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Classification	Based	on	Probability
• Instead	of	just	predicting	the	class,	give	the	probability	
of	the	instance	being	that	class
– i.e.,	learn

• Comparison	to	perceptron:
– Perceptron	doesn’t	produce	probability	estimate
– Perceptron	(and	other	discriminative	classifiers)	are	only	
interested	in	producing	a	discriminative	model

• Recall	that:
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p(y | x)

p(event) + p(¬event) = 1

0  p(event)  1



Logistic	Regression
• Takes	a	probabilistic	approach	to	learning	
discriminative	functions	(i.e.,	a	classifier)

• should	give
– Want

• Logistic	regression	model:
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h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

0  h✓(x)  1

Can’t	just	use	linear	
regression	with	a	

threshold

g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx

Logistic	/	Sigmoid	Function

h✓(x) p(y = 1 | x;✓)



Interpretation	of	Hypothesis	Output
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=	estimated	

à Tell	patient	that	70%	chance	of	tumor	being	malignant	

Example:		Cancer	diagnosis	from	tumor	size

h✓(x) p(y = 1 | x;✓)

x =


x0

x1

�
=


1

tumorSize

�

h✓(x) = 0.7

p(y = 0 | x;✓) + p(y = 1 | x;✓) = 1Note	that:

Based	on	example	by	Andrew	Ng

Therefore, p(y = 0 | x;✓) = 1� p(y = 1 | x;✓)



Another	Interpretation
• Equivalently,	logistic	regression	assumes	that

• In	other	words,	logistic	regression	assumes	that	the	
log	odds	is	a	linear	function	of	
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log
p(y = 1 | x;✓)
p(y = 0 | x;✓) = ✓0 + ✓1x1 + . . .+ ✓dxd

x

Side	Note:		the	odds	in	favor	of	an	event	is	the	quantity	
p /	(1	−	p),	where	p is	the	probability	of	the	event

E.g.,	If	I	toss	a	fair	dice,	what	are	the	odds	that	I	will	have	a	6?

odds	of	y =	1

Based	on	slide	by	Xiaoli Fern



Logistic	Regression

• Assume	a	threshold	and...

– Predict	y =	1	if		
– Predict	y =	0	if		
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h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

g(z) =
1

1 + e�z

h✓(x) � 0.5

h✓(x) < 0.5

y =	1	

y =	0	

✓

Based	on	slide	by	Andrew	Ng

should	be	large	negative
values	for	negative	instances

h✓(x) = g (✓|x) should	be	large	positive
values	for	positive	instances

h✓(x) = g (✓|x)



Non-Linear	Decision	Boundary
• Can	apply	basis	function	expansion	to	features,	same	
as	with	linear	regression
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Logistic	Regression

• Given

where

• Model:
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x| =
⇥
1 x1 . . . xd

⇤
✓ =

2

6664

✓0
✓1
...
✓d

3

7775

h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

n⇣
x(1), y(1)

⌘
,
⇣
x(2), y(2)

⌘
, . . . ,

⇣
x(n), y(n)

⌘o

x(i) 2 Rd, y(i) 2 {0, 1}



Logistic	Regression	Objective	Function
• Can’t	just	use	squared	loss	as	in	linear	regression:

– Using	the	logistic	regression	model

results	in	a	non-convex	optimization
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J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

h✓(x) =
1

1 + e�✓Tx



Deriving	the	Cost	Function	via	
Maximum	Likelihood	Estimation

• Likelihood	of	data	is	given	by:

• So,	looking	for	the	θ that	maximizes	the	likelihood

• Can	take	the	log	without	changing	the	solution:	
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l(✓) =
nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax
✓

l(✓) = argmax
✓

nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax
✓

log
nY

i=1

p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

✓MLE = argmax
✓

log
nY

i=1

p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

log p(y(i) | x(i);✓)



Deriving	the	Cost	Function	via	
Maximum	Likelihood	Estimation
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• Expand	as	follows:

• Substitute	in	model,	and	take	negative	to	yield

✓MLE = argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i);✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i);✓)

⌘i

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

Logistic	regression	objective:
min
✓

J(✓)

✓MLE = argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i);✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i);✓)

⌘i



Intuition	Behind	the	Objective

• Cost	of	a	single	instance:

• Can	re-write	objective	function	as
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J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

J(✓) =
nX

i=1

cost
⇣
h✓(x

(i)), y(i)
⌘

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
Compare	to	linear	regression:



Intuition	Behind	the	Objective
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

Aside:		Recall	the	plot	of	log(z)



Intuition	Behind	the	Objective

If	y =	1
• Cost	=	0	if	prediction	is	correct
• As

• Captures	intuition	that	larger	
mistakes	should	get	larger	
penalties
– e.g.,	predict																						,	but	y =	1
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

h✓(x) ! 0, cost ! 1

h✓(x) = 0

Based	on	example	by	Andrew	Ng

If	y =	1

10

cost

h✓(x) = 0



Intuition	Behind	the	Objective
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cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

If	y =	0

10

cost

If	y =	1

If	y =	0
• Cost	=	0	if	prediction	is	correct
• As

• Captures	intuition	that	larger	
mistakes	should	get	larger	
penalties

(1� h✓(x)) ! 0, cost ! 1

Based	on	example	by	Andrew	Ng

h✓(x) = 0



Regularized	Logistic	Regression

• We	can	regularize	logistic	regression	exactly	as	before:
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J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

Jregularized(✓) = J(✓) +
�

2

dX

j=1

✓2j

= J(✓) +
�

2
k✓[1:d]k22



Gradient	Descent	for	Logistic	Regression
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• Initialize	
• Repeat	until	convergence

