Recitation #6 CIS 519

CIS 519 TA Team

Perceptron

Algorithm 1 Perceptron

```
1: Initial weight vector: \mathbf{w_1} = \mathbf{0} \in R^d
 2: for t=1 \rightarrow T do
           Receive instance \mathbf{x_t} \in \mathbf{X} \subseteq R^d
 3:
           Predict \hat{y} = sign(\mathbf{w_t}^T \mathbf{x_t})
 4:
          Receive true label y_t \in \{\pm 1\}
 5:
         Incur loss \mathbf{1}(\hat{y_t} \neq y_t)
 6:
 7: Update:
 8: if \hat{y}_t \neq y_t then
                \mathbf{w_{t+1}} \leftarrow \mathbf{w_t} + y_t \mathbf{x_t}
 9:
           else
10:
11:
                \mathbf{w_{t+1}} \leftarrow \mathbf{w_t}
           end if
12:
13: end for
```

Winnow

Algorithm 2 Winnow

```
1: Learning rate parameter \eta > 0
 2: Initial weight vector: \mathbf{w_1} = (\frac{1}{d}, ..., \frac{1}{d}) \in \mathbb{R}^d
 3: for t = 1 \rightarrow T do
           Receive instance \mathbf{x_t} \in \mathbf{X} \subseteq R^d
          Predict \hat{y} = sign(\mathbf{w_t}^T \mathbf{x_t})
           Receive true label y_t \in \{\pm 1\}
           Incur loss \mathbf{1}(\hat{y_t} \neq y_t)
 7:
          Update:
 8:
           if \hat{y}_t \neq y_t then
 9:
                  for i = 1 \rightarrow d do
10:
                       w_{t+1,i} \leftarrow \frac{w_{t,i}exp(\eta y_t x_{t,i})}{Z_t}
where Z_t = \sum_{j=1}^n w_{t,j}exp(\eta y_t x_{t,j})
11:
12:
                  end for
13:
14:
            else
                \mathbf{w_{t+1}} \leftarrow \mathbf{w_t}
15:
            end if
16:
17: end for
```

Perceptron with AdaGrad

$$g_t = \begin{cases} 0 & \text{if } y(w_t^{\mathsf{T}} x + \theta) > 1 \\ -y(x, 1) & otherwise \end{cases}$$

That is, for the first n features, that gradient is -yx, and for θ , it is always -y.

Then, for each feature j (j = 1, ..., n + 1) we keep the sum of the gradients' squares:

$$G_{t,j} = \sum_{k=1}^{t} g_{k,j}^2$$

and the update rule is

$$w_{t+1,j} \leftarrow w_{t,j} - \eta g_{t,j} / (G_{t,j})^{1/2}$$

By substituting g_t into the update rule above, we get the final update rule:

$$w_{t+1,j} = \begin{cases} w_{t,j} & \text{if } y(w_t^{\mathsf{T}} x + \theta) > 1 \\ w_{t,j} + \eta y x_j / (G_{t,j})^{\frac{1}{2}} & otherwise \end{cases}$$

Averaged Perceptron

Algorithm Averaged Perceptron

```
1: Training:
 2: [m: #(examples); k: #(mistakes) = #(hypotheses); c_i: consistency
         count for v_i
 3: Input: a labeled training set (x_1, y_1), ... (x_m, y_m), Number of epochs T
 4: Output: a list of weighted perceptrons (v_1, c_1), ..., (v_k, c_k)
 5: Initialize: k=0; v_1=0, c_1=0
 6: Repeat T times:
 7: for t = 1 \rightarrow m do
       Compute prediction \hat{y} = sgn(v_k \cdot x_i)
       if \hat{y} = y_i then
 9:
           c_k = c_k + 1
10:
      else
11:
           v_{k+1} = v_k + y_i x
12:
           c_{k+1} = 1
13:
           k = k + 1
14:
       end if
15:
16: end for
17: Prediction:
18: Given: a list of weighted perceptrons (v_1, c_1), ...(v_k, c_k), a new example x
19: Predict: the label(x) as follows:
20: y(x) = sgn[\sum_{i=1}^{k} c_i v_i \cdot x]
```

Averaged Perceptron Implementation Details

 This average should be implemented by keeping only two weight vector. A cumulative weight vector computed during the training, and the current one.

