
Support Vector Machines
& Kernels

Doing really well with linear decision surfaces

Adapted from slides by Tim Oates Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made
their course materials freely available online. Feel free to reuse or adapt these slides for your own academic
purposes, provided that you include proper attribution. Please send comments and corrections to Eric.

Outline

n Prediction
n Why might predictions be wrong?

n Support vector machines
n Doing really well with linear models

n Kernels
n Making the non-linear linear

Why Might Predictions be Wrong?
• True non-determinism
– Flip a biased coin
– p(heads) = q
– Estimate q
– If q > 0.5 predict ‘heads’, else ‘tails’

Lots of ML research on problems like this:
– Learn a model
– Do the best you can in expectation

Why Might Predictions be Wrong?
• Partial observability
– Something needed to predict y is missing from observation x
– N-bit parity problem

• x contains N-1 bits (hard PO)
• x contains N bits but learner ignores some of them (soft PO)

• Noise in the observation x
– Measurement error
– Instrument limitations

Why Might Predictions be Wrong?
• True non-determinism
• Partial observability
– hard, soft

• Representational bias
• Algorithmic bias
• Bounded resources

Representational Bias

• Having the right features (x) is crucial

0 x x2

Support Vector Machines

Doing Really Well with Linear
Decision Surfaces

Strengths of SVMs
• Good generalization
– in theory
– in practice

• Works well with few training instances
• Find globally best model
• Efficient algorithms
• Amenable to the kernel trick

Minor Notation Change
To better match notation used in SVMs
...and to make matrix formulas simpler

We will drop using superscripts for the i th instance

9

x(i)

y(i)

xi

x(i)
j xij

yi

i th instance

i th instance label

j th feature of i th instance

Bold denotes
vector

Non-bold
denotes scalar
Non-bold
denotes scalar

Linear Separators

• Training instances

• Model parameters

• Hyperplane

• Decision function

y 2 {�1, 1}
x 2 Rd+1, x0 = 1

✓ 2 Rd+1

✓|x = h✓,xi = 0

Recall:
Inner (dot) product:
hu,vi = u · v = u|v

=
X

i

uivi

h(x) = sign(✓|x) = sign(h✓,xi)

Intuitions

Intuitions

Intuitions

Intuitions

A �Good� Separator

Noise in the Observations

Ruling Out Some Separators

Lots of Noise

Only One Separator Remains

Maximizing the Margin

�Fat� Separators

�Fat� Separators
margin

Why Maximize Margin
Increasing margin reduces capacity
• i.e., fewer possible models

Lesson from Learning Theory:
• If the following holds:
– H is sufficiently constrained in size
– and/or the size of the training data set n is large,
then low training error is likely to be evidence of low
generalization error

23

Alternative View of Logistic Regression

24

h✓(x) =
1

1 + e�✓Tx

J(✓) = �
nX

i=1

[yi log h✓(xi) + (1� yi) log (1� h✓(xi))]

min
✓

J(✓)

h✓(x) = g(z)

z = ✓Txh✓(x) = g(z)

z = ✓Tx

cost1(✓
|xi) cost0(✓

|xi)

The Logistic Regression Objective Function:

If , we want ,
h✓(x) ⇡ 1

h✓(x) ⇡ 0

y = 1

y = 0

✓Tx � 0

✓Tx ⌧ 0

If , we want , ✓Tx � 0

✓Tx ⌧ 0

y = 1

y = 0

h✓(x) ⇡ 1

h✓(x) ⇡ 0

Intuition:

Alternate View of Logistic Regression

26

Cost of example: �yi log h✓(xi)� (1� yi) log (1� h✓(xi))
h✓(x) = g(z)

z = ✓Tx

If (want):✓Tx � 0

✓Tx ⌧ 0

y = 1

y = 0

If (want):
✓Tx � 0

✓Tx ⌧ 0

y = 1

y = 0

h✓(x) =
1

1 + e�✓Tx

Based on slide by Andrew Ng

Logistic Regression to SVMs
Logistic Regression:

Support Vector Machines:

