

Logistic Regression

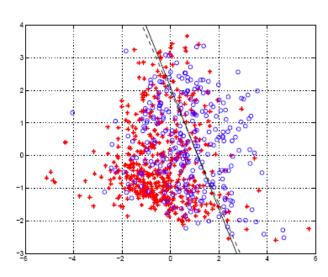
These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution. Please send comments and corrections to Eric.

Classification Based on Probability

- Instead of just predicting the class, give the probability of the instance being that class
 - i.e., learn $p(y \mid \boldsymbol{x})$
- Comparison to perceptron:
 - Perceptron doesn't produce probability estimate
 - Perceptron (and other discriminative classifiers) are only interested in producing a discriminative model
- Recall that:

$$0 \le p(\text{event}) \le 1$$

 $p(\text{event}) + p(\neg \text{event}) = 1$



Logistic Regression

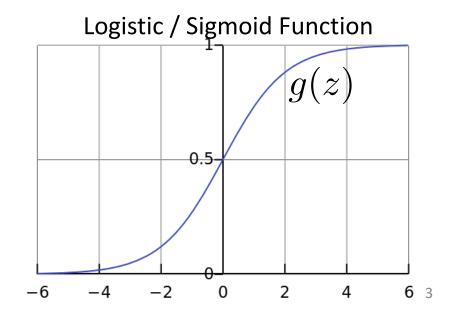
- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\theta}(x)$ should give $p(y=1 \mid x; \theta)$
 - Want $0 \leq h_{\boldsymbol{\theta}}(\boldsymbol{x}) \leq 1$

Can't just use linear regression with a threshold

Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$



Interpretation of Hypothesis Output

$$h_{\boldsymbol{\theta}}(\boldsymbol{x})$$
 = estimated $p(y=1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Example: Cancer diagnosis from tumor size

$$\boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Note that: $p(y = 0 | x; \theta) + p(y = 1 | x; \theta) = 1$

Therefore, $p(y = 0 \mid \boldsymbol{x}; \boldsymbol{\theta}) = 1 - p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta})$

Another Interpretation

Equivalently, logistic regression assumes that

$$\log \underbrace{\frac{p(y=1\mid \boldsymbol{x};\boldsymbol{\theta})}{p(y=0\mid \boldsymbol{x};\boldsymbol{\theta})}}_{\text{odds of } y=1} = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d$$

Side Note: the odds in favor of an event is the quantity p / (1 - p), where p is the probability of the event

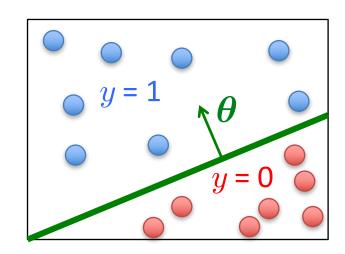
E.g., If I toss a fair dice, what are the odds that I will have a 6?

• In other words, logistic regression assumes that the log odds is a linear function of $oldsymbol{x}$

Logistic Regression

$$h_{m{ heta}}(m{x}) = g \ (m{ heta}^{ extsf{T}}m{x})$$
 $g(z)$ $g(z)$

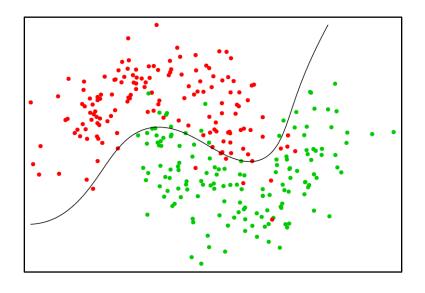
- Assume a threshold and...
 - Predict y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict y = 0 if $h_{\boldsymbol{\theta}}(\boldsymbol{x}) < 0.5$



Non-Linear Decision Boundary

 Can apply basis function expansion to features, same as with linear regression

$$\boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1^2 \\ x_2 \\ x_1^2 \\ x_2 \\ x_1 \\ x_2^2 \\ x_1^2 \\ x_2 \\ x_1 \\ x_2^2 \\ \vdots \end{bmatrix}$$



