

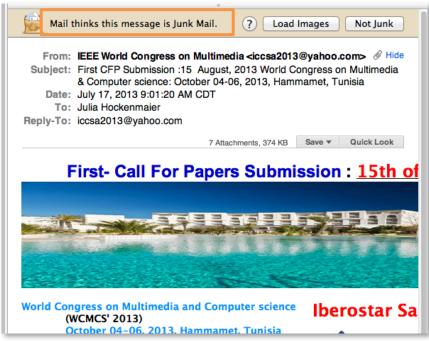
CIS 419/519 Applied Machine Learning

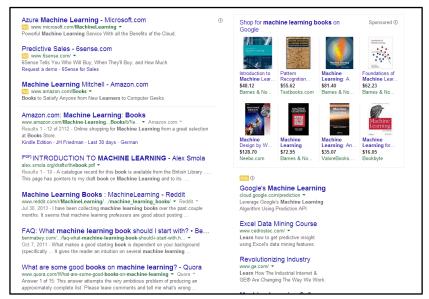
Instructor: Eric Eaton

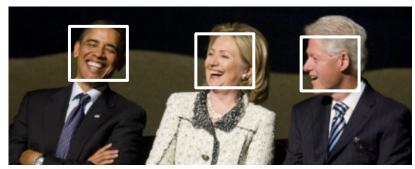
www.seas.upenn.edu/~cis519

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution. Please send comments and corrections to Eric.

Machine Learning is Everywhere







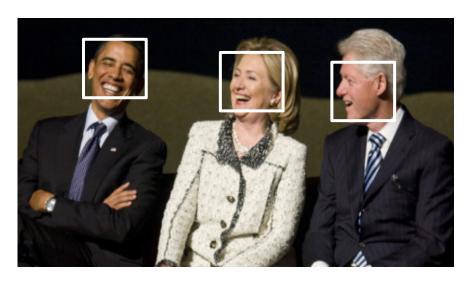
Applications: Spam Detection

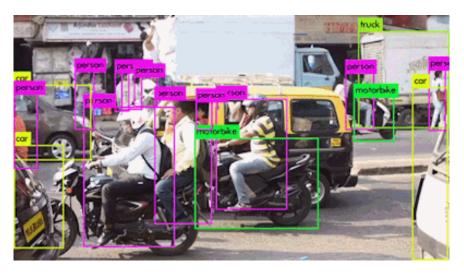
- This is a binary classification task:
 Assign one of two labels (i.e. yes/no)
 to the input (here, an email message)
- Classification requires a model (a classifier) to determine which label to assign to items.
- In this class, we study algorithms and techniques to learn such models from data.

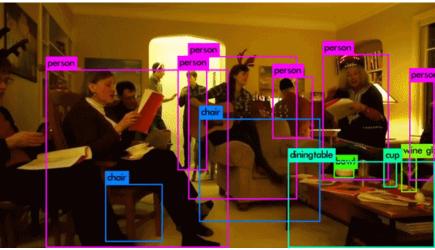


<u>Data</u>	<u>Labels</u>
Documents	Politics, Sports, Finance
Sentences	Positive, Negative
Phrases	Person, Location
Images	cats, dogs, snakes
Medical records	Re-admit soon/Not

Applications: Object Recognition







What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

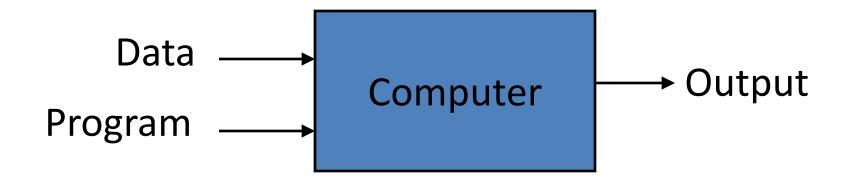
Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

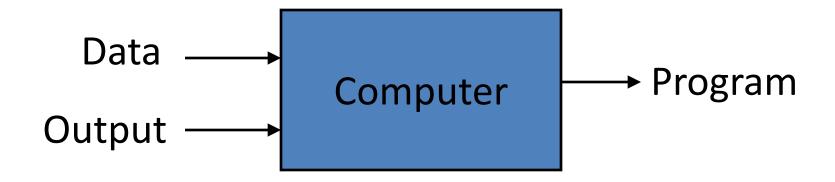
- improve their performance P
- ullet at some task T
- with experience E.

A well-defined learning task is given by $\langle P, T, E \rangle$.