27

min
✓

�
nX

i=1

[yi log h✓(xi) + (1� yi) log (1� h✓(xi))] +
�

2

dX

j=1

✓2j

min
✓

C
nX

i=1

[yicost1(✓
|xi) + (1� yi) cost0(✓

|xi)] +
1

2

dX

j=1

✓2j

You can think of C as similar to 1
�

Support Vector Machine

28

-1 1 -1 1

min
✓

C
nX

i=1

[yicost1(✓
|xi) + (1� yi) cost0(✓

|xi)] +
1

2

dX

j=1

✓2j

If (want):y = 1

y = 0

If (want):
y = 1

y = 0✓|x � 1 ✓|x �1

`hinge(h(x)) = max(0, 1� y · h(x))

Based on slide by Andrew Ng

Support Vector Machine

29

min
✓

C
nX

i=1

[yicost1(✓
|xi) + (1� yi) cost0(✓

|xi)] +
1

2

dX

j=1

✓2j

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi �1 if yi = �1

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi �1 if yi = �1

with C = 1

min
✓

1

2

dX

j=1

✓2j

s.t. yi(✓
|xi) � 1

y = +1 / -1

y = 1 / 0

Maximum Margin Hyperplane

✓|x = 1 ✓|x = �1

✓

margin = 2

k✓k2

Support Vectors

✓|x = 1 ✓|x = �1

✓

Large Margin Classifier in
Presence of Outliers

32

x1

x2

C very large

C not too large

Based on slide by Andrew Ng

θ

u 1

u 2
u

vv 2

v 1

Vector Inner Product

33

kuk2 = length(u) 2 R

=
q

u2
1 + u2

2

u|v = v|u
= u1v1 + u2v2

= kuk2 kvk2 cos ✓
= pkuk2 where p = kvk2 cos ✓

p

u|v = v|u
= u1v1 + u2v2

= kuk2 kvk2 cos ✓
= pkuk2 where p = kvk2 cos ✓

u|v = v|u
= u1v1 + u2v2

= kuk2 kvk2 cos ✓
= pkuk2 where p = kvk2 cos ✓

u|v = v|u
= u1v1 + u2v2

= kuk2 kvk2 cos ✓
= pkuk2 where p = kvk2 cos ✓

Based on example by Andrew Ng

θ p

Understanding the Hyperplane

34

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi �1 if yi = �1

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi �1 if yi = �1

θ

x

Assume θ0 = 0 so that the
hyperplane is centered at
the origin, and that d = 2

✓|x = k✓k2 kxk2 cos ✓| {z }
p

= pk✓k2

Based on example by Andrew Ng

Maximizing the Margin

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi �1 if yi = �1

min
✓

1

2

dX

j=1

✓2j

s.t. ✓|xi � 1 if yi = 1

✓|xi �1 if yi = �1

Assume θ0 = 0 so that the
hyperplane is centered at
the origin, and that d = 2

Let pi be the projection of
xi onto the vector θ

θ

-θ
Since p is small, therefore must
be large to have (or ≤ -1)

k✓k2
pk✓k2 � 1

θ

Since p is larger, can be smaller
in order to have (or ≤ -1)

k✓k2
pk✓k2 � 1

-θ

Based on example by Andrew Ng

Size of the Margin
For the support vectors, we have
• p is the length of the projection of the SVs onto θ

36

θ
-θ

pk✓k2 = ±1

p

p =
1

k✓k2

margin = 2p =
2

k✓k2

Therefore,

margin

The SVM Dual Problem
The primal SVM problem was given as

Can solve it more efficiently by taking the Lagrangian dual
• Duality is a common idea in optimization
• It transforms a difficult optimization problem into a simpler one
• Key idea: introduce slack variables αi for each constraint

– αi indicates how important a particular constraint is to the solution

37

min
✓

1

2

dX

j=1

✓2j

s.t. yi(✓
|xi) � 1 8i

The SVM Dual Problem
• The Lagrangian is given by

• We must minimize over θ and maximize over α
• At optimal solution, partials w.r.t θ’s are 0

Solve by a bunch of algebra and calculus ...
and we obtain ...