Understand the code

- Readers
- Perceptron Classifier
- Feature Extraction

Real-world Reader

```
#Parse the real-world data to generate features,
#Returns a list of tuple lists
def parse real data(path):
    #List of tuples for each sentence
    data = []
    for filename in os.listdir(path):
        with open(path+filename, 'r') as file:
            sentence = []
            for line in file:
                if line == '\n':
                    data.append(sentence)
                    sentence = []
                else:
                    sentence.append(tuple(line.split()))
    return data
```

Synthetic Reader 1

```
#Returns a list of labels
def parse_synthetic_labels(path):
    #List of tuples for each sentence
    labels = []
    with open(path+'y.txt', 'rb') as file:
        for line in file:
            labels.append(int(line.strip()))
    return labels
```

Synthetic Reader 2

```
#Returns a list of features
def parse synthetic data(path):
    #List of tuples for each sentence
    data = []
    with open(path+'x.txt') as file:
        features = []
        for line in file:
            #print('Line:', line)
            for ch in line:
                if ch == '[' or ch.isspace():
                    continue
                elif ch == ']':
                    data.append(features)
                    features = []
                else:
                    features.append(int(ch))
    return data
```

Test Real-world Reader

- email_dev_data = parse_real_data('Data/Real-World/ Enron/dev/')
- news_dev_data = parse_real_data('Data/Real-World/ CoNLL/dev/')

Test Synthetic Reader

- syn_dense_dev_data = parse_synthetic_data('Data/ Synthetic/Dense/dev/')
- syn_dense_dev_labels = parse_synthetic_labels('Data/ Synthetic/Dense/dev/')
- syn_sparse_dev_data = parse_synthetic_data('Data/ Synthetic/Sparse/dev/')
- syn_sparse_dev_labels = parse_synthetic_labels('Data/ Synthetic/Sparse/dev/')

Perceptron Classifier

```
class Classifier(object):
   def init (self, algorithm, x train, y train, iterations=1, averaged = False, eta = 1, alpha = 1):
        # Get features from examples; this line figures out what features are present in
        # the training data, such as 'w-1=dog' or 'w+1=cat'
        features = {feature for xi in x train for feature in xi.keys()}
        if algorithm == 'Perceptron':
            #Initialize w, bias
            self.w, self.w['bias'] = {feature:0.0 for feature in features}, 0.0
            #Iterate over the training data n times
            for i in range(iterations):
                #Check each training example
                for i in range(len(x train)):
                    xi, yi = x train[i], y_train[i]
                    y hat = self.predict(xi)
                    #Update weights if there is a misclassification
                    if yi != y hat:
                        for feature, value in xi.items():
                            self.w[feature] = self.w[feature] + yi*eta*value
                        self.w['bias'] = self.w['bias'] + yi*eta
   def predict(self, x):
        s = sum([self.w[feature]*value for feature, value in x.items()]) + self.w['bias']
        return 1 if s > 0 else -1
```

Feature Extraction

```
# Feature extraction
print('Extracting features from real-world data...')
news train y = []
news train x = []
train features = set([])
for sentence in news train data:
    padded = sentence[:]
    padded.insert(0, ('pad', None))
    padded.append(('pad', None))
    for i in range(1,len(padded)-1):
        news train y.append(1 if padded[i][1]=='I' else -1)
        feat1 = 'w-1='+str(padded[i-1][0])
        feat2 = 'w+1='+str(padded[i+1][0])
        feats = [feat1, feat2]
        train features.update(feats)
        feats = {feature:1 for feature in feats}
        news train x.append(feats)
```

Thanks!