Traditional Programming



Machine Learning



Why Study Machine Learning?

"A breakthrough in machine learning would be worth ten Microsofts" -Bill Gates, Chairman, Microsoft

"Machine learning is the next Internet"
-Tony Tether, Director, DARPA

Machine learning is the hot new thing"
-John Hennessy, President, Stanford

"Web rankings today are mostly a matter of machine learning" -Prabhakar Raghavan, Dir. Research, Yahoo

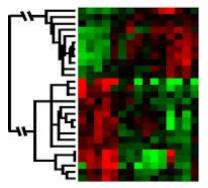
"Machine learning is going to result in a real revolution" -Greg Papadopoulos, CTO, Sun

"Machine learning is today's discontinuity" -Jerry Yang, CEO, Yahoo

When Do We Use Machine Learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)



Learning isn't always useful:

There is no need to "learn" to calculate payroll

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

Slide credit: Geoffrey Hinton

Learning = Generalization

H. Simon -

"Learning denotes changes in the system that are adaptive in the sense that they enable the system to do the task or tasks drawn from the same population more efficiently and more effectively the next time."

The ability to perform a task in a situation which has never been encountered before

Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging software
- [Your favorite area]

Samuel's Checkers-Player

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed." -Arthur Samuel (1959)

Defining the Learning Task

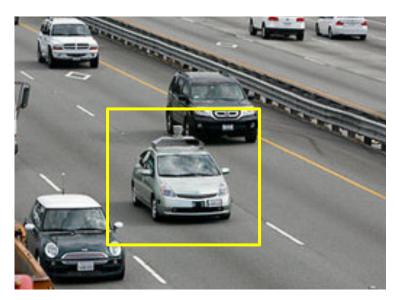
Improve on task T, with respect to performance metric P, based on experience E

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Categorize email messages as spam or legitimate.
- P: Percentage of email messages correctly classified.
- E: Database of emails, some with human-given labels

State of the Art Applications of Machine Learning

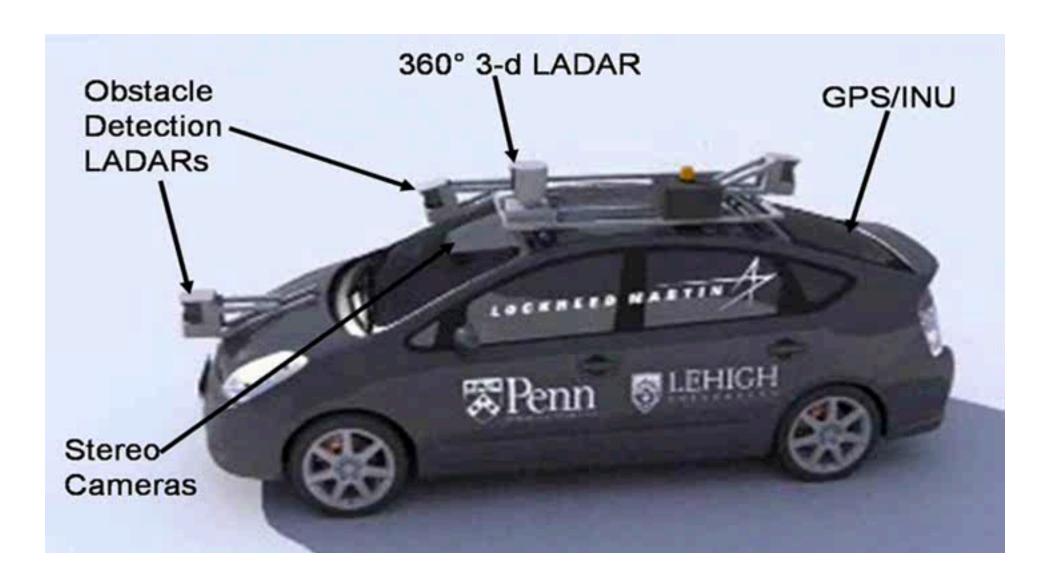
Autonomous Cars

- Nevada made it legal for autonomous cars to drive on roads in June 2011
- As of 2017, 29 states have enacted legislation regarding autonomous cars

