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Machine Learning is Everywhere
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Applications: Spam Detection
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Applications: Object Recognition

Lane Status
Direction: Left curve

Curvature 707.1 m
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What is Machine Learning?

“Learning is any process by which a system improves
performance from experience.”

- Herbert Simon

Definition by Tom Mitchell (1998):
Machine Learning is the study of algorithms that

* improve their performance P

e atsome task 1T’

e with experience E.

A well-defined learning task is given by <P, T, E>.
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Why Study Machine Learning?

“A breakthrough in machine learning would be worth ten Microsofts”
-Bill Gates, Chairman, Microsoft

“Machine learning is the next Internet”
-Tony Tether, Director, DARPA

Machine learning is the hot new thing”
-John Hennessy, President, Stanford

“Web rankings today are mostly a matter of machine learning”
-Prabhakar Raghavan, Dir. Research, Yahoo

“Machine learning is going to result in a real revolution”
-Greg Papadopoulos, CTO, Sun

“Machine learning is today’s discontinuity”
-Jerry Yang, CEO, Yahoo

Based on slide by Pedro Domingos



When Do We Use Machine Learning?

ML is used when:

 Human expertise does not exist (navigating on Mars)

* Humans can’t explain their expertise (speech recognition)
 Models must be customized (personalized medicine)
 Models are based on huge amounts of data (genomics)

Learning isn’t always useful:
* There is no need to “learn” to calculate payroll

Based on slide by E. Alpaydin



A classic example of a task that requires machine learning:
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Learning = Generalization

H. Simon -

“Learning denotes changes in the system that are
adaptive in the sense that they enable the system to
do the task or tasks drawn from the same population
more efficiently and more effectively the next time.”

The ability to perform a task in a situation which
has never been encountered before

10



Some more examples of tasks that are best
solved by using a learning algorithm

* Recognizing patterns:

— Facial identities or facial expressions

— Handwritten or spoken words

— Medical images
* Generating patterns:

— Generating images or motion sequences
 Recognizing anomalies:

— Unusual credit card transactions

— Unusual patterns of sensor readings in a nuclear power plant
* Prediction:

— Future stock prices or currency exchange rates

11
Slide credit: Geoffrey Hinton



Sample Applications

 Web search
 Computational biology
* Finance

* E-commerce

e Space exploration

* Robotics

* |Information extraction
e Social networks

* Debugging software

* [Your favorite area]

Slide credit: Pedro Domingos



Samuel’s Checkers-Player

“Machine Learning: Field of study that gives
computers the ability to learn without being
explicitly programmed.” -Arthur Samuel (1959)

13



Defining the Learning Task

Improve on task T, with respect to
performance metric P, based on experience E

T: Playing checkers
: Percentage of games won against an arbitrary opponent
E: Playing practice games against itself

)

T: Recognizing hand-written words
: Percentage of words correctly classified
E: Database of human-labeled images of handwritten words

)

Driving on four-lane highways using vision sensors

: Average distance traveled before a human-judged error

: A sequence of images and steering commands recorded while
observing a human driver.

m U -

T: Categorize email messages as spam or legitimate.
: Percentage of email messages correctly classified.
E: Database of emails, some with human-given labels

-

14
Slide credit: Ray Mooney



State of the Art Applications of
Machine Learning



Autonomous Cars

Nevada made it legal for
autonomous cars to drive on

roads in June 2011

As of 2017, 29 states have
enacted legislation regarding
autonomous cars

Penn’s Autonomous Car =2
(Ben Franklin Racing Team)



Autonomous Car Sensors

360° 3-d LADAR
Obstacle GPS/INU

Detection
LADARS \

Sterec
Cameras

17



Autonomous Car Technology

S

Learning from Human Drivers
i
1, ﬂ

Position ¢ and Challeng (~2 miles of data)

Images and movies taken from Sebastian Thrun’ s multimedia V\:/Le%site.



Deep Learning in the Headlines

Tnology BloombergBusinessweek
Review Technology

Is Google Cornering the

Market on Deep Learnine? The Race to Buy the Human Brains Behind
p 5° Deep Learning Machines

A cutting-edge corner of science is being wooed by Silicon Valley, to By Ashlee Vance W | January 27, 2014
the dismay of some academics. intelligence projects. “DeepMind is bona fide in terms of its research capabilities
By Antonio Regalado on January 29, 2014 and depth,” says Peter Lee, who heads Microsoft Research.