38

L(✓,↵) =
1

2

dX

j=1

✓2j �
nX

i=1

↵i(yi✓
|x� 1)

s.t. ↵i � 0 8i

SVM Dual Representation

The decision function is given by

39

J(↵) =
nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjhxi,xji

s.t. ↵i � 0 8i
X

i

↵iyi = 0

Maximize

h(x) = sign

X

i2SV
↵iyihx,xii+ b

!

where b =
1

|SV|
X

i2SV

0

@yi �
X

j2SV
↵jyjhxi,xji

1

A

Understanding the Dual

40

J(↵) =
nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjhxi,xji

s.t. ↵i � 0 8i
X

i

↵iyi = 0

Maximize

Balances between the
weight of constraints for

different classes
Constraint weights (αi’s)

cannot be negative

Understanding the Dual

Intuitively, we should be more careful around points
near the margin 41

J(↵) =
nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjhxi,xji

s.t. ↵i � 0 8i
X

i

↵iyi = 0

Maximize

Points with different labels
increase the sum
Points with same label
decrease the sum

Measures the similarity
between points

Understanding the Dual

In the solution, either:
• αi > 0 and the constraint is tight ()

Øpoint is a support vector
• αi = 0

Øpoint is not a support vector
42

J(↵) =
nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjhxi,xji

s.t. ↵i � 0 8i
X

i

↵iyi = 0

Maximize

yi(✓
|xi) = 1

Employing the Solution
• Given the optimal solution α*, optimal weights are

– In this formulation, have not added x0 = 1

• Therefore, we can solve one of the SV constraints

to obtain θ0

– Or, more commonly, take the average solution over all
support vectors

43

✓? =
X

i2SVs

↵?
i yixi

yi(✓
? · xi + ✓0) = 1

What if Data Are Not
Linearly Separable?

• Cannot find θ that satisfies

• Introduce slack variables xi

• New problem:

min
✓

1

2

dX

j=1

✓2j

s.t. yi(✓
|xi) � 1 8i

yi(✓
|xi) � 1� ⇠i 8i

min
✓

1

2

dX

j=1

✓2j + C
X

i

⇠i

s.t. yi(✓
|xi) � 1� ⇠i 8i

Strengths of SVMs
• Good generalization in theory
• Good generalization in practice
• Work well with few training instances
• Find globally best model
• Efficient algorithms
• Amenable to the kernel trick …

What if Surface is Non-Linear?

X
X

X
X

X
X
O O

O
O

O
O OOOO

O
O
O
O O

O
O

O OO

Image from http://www.atrandomresearch.com/iclass/

Kernel Methods

Making the Non-Linear Linear

When Linear Separators Fail

0 x x2

Mapping into a New Feature Space

• For example, with

• Rather than run SVM on xi, run it on F(xi)
– Find non-linear separator in input space

• What if F(xi) is really big?
• Use kernels to compute it implicitly!

Image from http://web.engr.oregonstate.edu/ ~afern/classes/cs534/

� : X 7! X̂ = �(x)

�([xi1, xi2]) = [xi1, xi2, xi1xi2, x
2
i1, x

2
i2]

xi 2 R2

Kernels
• Find kernel K such that

• Computing should be efficient, much
more so than computing F(xi) and F(xj)

• Use in SVM algorithm rather than
• Remarkably, this is possible!

K(xi,xj) = h�(xi),�(xj)i

K(xi,xj) = h�(xi),�(xj)i

K(xi,xj) = h�(xi),�(xj)i hxi,xji

The Polynomial Kernel
Let and

Consider the following function:

where

xi = [xi1, xi2] xj = [xj1, xj2]xi = [xi1, xi2] xj = [xj1, xj2]

K(xi,xj) = hxi,xji2

= (xi1xj1 + xi2xj2)
2

= (x2
i1x

2
j1 + x2

i2x
2
j2 + 2xi1xi2xj1xj2)

= h�(xi),�(xj)i
�(xi) = [x2

i1, x
2
i2,

p
2xi1xi2]

�(xj) = [x2
j1, x

2
j2,

p
2xj1xj2]

K(xi,xj) = hxi,xji2

= (xi1xj1 + xi2xj2)
2

= (x2
i1x

2
j1 + x2

i2x
2
j2 + 2xi1xi2xj1xj2)