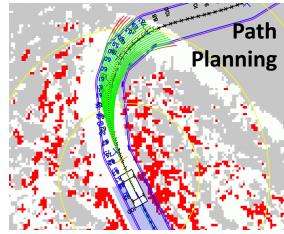


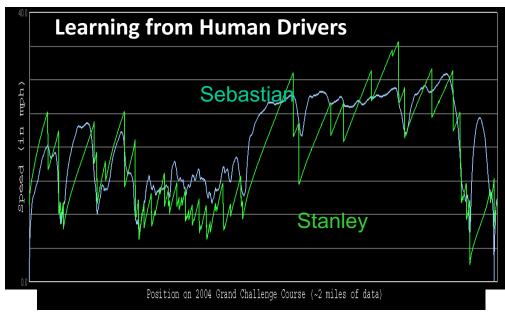
Penn's Autonomous Car → (Ben Franklin Racing Team)

Autonomous Car Sensors



Autonomous Car Technology





Images and movies taken from Sebastian Thrun's multimedia website.

Deep Learning in the Headlines

BUSINESS NEWS

Is Google Cornering the Market on Deep Learning?

A cutting-edge corner of science is being wooed by Silicon Valley, to the dismay of some academics.

By Antonio Regalado on January 29, 2014

How much are a dozen deep-learning researchers worth? Apparently, more than \$400 million.

This week, Google <u>reportedly paid that much</u> to acquire <u>DeepMind Technologies</u>, a startup based ir

Deep Learning's Role in the Age of Robots

BY JULIAN GREEN, JETPAC 05.02.14 2:56 PM

BloombergBusinessweek Technology

Acquisitions

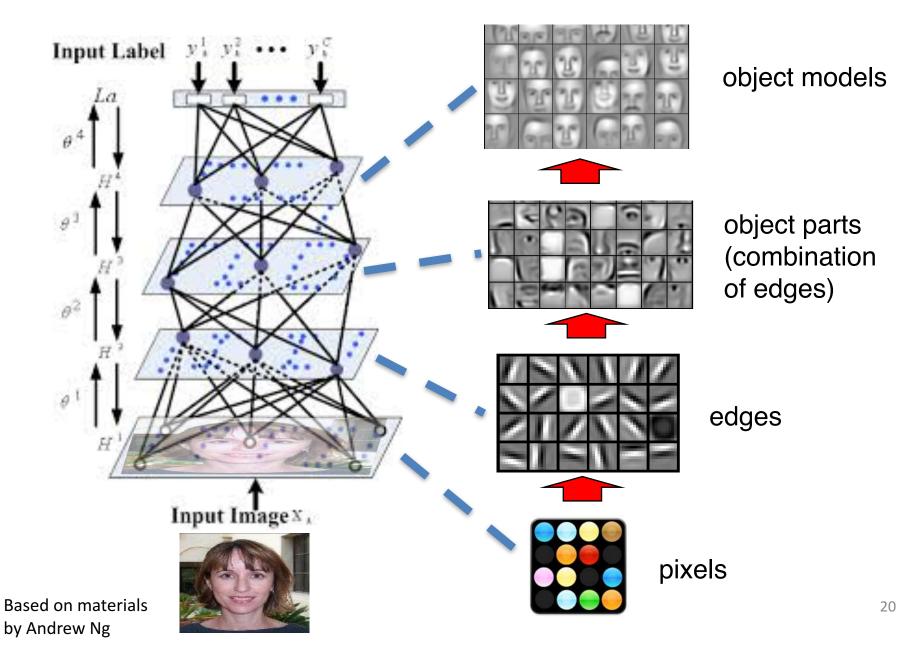
The Race to Buy the Human Brains Behind Deep Learning Machines

By Ashlee Vance January 27, 2014

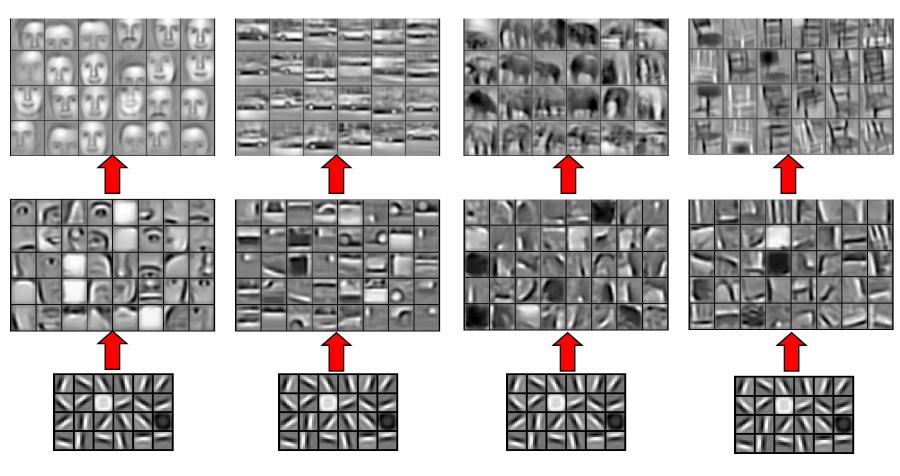
intelligence projects. "DeepMind is bona fide in terms of its research capabilities and depth," says Peter Lee, who heads Microsoft Research.