How much are a dozen deep-learning researchers

worth? Apparently, more than $400 million. According to Lee, Microsoft, Facebook (FB), and Google find themselves in a battle

for deep learning talent. Microsoft has gone from four full-time deep learning

=l FI'(““?; experts to 70 in the past three years. “We would have more if the talent was there to
make i

This week, Google reportedly paid that much to
acquire DeepMind Technologies, a startup based in

DEEP LEARNING

» Computers leaming and
growing on their own

Deep Learning’s Role in the Age of Robots

BY JULIAN GREEN, JETPAC 05.02.14  2:56 PM » Able to understand

complex, massive
amounts of data

DATA ECONBMY

DEEP LEARNING

DROUGHT TO PR




Deep Belief Net on Face Images
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Training on Multiple Objects

' . - | -

Trained on 4 classes (cars, faces,
motorbikes, airplanes).

Second layer: Shared-features
and object-specific features.

Third layer: More specific
features.

22



Scene Labeling via Deep Learning

[Farabet et al. ICML 2012, PAMI 2013] 23



Inference from Deep Learned Models

Generating posterior samples from faces by “filling in” experiments
(cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference.

Input images

Samples from
feedforward
Inference

(control)

Samples from
Full posterior
inference

24

Slide credit: Andrew Ng



Machine Learning in
Automatic Speech Recognition

A Typical Speech Recognition System
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Impact of Deep Learning in Speech Technology

XBOX! BRING
ME A PIE!

Slide credit: Li Deng, MS Research



Types of Learning



Types of Learning

* Supervised (inductive) learning

— Given: training data + desired outputs (labels)

* Unsupervised learning

— Given: training data (without desired outputs)

* Semi-supervised learning
— Given: training data + a few desired outputs

* Reinforcement learning

— Rewards from sequence of actions

Based on slide by Pedro Domingos



Supervised Learning: Regression

° Given (xll yl)/ (ZEZI yz); cee) (an, yn)
* Learn a function f(x) to predict y given x

— y is real-valued == regression
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Supervised Learning: Classification

° Given (xll yl)/ (ZEZI yz); seey (xn/ yn)
* Learn a function f(x) to predict y given x

— 1 is categorical == classification

Ocular Tumor (Malignant / Benign)

A
1(Malignant) —- ® O ® 00
0(Benign) ——@-0D—0—0—0 >
Tumor Size

31

e source: https://eyecancer.com/uncategorized/choroidal-metastasis-test/



Supervised Learning: Classification

° Given (331/ yl)/ (ZEZI yz); seey (xn/ yn)
* Learn a function f(x) to predict y given x

— 1 is categorical == classification

Ocular Tumor (Malignant / Benign)

A
1(Malignant) =~ e o 6
0(Benign) ——@-00—0—0—@ >
Tumor Size

Tumor Size 32

Image source: https://eyecancer.com/uncategorized/choroidal-metastasis-test/



Supervised Learning: Classification

° Given (331/ yl)/ (ZEZI yz); seey (xn/ yn)
* Learn a function f(x) to predict y given x

— 1 is categorical == classification

Ocular Tumor (Malignant / Benign)

A
1(Malignant) —- ® O ® 00
0(Benign) ——@-0D—0—0—0 >
Tumor Size

Predict Benign | Predict Malignant
—0-00—0
\—y
Tumor Size 3

Image source: https://eyecancer.com/uncategorized/choroidal-metastasis-test/



Supervised Learning

e 1 can be multi-dimensional

— Each dimension corresponds to an attribute:

A - Clump thickness
@

- Color
- Distance from optic nerve

Tumor Size

OECN

Cell type is the most telling feature, but it’s

risky to do a biopsy of the eye
ML can help determine when a feature is needed

34



Unsupervised Learning

* Given z,, z,, ..., , (without labels)

* QOutput hidden structure behind the x’s

A

— E.g., clustering
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Unsupervised Learning

Genomics application: group individuals by genetic similarity

A A A A A A A A
Y ) . )

Genes

| : : : : : i !

Individuals 26

[Source: Daphne Koller]



Unsupervised Learning

]

Organize computing clusters Social network analysis

i

Market segmentation

Astronomical data analysis .
Slide credit: Andrew Ng



Unsupervised Learning

Independent component analysis — separate a
combined signal into its original sources
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Unsupervised Learning

Independent component analysis — separate a
combined signal into its original sources
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Reinforcement Learning

* Given a sequence of states and actions with
(delayed) rewards, output a policy

— Policy is a mapping from states = actions that
tells you what to do in a given state

 Examples:
— Credit assignment problem
— Game playing
— Robot in a maze

— Balance a pole on your hand



The Agent-Environment Interface
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Slide credit: Sutton & Barto
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Reinforcement Learning

https://www.youtube.com/watch?v=4cgWya-wjgY

42



Inverse Reinforcement Learning

* Learn policy from user demonstrations

Stanford Autonomous Helicopter
http://heli.stanford.edu/

https://www.youtube.com/watch?v=VCdxgnOfcnE

43



Framing a Learning Problem



Designing a Learning System

 Choose the training experience

* Choose exactly what is to be learned
— i.e. the target function

 Choose how to represent the target function

* Choose a learning algorithm to infer the target
function from the experience

Training data Learner
. :
Environment/
Experience Knowledge
. v
Testing data
Performance
Element