Logistic Regression

• Given
$$\left\{\left(m{x}^{(1)},y^{(1)}\right),\left(m{x}^{(2)},y^{(2)}\right),\ldots,\left(m{x}^{(n)},y^{(n)}\right)\right\}$$
 where $m{x}^{(i)}\in\mathbb{R}^d,\ y^{(i)}\in\{0,1\}$

• Model:
$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression Objective Function

Can't just use squared loss as in linear regression:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

Using the logistic regression model

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

results in a non-convex optimization

Deriving the Cost Function via Maximum Likelihood Estimation

- Likelihood of data is given by: $l(\boldsymbol{\theta}) = \prod_{i=1}^n p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})$
- So, looking for the heta that maximizes the likelihood

$$\boldsymbol{\theta}_{\mathrm{MLE}} = \arg\max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \prod_{i=1} p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})$$

Can take the log without changing the solution:

$$\theta_{\text{MLE}} = \arg \max_{\boldsymbol{\theta}} \log \prod_{i=1}^{n} p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})$$

Deriving the Cost Function via Maximum Likelihood Estimation

Expand as follows:

$$\begin{aligned} \boldsymbol{\theta}_{\text{MLE}} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta}) \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left[y^{(i)} \log p(y^{(i)} = 1 \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta}) + \left(1 - y^{(i)}\right) \log \left(1 - p(y^{(i)} = 1 \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})\right) \right] \end{aligned}$$

Substitute in model, and take negative to yield

Logistic regression objective:

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

Cost of a single instance:

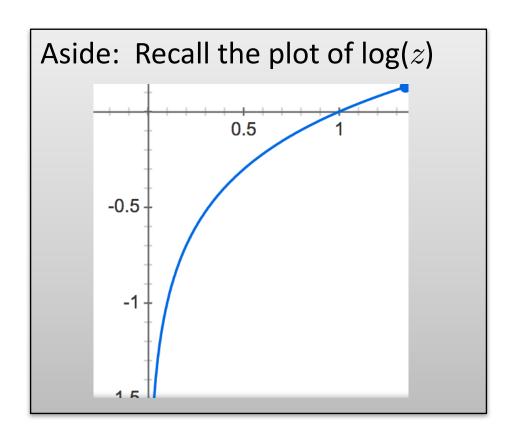
$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

Can re-write objective function as

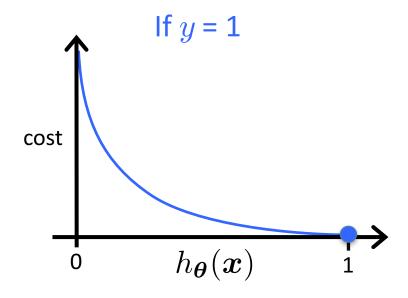
$$J(\boldsymbol{\theta}) = \sum_{i=1}^{n} \operatorname{cost} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}), y^{(i)} \right)$$

Compare to linear regression:
$$J(\pmb{\theta}) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\pmb{\theta}} \left(\pmb{x}^{(i)} \right) - y^{(i)} \right)^2$$

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$



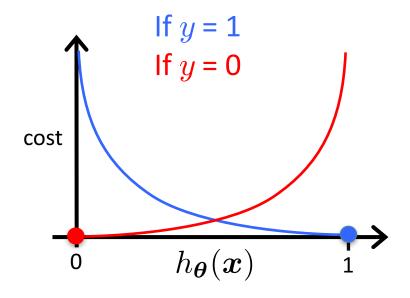
$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$



If
$$y = 1$$

- Cost = 0 if prediction is correct
- As $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \to 0, \cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{oldsymbol{ heta}}(oldsymbol{x})=0$, but y = 1

$$cost (h_{\theta}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\theta}(\boldsymbol{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$



If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\theta}(x)) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties

Regularized Logistic Regression

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

We can regularize logistic regression exactly as before:

$$J_{\text{regularized}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$
$$= J(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

Gradient Descent for Logistic Regression

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right] + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

Want $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$

Initialize
$$m{ heta}$$
Repeat until convergence
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(m{ heta})$$

simultaneous update for j = 0 ... d

Use the natural logarithm (In = \log_e) to cancel with the exp() in $h_{\theta}(x)$

Gradient Descent for Logistic Regression

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right] + \frac{\lambda}{2} \|\boldsymbol{\theta}_{[1:d]}\|_{2}^{2}$$

Want $\min_{oldsymbol{ heta}} J(oldsymbol{ heta})$

- Initialize θ
- Repeat until convergence

(simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right]$$

Gradient Descent for Logistic Regression

- Initialize θ
- Repeat until convergence

(simultaneous update for $j = 0 \dots d$)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right]$$

This looks IDENTICAL to linear regression!!!