According to Lee, Microsoft, Facebook (FB), and Google find themselves in a battle for deep learning talent. Microsoft has gone from four full-time deep learning experts to 70 in the past three years. "We would have more if the talent was there to

Deep Belief Net on Face Images

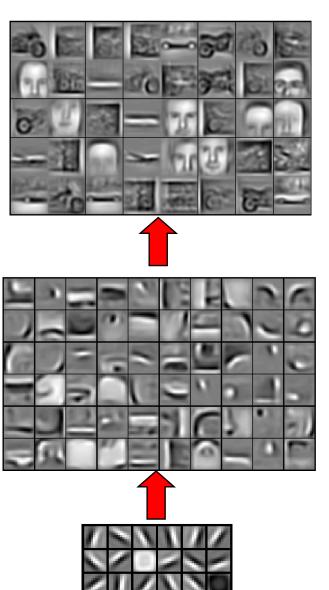


Learning of Object Parts



21

Training on Multiple Objects



Trained on 4 classes (cars, faces, motorbikes, airplanes).

Second layer: Shared-features and object-specific features.

Third layer: More specific features.

Scene Labeling via Deep Learning

Inference from Deep Learned Models

Generating posterior samples from faces by "filling in" experiments (cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference.

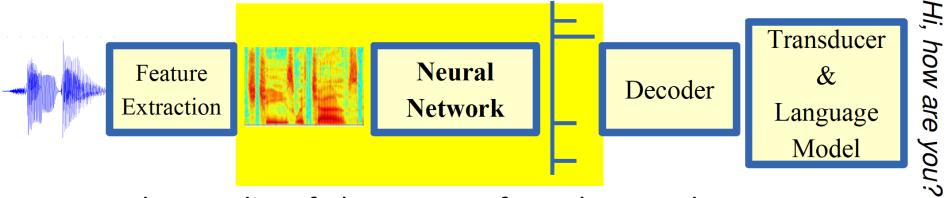
Input images

Samples from feedforward Inference (control)

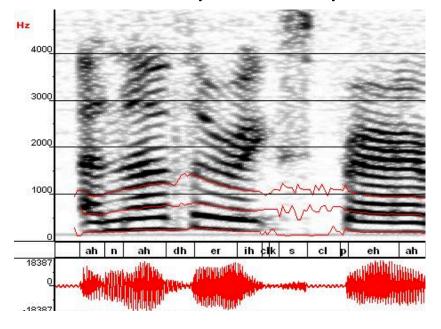
Samples from **Full posterior** inference

Machine Learning in **Automatic Speech Recognition**

A Typical Speech Recognition System



ML used to predict of phone states from the sound spectrogram



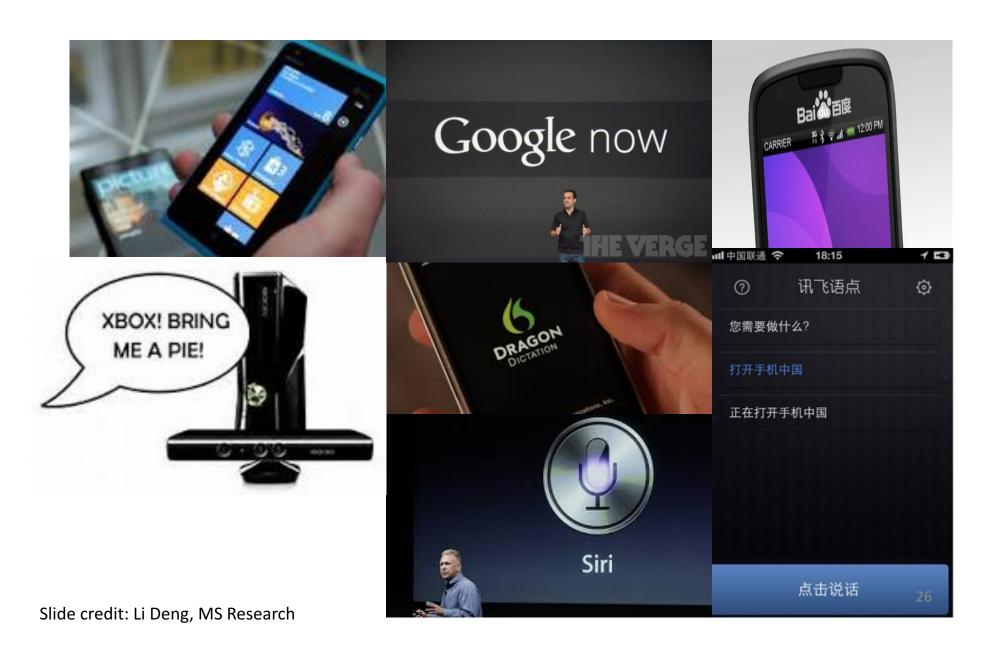
Deep learning has state-of-the-art results

