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The	Badges	Game

Background:
• Pre-registered	attendees	at	the	1994	Machine	Learning	
Conference	received	a	name	badge	labeled	with	a	"+"	or	"-"

• The	label	is	based	only upon	the	name
• There	are	294	examples	(210	positive	and	84	negative)

What	function	was	used	to	generate	the	+/- labeling?

+	Naoki	Abe - Eric	Baum



Training	Data
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+	Naoki	Abe
- Myriam Abramson
+	David	W.	Aha
+	Kamal	M.	Ali
- Eric	Allender
+	Dana	Angluin
- Chidanand Apte
+	Minoru	Asada
+	Lars	Asker
+	Javed Aslam
+	Jose	L.	Balcazar
- Cristina	Baroglio

+	Peter	Bartlett
- Eric	Baum
+	Welton Becket
- Shai Ben-David
+	George	Berg
+	Neil	Berkman
+	Malini Bhandaru
+	Bir Bhanu
+	Reinhard Blasig
- Avrim Blum
- Anselm	Blumer
+	Justin	Boyan

+	Carla	E.	Brodley
+	Nader	Bshouty
- Wray	Buntine
- Andrey Burago
+	Tom	Bylander
+	Bill	Byrne
- Claire	Cardie
+	John	Case
+	Jason	Catlett
- Philip	Chan
- Zhixiang Chen
- Chris	Darken





Test	Data
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?	Shivani Agarwal
?	Chris	Callison-Burch
?	Eric	Eaton
?	Peter	Stone
?	Matthew	Taylor



Labeled	Test	Data
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- Shivani Agarwal
- Chris	Callison-Burch
- Eric	Eaton
+	Peter	Stone
+	Matthew	Taylor



What	is	Learning?
• The	Badges	Game	is	an	example	of	a	key	learning	protocol:	
supervised	learning

• First	question:	Are	you	sure	you	got	it?		Why?
• Issues:
–Which	problem	was	easier: prediction	or	modeling?
– Representation
– Problem	setting
– Background	Knowledge
–When	did	learning	take	place?

Algorithm:	can	you	write	a	program	that	takes	this	data	as	
input	and	predicts	the	label	for	your	name?
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Output

y∈Y
An	item	y

drawn	from	an	
output	space	Y

Input

x∈X
An	item	x

drawn	from	an	
input	space	X

System	
y =	f(x)

Supervised	Learning

• We	consider	systems	that	apply	an	unknown	function	f()	
to	input	items	x	and	return	an	output	y =	f(x).
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Output

y∈Y
An	item	y

drawn	from	an	
output	space	Y

Input

x∈X
An	item	x

drawn	from	an	
input	space	X

System	
y =	f(x)

Supervised	Learning

• In	(supervised)	machine	learning,	our	goal	is	to	learn	
a	function	h()	from	examples	that	approximates	f()
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Output

y∈Y

An	item	y
drawn	from	a	label	

space	Y

Input

x∈X

An	item	x
drawn	from	an	
instance	space	X

Learned	Model
y	=	h(x)

Supervised	learning
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Target	function
y	=	f(x)

ŷ = h(x)



Supervised	learning:	Training

• Give	the	learner	examples	in	D train

• The	learner	returns	a	model	h(x)
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Labeled	Training	
Data
D train

(x1,	y1)
(x2,	y2)
…

(xN,	yN)	

Learned	
model
h(x)

Learning	
Algorithm

Can	you	suggest	other	
learning	protocols?

h(x)	is	the	model	
we’ll	use	in	our	
application



Function	Approximation
Problem	Setting
• Set	of	possible	instances	
• Set	of	possible	labels	
• Unknown	target	function	
• Set	of	function	hypotheses

Input:		Training	examples	of	unknown	target	function	f

Output:		Hypothesis																that	best	approximates	f

X
Y

f : X ! Y
H = {h | h : X ! Y}

h 2 H

Based	on	slide	by	Tom	Mitchell

{hxi, yii}ni=1 = {hx1, y1i , . . . , hxn, yni}



Sample	Dataset
• Columns	denote	features	Xi

• Rows	denote	labeled	instances	
• Class	label	denotes	whether	a	tennis	game	was	played

hxi, yii

hxi, yii



Supervised	learning:	Testing

• Reserve	some	labeled	data	for	testing
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Labeled
Test	Data

D test

(x’1,	y’1)
(x’2,	y’2)

…
(x’M,	y’M)	



Supervised	learning:	Testing

Labeled
Test	Data

D test

(x’1,	y’1)
(x’2,	y’2)

…
(x’M,	y’M)	

Test	
Labels
Y test

y’1
y’2
...
y’M

Raw	Test	
Data
X test

x’1
x’2
….
x’M

15



Test	
Labels
Y test

y’1
y’2
...
y’M

Raw	Test	
Data
X test

x’1
x’2
….
x’M

Supervised	learning:	Testing
• Apply	the	model	to	the	raw	test	data
• Evaluate	by	comparing	predicted	labels	
against	the	test	labels
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Learned	
model
h(x)

Predicted
Labels
h(X test)
h(x’1)
h(x’2)
….

h(x’M)

Can	you	use the	test	
data	otherwise?