- Ignoring the 1/n constant
- However, the form of the model is very different:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Stochastic Gradient Descent

Consider Learning with Numerous Data

Logistic regression objective:

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log h_{\boldsymbol{\theta}}(\mathbf{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\mathbf{x}_i))]$$

$$\cot \theta \left(\mathbf{x}_i, y_i\right)$$

Fit via gradient descent:

$$\theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\mathbf{x}_i \right) - y_i \right) x_{ij}$$

• What is the computational complexity in terms of n?

Gradient Descent

Batch Gradient Descent

```
Initialize \theta Repeat \{\theta_j\leftarrow\theta_j-\alpha\frac{1}{n}\sum_{i=1}^n\left(h_{\pmb{\theta}}\left(\mathbf{x}_i\right)-y_i\right)x_{ij}\quad\text{ for }j=0...d
```

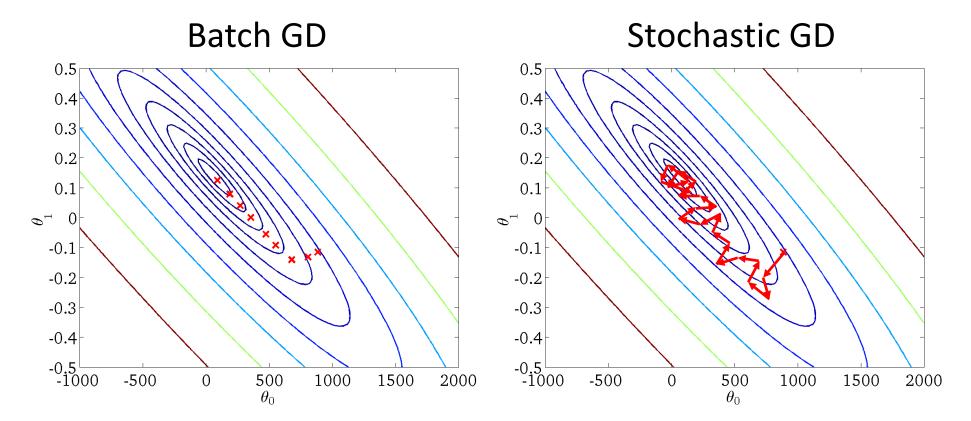
Stochastic Gradient Descent

```
Randomly shuffle dataset
```

Initialize θ

Repeat { (Typically 1 – 10x) $\text{For } i=1...n\text{, } \textit{do} \\ \theta_j \leftarrow \theta_j - \alpha \left(h_{\boldsymbol{\theta}}\left(\mathbf{x}_i\right) - y_i\right) x_{ij} \quad \text{for } j=0...d \\ \} \qquad \qquad \frac{\partial}{\partial \theta_i} \text{cost}_{\boldsymbol{\theta}}\left(\mathbf{x}_i, y_i\right)$

Batch vs Stochastic GD



- Learning rate α is typically held constant
- Can slowly decrease α over time to force θ to converge:

e.g.,
$$\alpha_t = \frac{\text{constant1}}{\text{iterationNumber} + \text{constant2}}$$

23

Adagrad

New Stochastic Gradient Algorithms

- So far, we have considered:
 - a constant learning rate α
 - a time-dependent learning rate α_t via a pre-set formula
- AdaGrad adjusts the learning rate based on historical information
 - Frequently occurring features in the gradients get small learning rates and infrequent features get higher ones
 - Key idea: "learn slowly" from frequent features but "pay attention" to rare but informative features
- Define a per-feature learning rate for feature j as:

$$lpha_{t,j} = rac{lpha}{\sqrt{G_{t,j}}}$$
 where $G_{t,j} = \sum_{k=1}^t g_{k,j}^2 rac{\partial}{\partial \theta_j} \mathrm{cost}_{m{ heta}}(\mathbf{x}_k, y_k)$