# Hidden Layers	1	2	4	8	10	12
Word Error Rate %	16.0	12.8	11.4	10.9	11.0	11.1

Baseline GMM performance = 15.4%

[Zeiler et al. "On rectified linear units for speech recognition" ICASSP 20131

Impact of Deep Learning in Speech Technology



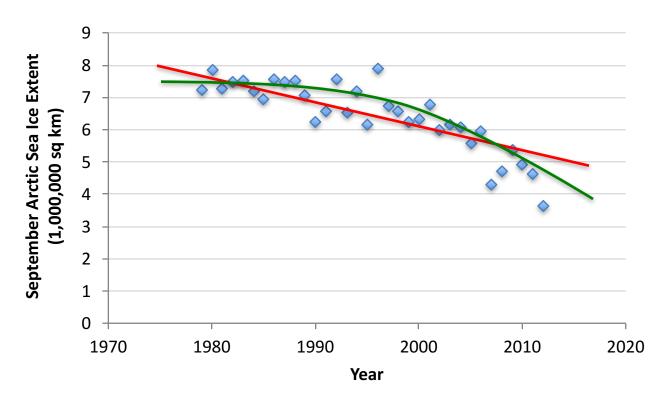
Types of Learning

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

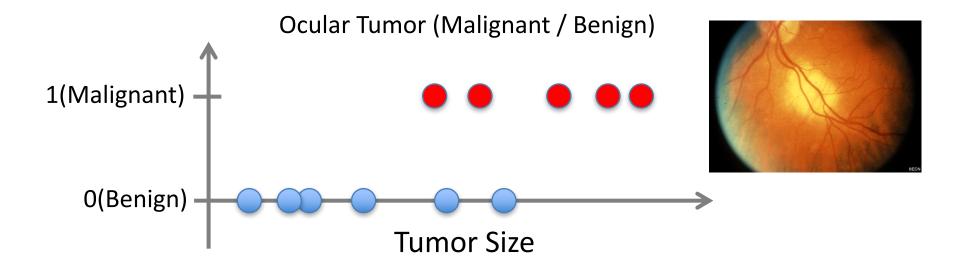
Supervised Learning: Regression

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression



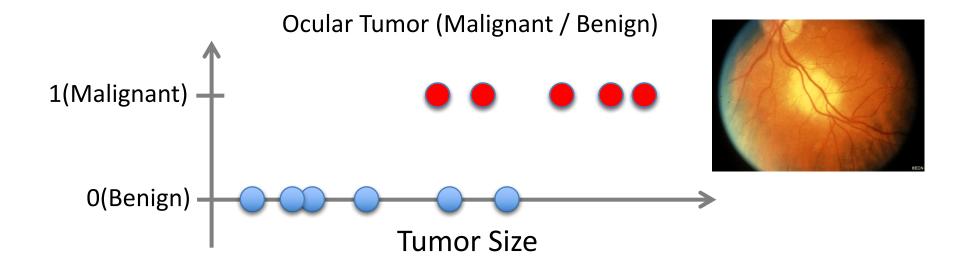
Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification



