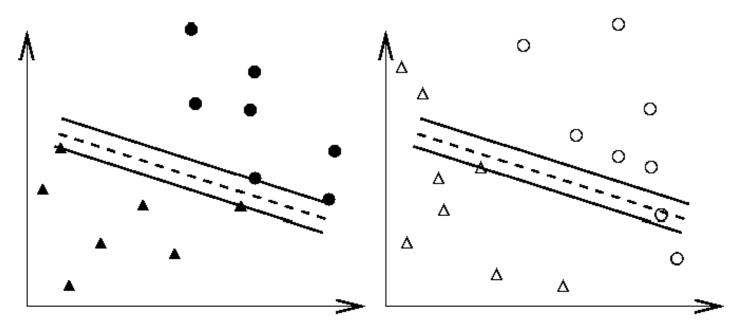
Min ½ ||w||² + c $\sum \xi_i$

- Where $\xi_i > 0$ is called a slack variable, and is defined by:
 - $\xi_i = \max(0, 1 y_i w^t x_i)$
 - Equivalently, we can say that: $y_i w^t x_i \downarrow 1 \xi_i$; $\xi_i \ge 0$
- And this can be written as:



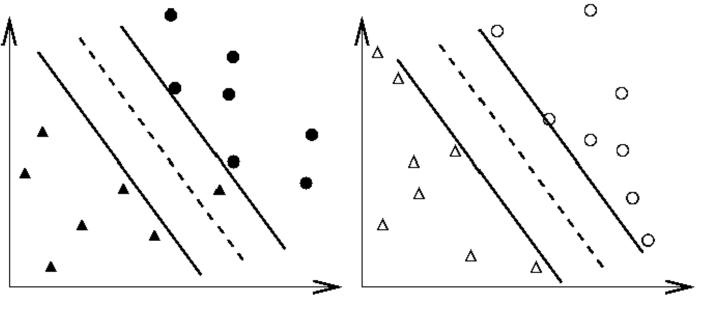
- General Form of a learning algorithm:
 - Minimize empirical loss, and Regularize (to avoid over fitting)
 - Theoretically motivated improvement over the original algorithm we've seen at the beginning of the semester.

Balance between regularization and empirical loss



(a) Training data and an over- (b) Testing data and an overfitting classifier fitting classifier

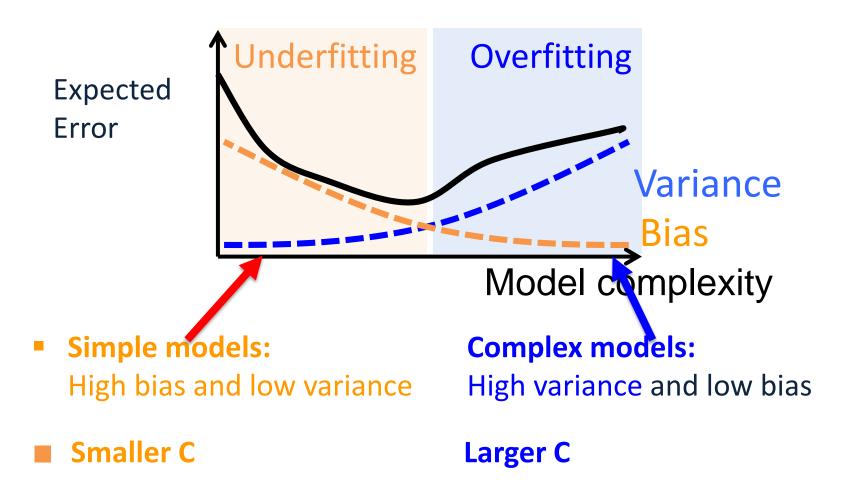
Balance between regularization and empirical loss



(c) Training data and a better (d) Testing data and a better classifier classifier

<u>(DEMO)</u>

Underfitting and **Overfitting**



What Do We Optimize?

