
Logistic	Regression

Robot	Image	Credit:	Viktoriya Sukhanova ©	123RF.com

These	slides	were	assembled	by	Eric	Eaton,	with	grateful	acknowledgement	of	the	many	others	who	made	
their	course	materials	freely	available	online.	Feel	free	to	reuse	or	adapt	these	slides	for	your	own	academic	
purposes,	provided	that	you	include	proper	attribution.	Please	send	comments	and	corrections	to	Eric.	

Classification	Based	on	Probability
• Instead	of	just	predicting	the	class,	give	the	probability	
of	the	instance	being	that	class
– i.e.,	learn

• Comparison	to	perceptron:
– Perceptron	doesn’t	produce	probability	estimate
– Perceptron	(and	other	discriminative	classifiers)	are	only	
interested	in	producing	a	discriminative	model

• Recall	that:

2

p(y | x)

p(event) + p(¬event) = 1

0  p(event)  1

Logistic	Regression
• Takes	a	probabilistic	approach	to	learning	
discriminative	functions	(i.e.,	a	classifier)

• should	give
– Want

• Logistic	regression	model:

3

h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

0  h✓(x)  1

Can’t	just	use	linear	
regression	with	a	

threshold

g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx

Logistic	/	Sigmoid	Function

h✓(x) p(y = 1 | x;✓)

Interpretation	of	Hypothesis	Output

4

=	estimated	

à Tell	patient	that	70%	chance	of	tumor	being	malignant	

Example:		Cancer	diagnosis	from	tumor	size

h✓(x) p(y = 1 | x;✓)

x =


x0

x1

�
=


1

tumorSize

�

h✓(x) = 0.7

p(y = 0 | x;✓) + p(y = 1 | x;✓) = 1Note	that:

Based	on	example	by	Andrew	Ng

Therefore, p(y = 0 | x;✓) = 1� p(y = 1 | x;✓)

Another	Interpretation
• Equivalently,	logistic	regression	assumes	that

• In	other	words,	logistic	regression	assumes	that	the	
log	odds	is	a	linear	function	of	

5

log
p(y = 1 | x;✓)
p(y = 0 | x;✓) = ✓0 + ✓1x1 + . . .+ ✓dxd

x

Side	Note:		the	odds	in	favor	of	an	event	is	the	quantity	
p /	(1	−	p),	where	p is	the	probability	of	the	event

E.g.,	If	I	toss	a	fair	dice,	what	are	the	odds	that	I	will	have	a	6?

odds	of	y =	1

Based	on	slide	by	Xiaoli Fern

Logistic	Regression

• Assume	a	threshold	and...

– Predict	y =	1	if		
– Predict	y =	0	if		

6

h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

g(z) =
1

1 + e�z

h✓(x) � 0.5

h✓(x) < 0.5

y =	1	

y =	0	

✓

Based	on	slide	by	Andrew	Ng

should	be	large	negative
values	for	negative	instances

h✓(x) = g (✓|x) should	be	large	positive
values	for	positive	instances

h✓(x) = g (✓|x)

Non-Linear	Decision	Boundary
• Can	apply	basis	function	expansion	to	features,	same	
as	with	linear	regression

7

x =

2

4
1
x1

x2

3

5 !

2

6666666666666664

1
x1

x2

x1x2

x2
1

x2
2

x2
1x2

x1x2
2

...

3

7777777777777775

Logistic	Regression

• Given

where

• Model:

8

x| =
⇥
1 x1 . . . xd

⇤
✓ =

2

6664

✓0
✓1
...
✓d

3

7775

h✓(x) = g (✓|x)

g(z) =
1

1 + e�z

n⇣
x(1), y(1)

⌘
,
⇣
x(2), y(2)

⌘
, . . . ,

⇣
x(n), y(n)

⌘o

x(i) 2 Rd, y(i) 2 {0, 1}

Logistic	Regression	Objective	Function
• Can’t	just	use	squared	loss	as	in	linear	regression:

– Using	the	logistic	regression	model

results	in	a	non-convex	optimization

9

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2

h✓(x) =
1

1 + e�✓Tx

Deriving	the	Cost	Function	via	
Maximum	Likelihood	Estimation

• Likelihood	of	data	is	given	by:

• So,	looking	for	the	θ that	maximizes	the	likelihood

• Can	take	the	log	without	changing	the	solution:	

