Recitation #6
CIS 519

CIS 519 TA Team

Perceptron

Algorithm 1 Perceptron

1: Initial weight vector: w; — 0 € R
2. fort=1—=1 do

3: Receive instance x¢ € X C R

4 Predict § = sign(wg? x¢)

5 Receive true label 3, € {11}

6: Incur loss 1(7; # y¢)
7: Update:

8: if 7; # y; then

9: W1 6 We + U Xy
10: else

11: W1 & Wt

12 end if

13: end for

Winnow

Algorithm 2 Winnow

1: Learning rate parameter 7 > () |
2: Initial weight vector: wy = (5.....) € RY
3: fort=1—=1T do

4 Receive instance x¢ € X € R?
5: Predict §j = sign(we’ x¢)

6: Receive true label y; € {£1}
7: Incur loss 1(%; # y¢)

8: Update:
9: if 4, # vy, then

10: fori=1—ddo \

11: R

12: where /4y = Z;’_] wy exp(nyts ;)
13: end for

14: else

15: Wi $— Wit

16: end if

17: end for

Perceptron with AdaGrad

0 if y(w/xz+6) > 1

gt = _ .
—y(x,1) otherwise

That is, for the first n features, that gradient is —yx, and for 6, it is always —y.

Then, for each feature j (7 = 1.....n + 1) we keep the sum of the gradients’ squares:
t
y Z 5
(7,‘.1' — (IA_]
k=1

and the update rule is
- , Y 1/2
Wit1,5 < Wi 5 — NGt/ (Grj)
By substituting ¢; into the update rule above, we get the final update rule:

R R if y(wjz +60) > 1
u t+1,7 — ‘ C_' . l) f/ L
wy; + nyxi/(Gy i)z otherwise

Averaged Perceptron

Algorithm Averaged Perceptron
1: Training:
. [m: #(examples); k: #(mistakes) = #(hypotheses); ¢;: consistency
count for v; |
Input: a labeled training set (zy.41)....(Zm.¥m), Number of epochs T
Output: a list of weighted perceptrons (vy, ¢y). ..., (Vg. ci)
Initialize: k=0;: v; =0, ¢; = 0
Repeat T times:
fort=1—mdo
Compute prediction § = sgn(vy, - ;)
if y = y; then
Cp = Cx+ 1
else
Vg1 = U + Y
Cr+1 = 1
k=k+1
end if
. end for
: Prediction:
18: Given: a list of weighted perceptrons (v, ¢y), ...(vk,), a new example x
19: Predict: the label(x) as follows:
20: y(x) = "".‘/”[ZT C; V; - T

N

® =~ D U W

—_
o O

b e e e e e
L e S

—_
-]

Averaged Perceptron
Implementation Details

e This average should be implemented by keeping only two
weight vector. A cumulative weight vector computed
during the training, and the current one.

Understand the code

e Readers

e Perceptron Classifier

e Feature Extraction

Real-world Reader

#Parse the real-world data to generate features,
#Returns a list of tuple lists

def parse real data(path):
#List of tuples for each sentence
data = []
for filename in os.listdir(path):

with open(path+filename, 'r') as file:
sentence = |[]

for line in file:
1f line == '\n':
data.append(sentence)

sentence = []
else:

sentence.append(tuple(line.split()))
return data

Synthetic Reader 1

#Returns a list of labels
def parse synthetic labels(path):
#List of tuples for each sentence
labels = []
with open(path+'y.txt', 'rb') as file:
for line in file:
labels.append(int(line.strip()))
return labels

Synthetic Reader 2

#Returns a list of features
def parse synthetic data(path):
#List of tuples for each sentence

data = []
with open(path+'x.txt') as file:
features = []

for line 1in file:
#print('Line:’', line)
for ch in line:
if ch == '[' or ch.isspace():
continue
elif ch == "]":
data.append(features)
features = []
else:
features.append(int(ch))

return data

Test Real-world Reader

e email_dev_data = parse_real_data(‘Data/Real-World/
Enron/dev/’)

e news_dev_data = parse_real_data('Data/Real-World/
CoNLL/dev/")

Test Synthetic Reader

syn_dense_dev_data = parse_synthetic_data(‘Data/
Synthetic/Dense/dev/")

syn_dense_dev_labels = parse_synthetic_labels(‘Data/
Synthetic/Dense/dev/")

syn_sparse_dev_data = parse_synthetic_data(‘Data/
Synthetic/Sparse/dev/’)

syn_sparse_dev_labels = parse_synthetic_labels('Data/
Synthetic/Sparse/dev/’)

Perceptron Classifier

class Classifier(object):
def init_(self, algorithm, x train, y train, iterations=1, averaged = False, eta =

Get features from examples; this line figures out what features are present in
the training data, such as 'w-1l=dog' or 'w+l=cat'
features = {feature for xi in x_train for feature in xi.keys()}

if algorit == 'Perceptron’:
#Initialize w, bias
self.w, self.w['bias'] = {feature:0.0 for feature in features}, 0.0
#Iterate over the training data n times
for i in range(iterations):
#Check each training example
for i in range(len(x_train)):
xi, yi = x_train[(i), y_train(i]
y_hat = self.predict(xi)
#Update weights if there is a misclassification
if yi != y hat:
for feature, value in xi.items():
self.w[feature] = self.w[feature] + yi*eta*value
self.w['bias'] = self.w['bias']) + yi*eta

def predict(self, x):
s = sum([self.w[feature]*value for feature, value in x.items()]) + self.w['bias')]
return 1 if s > 0 else -1

1, alpha

1)

Feature Extraction

Feature extraction
print('Extracting features from real-world data...')
news _train y = []
news train x = []
train features = set([])
for sentence in news_train_data:
padded = sentence[:]
padded.insert(0, ('pad', None))
padded.append(('pad’', None))
for i in range(l,len(padded)=1l):

news train y.append(l if padded[i][1l]=='1I' else -1)
featl = 'w-1l="+str(padded[1-1][0])
feat2 = 'w+l="+str(padded[i+1][0])

feats = [featl, featl]
train features.update(feats)

feats = {feature:1 for feature in feats}
news train x.append(feats)

Thanks!