• Logistic Regression

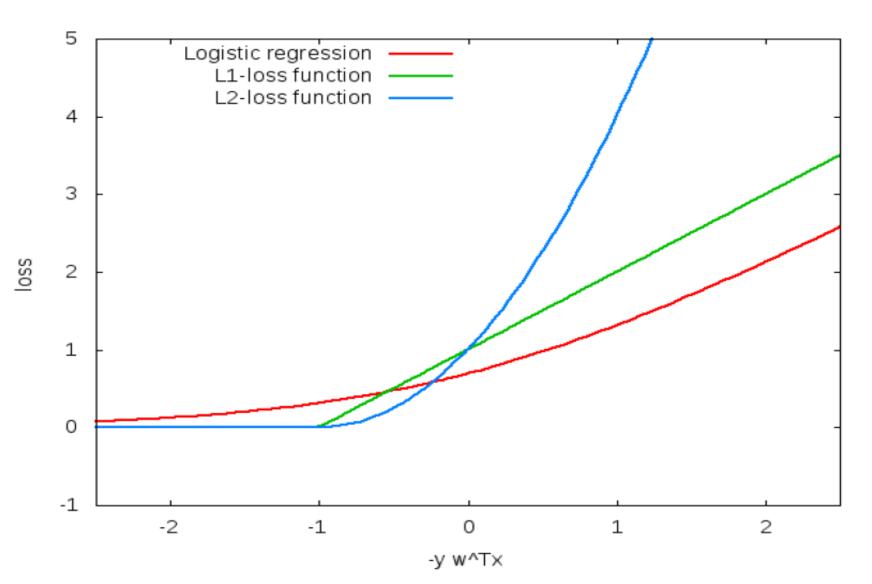
$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i=1}^{l} \log(1 + e^{-y_{i}(w^{T} x_{i})})$$

• L1-loss SVM

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i=1}^{l} \max(0, 1 - y_{i} w^{T} x_{i})$$

$$\min_{w} \frac{1}{2} w^{T} w + C \sum_{i=1}^{l} \max(0, 1 - y_{i} w^{T} x_{i})^{2}$$

What Do We Optimize(2)?



Optimization: How to Solve

- 1. Earlier methods used Quadratic Programming. Very slow.
- 2. The soft SVM problem is an unconstrained optimization problems. It is possible to use the gradient descent algorithm.
- Many options within this category:
 - Iterative scaling; non-linear conjugate gradient; quasi-Newton methods; truncated Newton methods; trust-region newton method.
 - All methods are iterative methods, that generate a sequence w_k that converges to the optimal solution of the optimization problem above.
 - Currently: Limited memory BFGS is very popular
- 3. 3rd generation algorithms are based on Stochastic Gradient Decent
 - The runtime does not depend on n=#(examples); advantage when n is very large.
 - Stopping criteria is a problem: method tends to be too aggressive at the beginning and reaches a moderate accuracy quite fast, but it's convergence becomes slow if we are interested in more accurate solutions.
- 4. Dual Coordinated Descent (& Stochastic Version)

SGD for SVM

• Goal:
$$\min_{w} f(w) \equiv \frac{1}{2} w^T w + \frac{c}{m} \sum_{i} \max(0, 1 - y_i w^T x_i)$$
. m: data size

 $\nabla f(w) = w - Cy_i x_i$ if $1 - y_i w^T x_i \ge 0$; otherwise $\nabla f(w) = w$

- 1. Initialize $w = 0 \in \mathbb{R}^n$
- 2. For every example $(x_i, y_i) \in D$

If $y_i w^T x_i \leq 1$ update the weight vector to

 $w \leftarrow (1 - \gamma)w + \gamma C y_i x_i$ (γ - learning rate)

Otherwise $w \leftarrow (1 - \gamma)w$

3. Continue until convergence is achieved

Convergence can be proved for a slightly complicated version of SGD (e.g, Pegasos)

CIS41

This algorithm should ring a bell...

Nonlinear SVM

- We can map data to a high dimensional space: $x \rightarrow \phi(x)$ (DEMO)
- Then use Kernel trick: $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$

Primal: Dual:

- $\min_{w,\xi_i} \frac{1}{2} w^T w + C \sum_i \xi_i \qquad \qquad \min_{\alpha} \frac{1}{2} \alpha^T \mathbf{Q} \alpha e^T \alpha$
- s.t $y_i w^T \phi(x_i) \ge 1 \xi_i$ s.t $0 \le \alpha \le C \quad \forall i$ $\xi_i \ge 0 \quad \forall i$ $Q_{ij} = y_i y_j K(x_i, x_j)$

Theorem: Let w^{*} be the minimizer of the primal problem, α^* be the minimizer of the dual problem. Then w^{*} = $\sum_i \alpha^* y_i x_i$

CIS419/519 Spring '18

(DEMO2)

Nonlinear SVM

- Tradeoff between training time and accuracy
- Complex model v.s. simple model

	Linear (LIBLINEAR)			RBF (LIBSVM)			
Data set	C	Time (s)	Accuracy	C	σ	Time (s)	Accuracy
a9a	32	5.4	84.98	8	0.03125	98.9	85.03
real-sim	1	0.3	97.51	8	0.5	973.7	97.90
ijcnn1	32	1.6	92.21	32	2	26.9	98.69
MNIST38	0.03125	0.1	96.82	2	0.03125	37.6	99.70
covtype	0.0625	1.4	76.35	32	32	$54,\!968.1$	96.08
webspam	32	25.5	93.15	8	32	$15,\!571.1$	99.20

From:

http://www.csie.ntu.edu.tw/~cjlin/papers/lowpoly_journal.pdf