10

l(✓) =
nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax
✓

l(✓) = argmax
✓

nY

i=1

p(y(i) | x(i);✓)

✓MLE = argmax
✓

log
nY

i=1

p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

✓MLE = argmax
✓

log
nY

i=1

p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

Deriving	the	Cost	Function	via	
Maximum	Likelihood	Estimation

11

• Expand	as	follows:

• Substitute	in	model,	and	take	negative	to	yield

✓MLE = argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i);✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i);✓)

⌘i

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

Logistic	regression	objective:
min
✓

J(✓)

✓MLE = argmax
✓

nX

i=1

log p(y(i) | x(i);✓)

= argmax
✓

nX

i=1

h
y(i) log p(y(i)=1 | x(i);✓) +

⇣
1� y(i)

⌘
log

⇣
1� p(y(i)=1 | x(i);✓)

⌘i

Intuition	Behind	the	Objective

• Cost	of	a	single	instance:

• Can	re-write	objective	function	as

12

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

J(✓) =
nX

i=1

cost
⇣
h✓(x

(i)), y(i)
⌘

J(✓) =
1

2n

nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘2
Compare	to	linear	regression:

Intuition	Behind	the	Objective

13

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

Aside:		Recall	the	plot	of	log(z)

Intuition	Behind	the	Objective

If	y =	1
• Cost	=	0	if	prediction	is	correct
• As

• Captures	intuition	that	larger	
mistakes	should	get	larger	
penalties
– e.g.,	predict																						,	but	y =	1

14

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

h✓(x) ! 0, cost ! 1

h✓(x) = 0

Based	on	example	by	Andrew	Ng

If	y =	1

10

cost

h✓(x) = 0

Intuition	Behind	the	Objective

15

cost (h✓(x), y) =

⇢
� log(h✓(x)) if y = 1

� log(1� h✓(x)) if y = 0

If	y =	0

10

cost

If	y =	1

If	y =	0
• Cost	=	0	if	prediction	is	correct
• As

• Captures	intuition	that	larger	
mistakes	should	get	larger	
penalties

(1� h✓(x)) ! 0, cost ! 1

Based	on	example	by	Andrew	Ng

h✓(x) = 0

Regularized	Logistic	Regression

• We	can	regularize	logistic	regression	exactly	as	before:

16

J(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

Jregularized(✓) = J(✓) +
�

2

dX

j=1

✓2j

= J(✓) +
�

2
k✓[1:d]k22

Gradient	Descent	for	Logistic	Regression

17

• Initialize	
• Repeat	until	convergence

✓

✓j ✓j � ↵
@

@✓j
J(✓) simultaneous	update	

for	j =	0	...	d

Want min
✓

J(✓)

Use	the	natural	logarithm	(ln =	loge)	to	cancel	with	the	exp()	in	 h✓(x) =
1

1 + e�✓Tx

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

+
�

2
k✓[1:d]k22

Gradient	Descent	for	Logistic	Regression

18

Want min
✓

J(✓)

• Initialize	
• Repeat	until	convergence

✓
(simultaneous	update	for	j =	0	...	d)

Jreg(✓) = �
nX

i=1

h
y(i) log h✓(x

(i)) +
⇣
1� y(i)

⌘
log

⇣
1� h✓(x

(i))
⌘i

+
�

2
k✓[1:d]k22

✓0 ✓0 � ↵
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

✓j ✓j � ↵

"
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j + �✓j

#

Gradient	Descent	for	Logistic	Regression

19

• Initialize	
• Repeat	until	convergence

✓
(simultaneous	update	for	j =	0	...	d)

This	looks	IDENTICAL	to	linear	regression!!!
• Ignoring	the	1/n constant
• However,	the	form	of	the	model	is	very	different:

h✓(x) =
1

1 + e�✓Tx

✓0 ✓0 � ↵
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘

✓j ✓j � ↵

"
nX

i=1

⇣
h✓

⇣
x(i)

⌘
� y(i)

⌘
x(i)
j + �✓j

#

Stochastic	Gradient	Descent

20

Consider	Learning	with	Numerous	Data
• Logistic	regression	objective:

• Fit	via	gradient	descent:

• What	is	the	computational	complexity	in	terms	of	n?