✓

✓j  ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j =	0	...	d

Want min
✓

J(✓)

Use	the	natural	logarithm	(ln =	loge)	to	cancel	with	the	exp()	in	 h✓(x) =
1

1 + e�✓Tx

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

+
�

2
k✓[1:d]k22



Gradient	Descent	for	Logistic	Regression

18

Want min
✓

J(✓)

• Initialize	
• Repeat	until	convergence

✓
(simultaneous	update	for	j =	0	...	d)

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

+
�

2
k✓[1:d]k22

✓0  ✓0 � ↵
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

✓j  ✓j � ↵

"
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j + �✓j

#



Gradient	Descent	for	Logistic	Regression
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• Initialize	
• Repeat	until	convergence

✓
(simultaneous	update	for	j =	0	...	d)

This	looks	IDENTICAL	to	linear	regression!!!
• Ignoring	the	1/n constant
• However,	the	form	of	the	model	is	very	different:

h✓(x) =
1

1 + e�✓Tx

✓0  ✓0 � ↵
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

✓j  ✓j � ↵

"
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j + �✓j

#



Stochastic	Gradient	Descent
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Consider	Learning	with	Numerous	Data
• Logistic	regression	objective:

• Fit	via	gradient	descent:

• What	is	the	computational	complexity	in	terms	of	n?
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✓j  ✓j � ↵
1

n

nX

i=1

(h✓ (xi)� yi)xij

J(✓) = � 1

n

nX

i=1

[yi log h✓(xi) + (1� yi) log (1� h✓(xi))]

@

@✓j
cost✓(xi, yi)



Gradient	Descent
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Batch	Gradient	Descent
Initialize	θ
Repeat	{

}
✓j  ✓j � ↵

1

n

nX

i=1

(h✓ (xi)� yi)xij for	j = 0...d

Stochastic	Gradient	Descent
Initialize	θ
Randomly	shuffle	dataset
Repeat	{

For	i = 1...n,	do

}
for	j = 0...d✓j  ✓j � ↵ (h✓ (xi)� yi)xij

@

@✓j
J(✓)

@

@✓j
cost✓(xi, yi)

(Typically	1	– 10x)



Batch	vs Stochastic	GD
Batch	GD Stochastic	GD
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• Learning	rate	α		is	typically	held	constant
• Can	slowly	decrease	α	over	time	to	force	θ to	converge:

e.g.,

Based	on	slide	by	Andrew	Ng

↵t =
constant1

iterationNumber + constant2



Adagrad

24



New	Stochastic	Gradient	Algorithms	

• So	far,	we	have	considered:
• a	constant	learning	rate	α
• a	time-dependent	learning	rate	αt	via	a	pre-set	formula

• AdaGrad adjusts	the	learning	rate	based	on	historical	information
• Frequently	occurring	features	in	the	gradients	get	small	learning	

rates	and	infrequent	features	get	higher	ones	
• Key	idea:	“learn	slowly”	from	frequent	features	but	“pay	attention”	

to	rare	but	informative	features

• Define	a	per-feature	learning	rate	for	feature	j as:	

• Gt,j is	the	sum	of	squares	of	gradients	of	feature	j through	time	t
25

↵t,j =
↵p
Gt,j

Gt,j =
tX

k=1

g2k,jwhere @

@✓j
cost✓(xk, yk)



k✓
�
✓⇤
k 2

Time

With	a	bad	choice	for	α

k✓
�
✓⇤
k 2

Time

With	a	good	choice	for	α

New	Stochastic	Gradient	Algorithms	

• Adagrad changes	the	update	rule	for	SGD	at	time	t from

to

• Adagrad converges	quickly:
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↵t,j =
↵p
Gt,j

Gt,j =
tX

k=1

g2k,jwhere

Adagrad per-feature	learning	rate

✓j  ✓j �
↵p

Gt,j + ⇣
gt,j

✓j  ✓j � ↵gt,j

In	practice,	we	add	a	
small	constant	𝜁 >	0	
to	prevent	dividing	

by	zero	errors

Plots	from	http://akyrillidis.github.io/notes/AdaGrad



Multi-Class	Classification
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Multi-Class	Classification

Disease	diagnosis:	 healthy	/	cold	/	flu	/	pneumonia

Object	classification: desk	/	chair	/	monitor	/	bookcase
28

x1

x2

x1

x2

Binary	classification: Multi-class	classification:



h✓(x) =
1

1 + exp(�✓Tx)
=

exp(✓Tx)

1 + exp(✓Tx)

Multi-Class	Logistic	Regression
• For	2	classes:

• For	C classes	{1,	...,	C }:

– Called	the	softmax function

29

h✓(x) =
1

1 + exp(�✓Tx)
=

exp(✓Tx)

1 + exp(✓Tx)

weight	
assigned	to	y =	

0

weight	
assigned	to	y =	

1

p(y = c | x;✓1, . . . ,✓C) =
exp(✓T

c x)PC
c=1 exp(✓

T
c x)



Multi-Class	Logistic	Regression

• Train	a	logistic	regression	classifier	for	each	class		i
to	predict	the	probability	that	y =	i with
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x1

x2

Split	into	One	vs Rest:

hc(x) =
exp(✓T

c x)PC
c=1 exp(✓

T
c x)



hc(x) =
exp(✓T

c x)PC
c=1 exp(✓

T
c x)

Implementing	Multi-Class	
Logistic	Regression

• Use																																																			as	the	model	for	class	c

• Gradient	descent	simultaneously	updates	all	parameters	
for	all	models
– Same	derivative	as	before,	just	with	the	above	hc(x)

• Predict	class	label	as	the	most	probable	label	
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max
c

hc(x)