Based on slide by Ray Mooney



Training vs. Test Distribution

* We generally assume that the training and
test examples are independently drawn from

the same overall distribution of data

— We call this “i.i.d” which stands for “independent
and identically distributed”

* |f examples are not independent, requires
collective classification

* |f test distribution is different, requires
transfer learning

Slide credit: Ray Mooney



ML in a Nutshell

e Tens of thousands of machine learning
algorithms

— Hundreds new every year

* Every ML algorithm has three components:
— Representation
— Optimization
— Evaluation

Slide credit: Pedro Domingos



Various Function Representations

* Numerical functions
— Linear regression
— Neural networks
— Support vector machines
* Symbolic functions
— Decision trees
— Rules in propositional logic
— Rules in first-order predicate logic
* Instance-based functions
— Nearest-neighbor
— Case-based
* Probabilistic Graphical Models
— Naive Bayes
— Bayesian networks
— Hidden-Markov Models (HMMs)
— Probabilistic Context Free Grammars (PCFGs)
— Markov networks

Slide credit: Ray Mooney



Various Search/Optimization
Algorithms

* Gradient descent
— Perceptron
— Backpropagation
* Dynamic Programming
— HMM Learning
— PCFG Learning

* Divide and Conquer
— Decision tree induction
— Rule learning

e Evolutionary Computation
— Genetic Algorithms (GAs)

— Genetic Programming (GP)
— Neuro-evolution

Slide credit: Ray Mooney



Evaluation

* Accuracy

* Precision and recall
e Squared error

e Likelihood

e Posterior probability
* Cost / Utility

* Margin

* Entropy

* K-L divergence

¢ etc.

Slide credit: Pedro Domingos



ML in Practice

* Understand domain, prior knowledge, and goals
e Data integration, selection, cleaning, pre-processing, etc.
Learn models

* Interpret results
* Consolidate and deploy discovered knowledge

52
Based on a slide by Pedro Domingos



Lessons Learned about Learning

* Learning can be viewed as using direct or indirect
experience to approximate a chosen target function.

* Function approximation can be viewed as a search
through a space of hypotheses (representations of
functions) for one that best fits a set of training data.

* Different learning methods assume different
hypothesis spaces (representation languages) and/or
employ different search techniques.

Slide credit: Ray Mooney



A Brief History of
Machine Learning



History of Machine Learning

* 1950s
— Samuel’s checker player
— Selfridge’s Pandemonium
* 1960s:
— Neural networks: Perceptron
— Pattern recognition
— Learning in the limit theory
— Minsky and Papert prove limitations of Perceptron
* 1970s:
— Symbolic concept induction
— Winston’s arch learner
— Expert systems and the knowledge acquisition bottleneck
— Quinlan’s ID3
— Michalski’'s AQ and soybean diagnosis
— Scientific discovery with BACON
— Mathematical discovery with AM

Slide credit: Ray Mooney



History of Machine Learning (cont.)

 1980s:
— Advanced decision tree and rule learning
— Explanation-based Learning (EBL)
— Learning and planning and problem solving
— Utility problem
— Analogy
— Cognitive architectures
— Resurgence of neural networks (connectionism, backpropagation)
— Valiant’s PAC Learning Theory
— Focus on experimental methodology
e 1990s
— Data mining
— Adaptive software agents and web applications
— Text learning
— Reinforcement learning (RL)
— Inductive Logic Programming (ILP)
— Ensembles: Bagging, Boosting, and Stacking
— Bayes Net learning

Slide credit: Ray Mooney



History of Machine Learning (cont.)

* 2000s

— Support vector machines & kernel methods
— Graphical models
— Statistical relational learning
— Transfer learning
— Sequence labeling
— Collective classification and structured outputs
— Computer Systems Applications (Compilers, Debugging, Graphics, Security)
— E-mail management
— Personalized assistants that learn
— Learning in robotics and vision

* 2010s
— Deep learning systems
— Learning for big data
— Bayesian methods
— Multi-task & lifelong learning

— Applications to vision, speech, social networks, learning to read, etc.
— 77

Based on slide by Ray Mooney



What We’ll Cover in this Course

e Supervised learning * Unsupervised learning
— Decision tree induction — Clustering
— Linear regression — Dimensionality reduction
— Logistic regression * Reinforcement learning
— Support vector machines — Temporal difference
& kernel methods learning
— Model ensembles — Qlearning
— Bayesian learning e Evaluation
— Neural networks & deep

learning * Applications

— Learning theory

Our focus will be on applying machine learning to real applications
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