= h�(xi),�(xj)i
�(xi) = [x2

i1, x
2
i2,

p
2xi1xi2]

�(xj) = [x2
j1, x

2
j2,

p
2xj1xj2]

K(xi,xj) = hxi,xji2

= (xi1xj1 + xi2xj2)
2

= (x2
i1x

2
j1 + x2

i2x
2
j2 + 2xi1xi2xj1xj2)

= h�(xi),�(xj)i
�(xi) = [x2

i1, x
2
i2,

p
2xi1xi2]

�(xj) = [x2
j1, x

2
j2,

p
2xj1xj2]

K(xi,xj) = hxi,xji2

= (xi1xj1 + xi2xj2)
2

= (x2
i1x

2
j1 + x2

i2x
2
j2 + 2xi1xi2xj1xj2)

= h�(xi),�(xj)i
�(xi) = [x2

i1, x
2
i2,

p
2xi1xi2]

�(xj) = [x2
j1, x

2
j2,

p
2xj1xj2]

K(xi,xj) = hxi,xji2

= (xi1xj1 + xi2xj2)
2

= (x2
i1x

2
j1 + x2

i2x
2
j2 + 2xi1xi2xj1xj2)

= h�(xi),�(xj)i
�(xi) = [x2

i1, x
2
i2,

p
2xi1xi2]

�(xj) = [x2
j1, x

2
j2,

p
2xj1xj2]

The Polynomial Kernel
• Given by
– F(x) contains all monomials of degree d

• Useful in visual pattern recognition
– Example:

• 16x16 pixel image

• 1010 monomials of degree 5
• Never explicitly compute F(x) !

• Variation:
– Adds all lower-order monomials (degrees 1,...,d)!

K(xi,xj) = hxi,xjid

K(xi,xj) = (hxi,xji+ 1)d

The Kernel Trick

�Given an algorithm which is formulated
in terms of a positive definite kernel K1,
one can construct an alternative
algorithm by replacing K1 with another
positive definite kernel K2�

Ø SVMs can use the kernel trick

Incorporating Kernels into SVM

54

J(↵) =
nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjK(xi,xj)

s.t. ai � 0 8i
X

i

↵iyi = 0

J(↵) =
nX

i=1

↵i �
1

2

nX

i=1

nX

j=1

↵i↵jyiyjhxi,xji

s.t. ai � 0 8i
X

i

↵iyi = 0

The Gaussian Kernel
• Also called Radial Basis Function (RBF) kernel

– Has value 1 when xi = xj
– Value falls off to 0 with increasing distance
– Note: Need to do feature scaling before using Gaussian Kernel

55

K(xi,xj) = exp

✓
�kxi � xjk22

2�2

◆

higher bias,
lower variance

lower bias,
higher variance

-3
-1

1
3 -5

0
5

-3
-1

1
3 -5

0
5

-3
-1

1
3 -5

0
5

Gaussian Kernel Example

Predict +1 if

56

`2
`1

`3

✓0 + ✓1K(x, `1) + ✓2K(x, `2) + ✓3K(x, `3) � 0

K(xi,xj) = exp

✓
�kxi � xjk22

2�2

◆

✓ = [�0.5, 1, 1, 0]

Imagine we’ve learned that:

Based on example by Andrew Ng

Gaussian Kernel Example

Predict +1 if

• For x1, we have , other similarities ≈ 0

57

`2
`1

`3

✓0 + ✓1K(x, `1) + ✓2K(x, `2) + ✓3K(x, `3) � 0

K(xi,xj) = exp

✓
�kxi � xjk22

2�2

◆

✓ = [�0.5, 1, 1, 0]

Imagine we’ve learned that:

x1

K(x1, `1) ⇡ 1
✓0 + ✓1(1) + ✓2(0) + ✓3(0)

= �0.5 + 1(1) + 1(0) + 0(0)

= 0.5 � 0 , so predict +1
Based on example by Andrew Ng

✓0 + ✓1(0) + ✓2(0) + ✓3(1)

= �0.5 + 1(0) + 1(0) + 0(1)