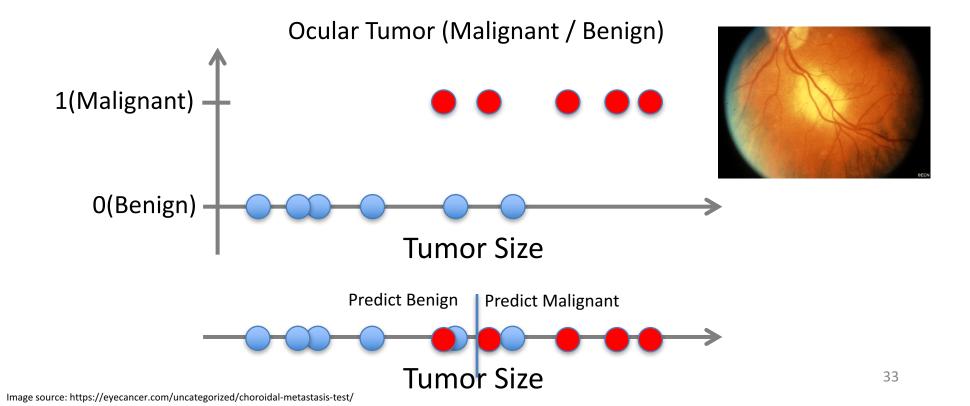
Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification



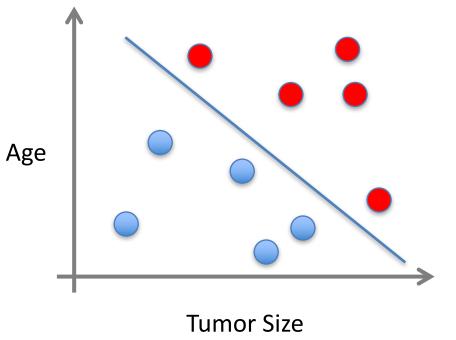
Supervised Learning: Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is categorical == classification



Supervised Learning

- ullet x can be multi-dimensional
 - Each dimension corresponds to an attribute:

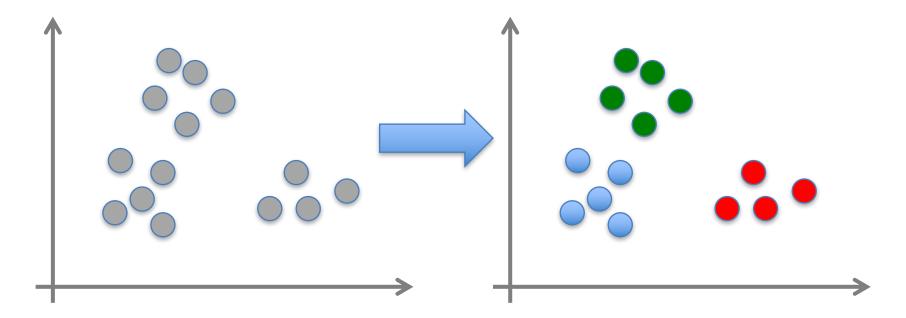


- Clump thickness
- Color
- Distance from optic nerve
- ...

- Cell type is the most telling feature, but it's risky to do a biopsy of the eye
 - ML can help determine when a feature is needed

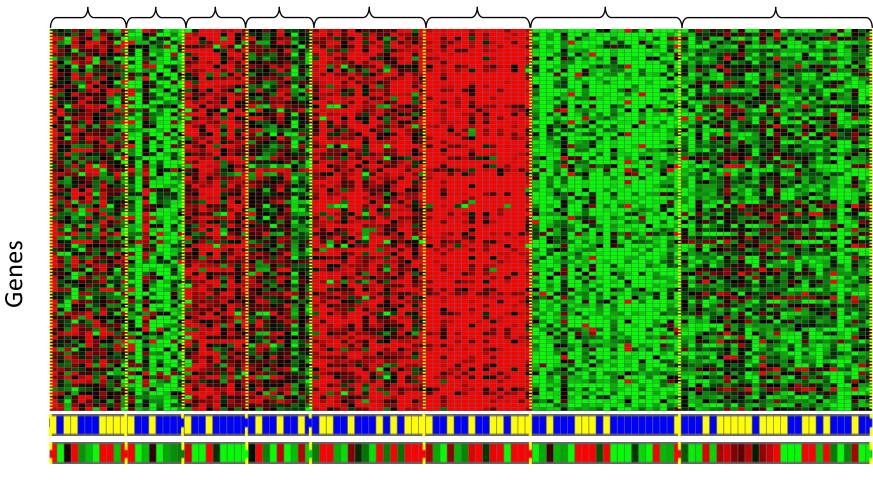
Unsupervised Learning

- Given $x_1, x_2, ..., x_n$ (without labels)
- Output hidden structure behind the x's
 - E.g., clustering