Supervised		Learning	:	Examples

§ Disease	diagnosis		
§ x:	Properties	of	patient	(symptoms,	lab	tests)
§ f	:	Disease	(or	maybe:	recommended	therapy)

§ Part-of-Speech	tagging		
§ x:	An	English	sentence	(e.g.,	The	can	will	rust)
§ f	:	The	part	of	speech	of	a	word	in	the	sentence

§ Face	recognition	
§ x:	Bitmap	picture	of	person’s	face
§ f	:	Name	the	person	(or	maybe:	a	property	of)

§ Automatic	Steering
§ x:	Bitmap	picture	of	road	surface	in	front	of	car
§ f	:	Degrees	to	turn	the	steering	wheel	
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Many	problems	that	do	not	
seem	like	classification	
problems	can	be	decomposed	
into	classification	problems.	



Key	Issues	in	Machine	Learning
• Modeling

– How	to	formulate	application	problems	as	machine	learning	problems?		
– How	to	represent	the	data?
– Learning	Protocols	(where	is	the	data	&	labels	coming	from?)	

• Representation
– What	functions should	we	learn	(hypothesis	spaces)	?	
– How	to	map	raw	input to		an	instance	space?
– Any	rigorous	way	to	find	these?	Any	general	approach?

• Algorithms
– What	are	good	algorithms?	
– How	do	we	define	success?	
– Generalization	vs.	overfitting
– The	computational	problem
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Using	supervised	learning

§ What	is	our	instance	space?
§ What	kind	of	features	are	we	using?

§ What	is	our	label	space?
§ What	kind	of	learning	task	are	we	dealing	with?

§ What	is	our	hypothesis	space?
§ What	kind	of	functions	(models)	are	we	learning?

§ What	learning	algorithm	do	we	use?
§ How	do	we	learn	the	model	from	the	labeled	data?

§ What	is	our	loss	function/evaluation	metric?
§ How	do	we	measure	success?	What	drives	learning?
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Output

y∈Y
An	item	y

drawn	from	a	label	
space	Y

Input

x∈X
An	item	x

drawn	from	an	
instance	space	X

Learned
Model
h(x)

1.	The	instance	space	X

• Designing	an	appropriate	instance	space	X 
is	crucial	for	how	well	we	can	predict	y.
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1.	The	instance	space	X
§ When	we	apply	machine	learning	to	a	task,	we	first	

need	to	define	the	instance	space	X.
§ Instances	x	∈ X are	defined	by	features:

§ Boolean	features:
§ Is	there	a	folder	named	after	the	sender?			
§ Does	this	email	contains	the	word	‘class’?	
§ Does	this	email	contains	the	word	‘waiting’?
§ Does	this	email	contains	the	word	‘class’	and	the	word	
‘waiting’?

§ Numerical	features:	
§ How	often	does	‘learning’	occur	in	this	email?	
§ What	long	is	email?	
§ How	many	emails	have	I	seen	from	this	sender	over	the	
last	day/week/month?	

§ Bag	of	tokens
§ Just	list	all	the	tokens in	the	input 21

Does	it	add	anything?



What’s	X for	the	Badges	game?

§ Possible	features:
§ Gender
§ Name’s	country-of-origin
§ Length	of	their	first	or	last	name
§ Does	the	name	contain	letter	‘x’?	
§ How	many	vowels	does	their	name	contain?	
§ Is	the	n-th letter	a	vowel?	
§ Does	the	name	have	the	same	number	of	vowels	and	
consonants?
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X as	a	vector	space

§ X is	an	N-dimensional	vector	space	(e.g.	<N)	
§ Each	dimension	=	one	feature.