• $G_{t,j}$ is the sum of squares of gradients of feature j through time t

New Stochastic Gradient Algorithms

Adagrad per-feature learning rate

$$\alpha_{t,j} = \frac{\alpha}{\sqrt{G_{t,j}}}$$

$$lpha_{t,j} = rac{lpha}{\sqrt{G_{t,j}}}$$
 where $G_{t,j} = \sum_{k=1}^{t} g_{k,j}^2$

Adagrad changes the update rule for SGD at time t from

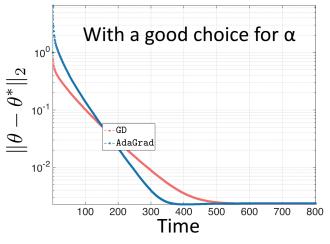
$$\theta_j \leftarrow \theta_j - \alpha g_{t,j}$$

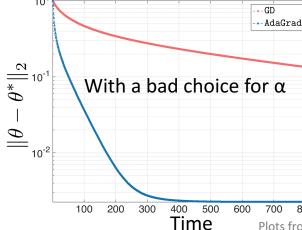
to

$$\theta_j \leftarrow \theta_j - \frac{\alpha}{\sqrt{G_{t,j}} + \zeta} g_{t,j} \qquad \begin{array}{|l|l|} \text{In practice, we add a small constant } \zeta > 0 \\ \text{to prevent dividing} \end{array}$$

by zero errors

Adagrad converges quickly:



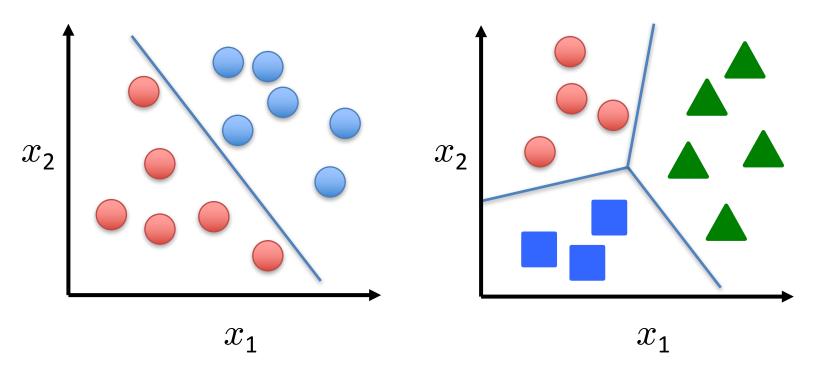


Multi-Class Classification

Multi-Class Classification

Binary classification:

Multi-class classification:



Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

Multi-Class Logistic Regression

For 2 classes:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})} = \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 0} \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 0}$$

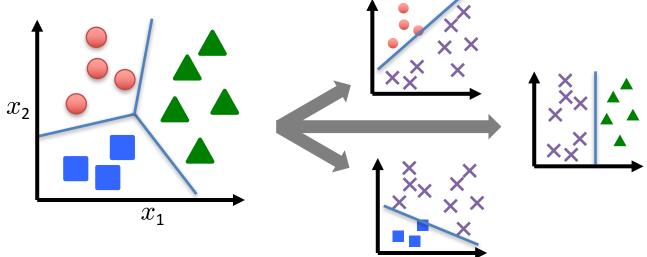
• For *C* classes {1, ..., *C*}:

$$p(y = c \mid \boldsymbol{x}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_C) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

Called the softmax function

Multi-Class Logistic Regression

Split into One vs Rest:



• Train a logistic regression classifier for each class i to predict the probability that y = i with

$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^{\mathsf{T}} \boldsymbol{x})}{\sum_{c=1}^{C} \exp(\boldsymbol{\theta}_c^{\mathsf{T}} \boldsymbol{x})}$$

Implementing Multi-Class Logistic Regression

• Use
$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$
 as the model for class c

- Gradient descent simultaneously updates all parameters for all models
 - Same derivative as before, just with the above $h_c(\boldsymbol{x})$
- Predict class label as the most probable label

$$\max_{c} h_c(\boldsymbol{x})$$