Unsupervised Learning

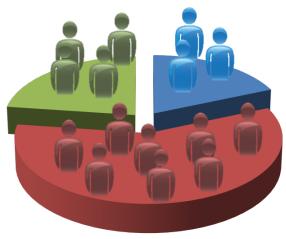
Genomics application: group individuals by genetic similarity



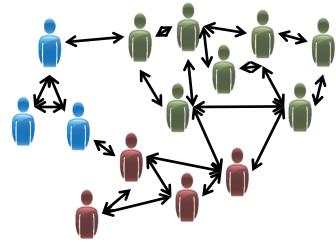
[Source: Daphne Koller]

Unsupervised Learning

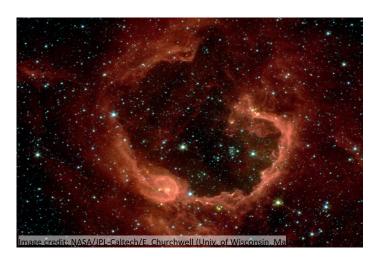
Organize computing clusters



Market segmentation



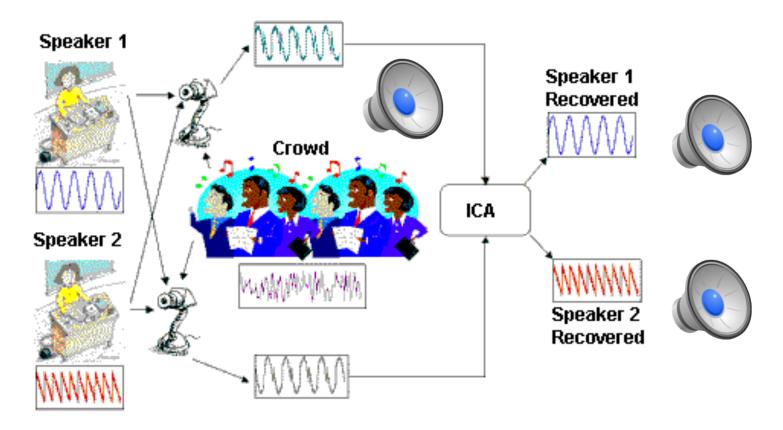
Social network analysis



Astronomical data analysis

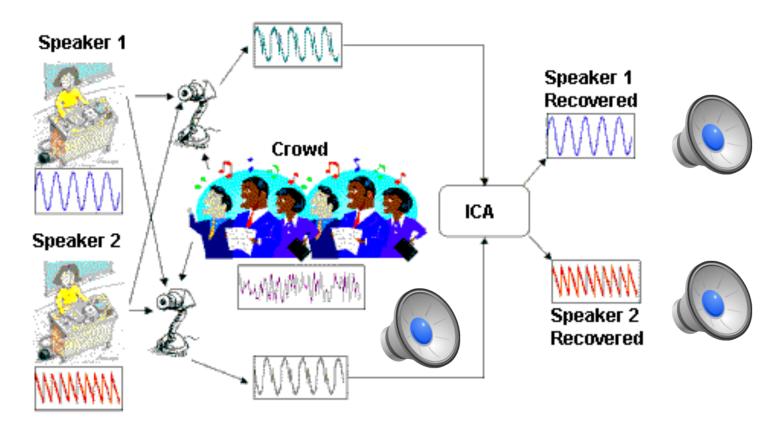
Unsupervised Learning

 Independent component analysis – separate a combined signal into its original sources



Unsupervised Learning

 Independent component analysis – separate a combined signal into its original sources



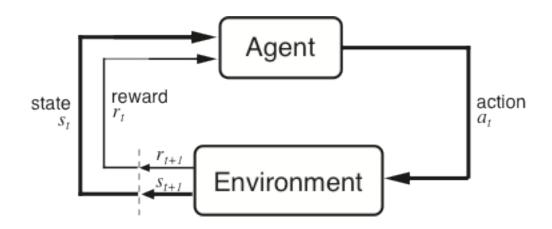
Reinforcement Learning

- Given a sequence of states and actions with (delayed) rewards, output a policy
 - Policy is a mapping from states actions that tells you what to do in a given state

• Examples:

- Credit assignment problem
- Game playing
- Robot in a maze
- Balance a pole on your hand

The Agent-Environment Interface



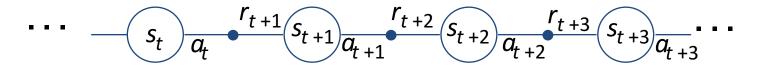
Agent and environment interact at discrete time steps : t = 0, 1, 2, K