§ Each	x is	a	feature	vector	(hence	the	boldface	x).
§ Think	of	x	 =	[x1 …	xN]	as	a	point	in	X :

23
x1

x2



Good	features	are	essential
§ The	choice	of	features	is	crucial for	how	well	a	task	can	be	learned

§ In	many	application	areas	(language,	vision,	etc.),		a	lot	of	work	goes	into	
designing	suitable	features

§ This	requires	domain	expertise

§ Think	about	the	badges	game	– what	if	you	were	focusing	on	visual	
features?	

§ We	can’t	teach	you	what	specific	features	to	use	for	your	task
§ But	we	will	touch	on	some	general	principles
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Output

y∈Y
An	item	y

drawn	from	a	label	
space	Y

Input

x∈X
An	item	x

drawn	from	an	
instance	space	X

Learned	
Model
h(x)

2.	The	label	space	Y

• The	label	space	Y determines	what	kind of	
supervised	learning	task we	are	dealing	with
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Supervised	learning	tasks	I

§ Output	labels	y∈Y are	categorical:
§ Binary	classification:	Two	possible	labels
§ Multi-class	classification:	k	possible	labels

§ Output	labels	y∈Y are	structured	objects (sequences	of	labels,	
parse	trees,	etc.)

§ Structure	learning
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Supervised	learning	tasks	II

§ Output	labels	y∈Y are	numerical:
§ Regression	(linear/polynomial):	

§ Labels	are	continuous-valued	
§ Learn	a	linear/polynomial	function	f(x)

§ Ranking:	
§ Labels	are	ordinal	
§ Learn	an	ordering	f(x1)	>	f(x2)	over	input
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Output

y∈Y
An	item	y

drawn	from	a	label	
space	Y

Input

x∈X
An	item	x

drawn	from	an	
instance	space	X

Learned	
Model
h(x)

3.	The	model	h(x)

• We	need	to	choose	what	kind of	model	
we	want	to	learn
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A	Learning	Problem

29

y  = f (x1, x2, x3, x4)Unknown
function

x1
x2
x3
x4

Example x1 x2 x3 x4     y
1 0     0     1     0     0

3 0     0     1     1     1
4          1      0     0     1     1
5 0      1    1     0     0
6 1      1    0     0     0
7 0      1     0     1    0

2 0     1     0     0     0
Can	you	learn	this	

function?	What	is	it?	



Hypothesis	Space
Complete	Ignorance:	
There	are	216 =	65536	possible	functions	
over	four	input	features.

We	can’t	figure	out	which	one	is	
correct	until	we’ve	seen	every	
possible	input-output	pair.	

After	observing	seven	examples	we	still
have	29 possibilities	for f

Is	Learning	Possible?
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Example x1 x2 x3 x4      y

16   1     1     1     1     ?

1 0     0     0     0      ?

1     0     0     0     ?

1     0     1     1     ?
1     1     0     0      0
1     1     0     1     ?

1     0     1     0     ?
1     0     0     1     1

0     1     0     0      0
0     1     0     1      0
0     1     1     0      0
0     1     1     1     ?

0     0     1     1      1
0     0     1     0      0

2 0     0     0     1      ?

1     1     1     0     ?

q There	are	|Y||X| possible	
functions	f(x)	from	the	instance	
space	X to	the	label	space	Y.	

q Learners	typically	consider	only	
a	subset of	the	functions	from	
X to	Y,	called	the	hypothesis	
space	H .	H	⊆|Y||X|



General	strategies	for	Machine	Learning

§ Develop	flexible	hypothesis	spaces:		
§ Decision	trees,	neural	networks,	nested	collections.
§ Constraining	the	hypothesis	space	is	done	algorithmically

§ Develop	representation	languages	for	restricted	classes	of	functions:
§ Serve	to	limit	the	expressivity	of	the	target	models
§ E.g.,	Functional	representation	(n-of-m);	Grammars;		linear	functions;	
stochastic	models;	

§ Get	flexibility	by	augmenting	the	feature	space		
§ In	either	case:

§ Develop	algorithms	for	finding	a	hypothesis	in	our	hypothesis	space,	that	
fits	the	data	

§ And	hope	that	they	will	generalize	well
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Key	Issues	in	Machine	Learning
• Modeling

– How	to	formulate	application	problems	as	machine	learning	problems?		
– How	to	represent	the	data?
– Learning	Protocols	(where	is	the	data	&	labels	coming	from?)	

• Representation
– What	functions should	we	learn	(hypothesis	spaces)	?	
– How	to	map	raw	input to		an	instance	space?
– Any	rigorous	way	to	find	these?	Any	general	approach?

• Algorithms
– What	are	good	algorithms?	
– How	do	we	define	success?	
– Generalization	vs.	overfitting
– The	computational	problem
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