21

✓j ✓j � ↵
1

n

nX

i=1

(h✓ (xi)� yi)xij

J(✓) = � 1

n

nX

i=1

[yi log h✓(xi) + (1� yi) log (1� h✓(xi))]

@

@✓j
cost✓(xi, yi)

Gradient	Descent

22

Batch	Gradient	Descent
Initialize	θ
Repeat	{

}
✓j ✓j � ↵

1

n

nX

i=1

(h✓ (xi)� yi)xij for	j = 0...d

Stochastic	Gradient	Descent
Initialize	θ
Randomly	shuffle	dataset
Repeat	{

For	i = 1...n,	do

}
for	j = 0...d✓j ✓j � ↵ (h✓ (xi)� yi)xij

@

@✓j
J(✓)

@

@✓j
cost✓(xi, yi)

(Typically	1	– 10x)

Batch	vs Stochastic	GD
Batch	GD Stochastic	GD

23

• Learning	rate	α		is	typically	held	constant
• Can	slowly	decrease	α	over	time	to	force	θ to	converge:

e.g.,

Based	on	slide	by	Andrew	Ng

↵t =
constant1

iterationNumber + constant2

Adagrad

24

New	Stochastic	Gradient	Algorithms	

• So	far,	we	have	considered:
• a	constant	learning	rate	α
• a	time-dependent	learning	rate	αt	via	a	pre-set	formula

• AdaGrad adjusts	the	learning	rate	based	on	historical	information
• Frequently	occurring	features	in	the	gradients	get	small	learning	

rates	and	infrequent	features	get	higher	ones	
• Key	idea:	“learn	slowly”	from	frequent	features	but	“pay	attention”	

to	rare	but	informative	features

• Define	a	per-feature	learning	rate	for	feature	j as:	

• Gt,j is	the	sum	of	squares	of	gradients	of	feature	j through	time	t
25

↵t,j =
↵p
Gt,j

Gt,j =
tX

k=1

g2k,jwhere @

@✓j
cost✓(xk, yk)

k✓
�
✓⇤
k 2

Time

With	a	bad	choice	for	α

k✓
�
✓⇤
k 2

Time

With	a	good	choice	for	α

New	Stochastic	Gradient	Algorithms	

• Adagrad changes	the	update	rule	for	SGD	at	time	t from

to

• Adagrad converges	quickly:

26

↵t,j =
↵p
Gt,j

Gt,j =
tX

k=1

g2k,jwhere

Adagrad per-feature	learning	rate

✓j ✓j �
↵p

Gt,j + ⇣
gt,j

✓j ✓j � ↵gt,j

In	practice,	we	add	a	
small	constant	𝜁 >	0	
to	prevent	dividing	

by	zero	errors

Plots	from	http://akyrillidis.github.io/notes/AdaGrad

Multi-Class	Classification

27

Multi-Class	Classification

Disease	diagnosis:	 healthy	/	cold	/	flu	/	pneumonia

Object	classification: desk	/	chair	/	monitor	/	bookcase
28

x1

x2

x1

x2

Binary	classification: Multi-class	classification:

h✓(x) =
1

1 + exp(�✓Tx)
=

exp(✓Tx)

1 + exp(✓Tx)

Multi-Class	Logistic	Regression
• For	2	classes:

• For	C classes	{1,	...,	C }:

– Called	the	softmax function

29

h✓(x) =
1

1 + exp(�✓Tx)
=

exp(✓Tx)

1 + exp(✓Tx)

weight	
assigned	to	y =	

0

weight	
assigned	to	y =	

1

p(y = c | x;✓1, . . . ,✓C) =
exp(✓T

c x)PC
c=1 exp(✓

T
c x)

Multi-Class	Logistic	Regression

• Train	a	logistic	regression	classifier	for	each	class		i
to	predict	the	probability	that	y =	i with

30

x1

x2

Split	into	One	vs Rest:

hc(x) =
exp(✓T

c x)PC
c=1 exp(✓

T
c x)

hc(x) =
exp(✓T

c x)PC
c=1 exp(✓

T
c x)

Implementing	Multi-Class	
Logistic	Regression

• Use																																																			as	the	model	for	class	c

• Gradient	descent	simultaneously	updates	all	parameters	
for	all	models
– Same	derivative	as	before,	just	with	the	above	hc(x)

• Predict	class	label	as	the	most	probable	label	

31

max
c

hc(x)