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state: s_{t+1}



Slide credit: Sutton & Barto

Reinforcement Learning

https://www.youtube.com/watch?v=4cgWya-wjgY

Inverse Reinforcement Learning

Learn policy from user demonstrations

Stanford Autonomous Helicopter

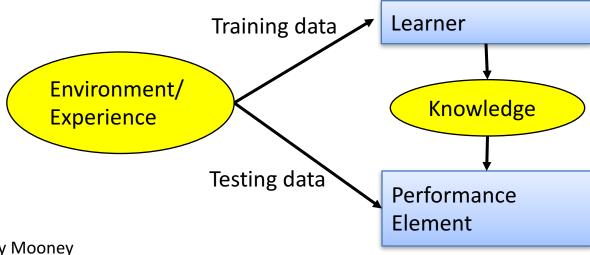
http://heli.stanford.edu/

https://www.youtube.com/watch?v=VCdxqn0fcnE

Framing a Learning Problem

Designing a Learning System

- Choose the training experience
- Choose exactly what is to be learned
 - i.e. the target function
- Choose how to represent the target function
- Choose a learning algorithm to infer the target function from the experience



Training vs. Test Distribution

- We generally assume that the training and test examples are independently drawn from the same overall distribution of data
 - We call this "i.i.d" which stands for "independent and identically distributed"
- If examples are not independent, requires collective classification
- If test distribution is different, requires
 transfer learning

ML in a Nutshell

- Tens of thousands of machine learning algorithms
 - Hundreds new every year
- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

Various Function Representations

- Numerical functions
 - Linear regression
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic
- Instance-based functions
 - Nearest-neighbor
 - Case-based
- Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Various Search/Optimization Algorithms

- Gradient descent
 - Perceptron
 - Backpropagation
- Dynamic Programming
 - HMM Learning
 - PCFG Learning
- Divide and Conquer
 - Decision tree induction
 - Rule learning
- Evolutionary Computation
 - Genetic Algorithms (GAs)
 - Genetic Programming (GP)
 - Neuro-evolution

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- etc.

ML in Practice

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
- Interpret results
- Consolidate and deploy discovered knowledge

Lessons Learned about Learning

- Learning can be viewed as using direct or indirect experience to approximate a chosen target function.
- Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits a set of training data.
- Different learning methods assume different hypothesis spaces (representation languages) and/or employ different search techniques.

A Brief History of Machine Learning

History of Machine Learning

1950s

- Samuel's checker player
- Selfridge's Pandemonium

• 1960s:

- Neural networks: Perceptron
- Pattern recognition
- Learning in the limit theory
- Minsky and Papert prove limitations of Perceptron

• 1970s:

- Symbolic concept induction
- Winston's arch learner
- Expert systems and the knowledge acquisition bottleneck
- Quinlan's ID3
- Michalski's AQ and soybean diagnosis
- Scientific discovery with BACON
- Mathematical discovery with AM

History of Machine Learning (cont.)

• 1980s:

- Advanced decision tree and rule learning
- Explanation-based Learning (EBL)
- Learning and planning and problem solving
- Utility problem
- Analogy
- Cognitive architectures
- Resurgence of neural networks (connectionism, backpropagation)
- Valiant's PAC Learning Theory
- Focus on experimental methodology

• 1990s

- Data mining
- Adaptive software agents and web applications
- Text learning
- Reinforcement learning (RL)
- Inductive Logic Programming (ILP)
- Ensembles: Bagging, Boosting, and Stacking
- Bayes Net learning

History of Machine Learning (cont.)

2000s

- Support vector machines & kernel methods
- Graphical models
- Statistical relational learning
- Transfer learning
- Sequence labeling
- Collective classification and structured outputs
- Computer Systems Applications (Compilers, Debugging, Graphics, Security)
- E-mail management
- Personalized assistants that learn
- Learning in robotics and vision

2010s

- Deep learning systems
- Learning for big data
- Bayesian methods
- Multi-task & lifelong learning
- Applications to vision, speech, social networks, learning to read, etc.
- \$???

What We'll Cover in this Course

Supervised learning

- Decision tree induction
- Linear regression
- Logistic regression
- Support vector machines& kernel methods
- Model ensembles
- Bayesian learning
- Neural networks & deep learning
- Learning theory

Unsupervised learning

- Clustering
- Dimensionality reduction

Reinforcement learning

- Temporal difference learning
- Q learning
- Evaluation
- Applications

Our focus will be on applying machine learning to real applications