= �0.5 < 0

Gaussian Kernel Example

Predict +1 if

• For x2, we have , other similarities ≈ 0

58

`2
`1

`3

✓0 + ✓1K(x, `1) + ✓2K(x, `2) + ✓3K(x, `3) � 0

K(xi,xj) = exp

✓
�kxi � xjk22

2�2

◆

✓ = [�0.5, 1, 1, 0]

Imagine we’ve learned that:

x2

K(x2, `3) ⇡ 1

, so predict -1
Based on example by Andrew Ng

Gaussian Kernel Example

Predict +1 if

59

`2
`1

`3

✓0 + ✓1K(x, `1) + ✓2K(x, `2) + ✓3K(x, `3) � 0

K(xi,xj) = exp

✓
�kxi � xjk22

2�2

◆

✓ = [�0.5, 1, 1, 0]

Imagine we’ve learned that:

Rough sketch of decision surface

Based on example by Andrew Ng

Other Kernels

60

K(xi,xj) = tanh (↵x|
i xj + c)

• Sigmoid Kernel

– Neural networks use sigmoid as activation function
– SVM with a sigmoid kernel is equivalent to 2-layer perceptron

• Cosine Similarity Kernel

– Popular choice for measuring similarity of text documents
– L2 norm projects vectors onto the unit sphere; their dot

product is the cosine of the angle between the vectors

K(xi,xj) =
x|
i xj

kxik kxjk

Other Kernels

61

• Chi-squared Kernel

– Widely used in computer vision applications
– Chi-squared measures distance between probability

distributions
– Data is assumed to be non-negative, often with L1 norm of 1

• String kernels
• Tree kernels
• Graph kernels

K(xi,xj) = exp

��
X

k

(xik � xjk)2

xik + xjk

!

An Aside: The Math Behind Kernels

What does it mean to be a kernel?

• for some F

What does it take to be a kernel?

• The Gram matrix
– Symmetric matrix

– Positive semi-definite matrix:

zTGz ≥ 0 for every non-zero vector

Establishing “kernel-hood” from first principles is non-trivial

K(xi,xj) = h�(xi),�(xj)i

Gij = K(xi,xj)

z 2 Rn

A Few Good Kernels...
• Linear Kernel

• Polynomial kernel
– c ≥ 0 trades off influence of lower order terms

• Gaussian kernel

• Sigmoid kernel

Many more...
• Cosine similarity kernel
• Chi-squared kernel
• String/tree/graph/wavelet/etc kernels

63

K(xi,xj) = hxi,xji

K(xi,xj) = (hxi,xji+ c)d

K(xi,xj) = exp

✓
�kxi � xjk22

2�2

◆

K(xi,xj) = tanh (↵x|
i xj + c)

Application: Automatic Photo Retouching
(Leyvand et al., 2008)

Practical Advice for Applying SVMs
• Use SVM software package to solve for parameters
– e.g., SVMlight, libsvm, cvx (fast!), etc.

• Need to specify:
– Choice of parameter C
– Choice of kernel function

• Associated kernel parameters

e.g.,

65

K(xi,xj) = (hxi,xji+ c)d

K(xi,xj) = exp

✓
�kxi � xjk22

2�2

◆

Multi-Class Classification with SVMs

• Many SVM packages already have multi-class
classification built in

• Otherwise, use one-vs-rest
– Train K SVMs, each picks out one class from rest,

yielding

– Predict class i with largest
66

✓(1), . . . ,✓(K)

(✓(i))|x

y 2 {1, . . . ,K}

Based on slide by Andrew Ng

SVMs vs Logistic Regression
(Advice from Andrew Ng)

n = # training examples d = # features

If d is large (relative to n) (e.g., d > n with d = 10,000, n = 10-1,000)

• Use logistic regression or SVM with a linear kernel

If d is small (up to 1,000), n is intermediate (up to 10,000)

• Use SVM with Gaussian kernel

If d is small (up to 1,000), n is large (50,000+)

• Create/add more features, then use logistic regression or SVM
without a kernel

Neural networks likely to work well for most of these
settings, but may be slower to train

67Based on slide by Andrew Ng

Other SVM Variations

• nu SVM

– nu parameter controls:

• Fraction of support vectors (lower bound) and

misclassification rate (upper bound)

• E.g., guarantees that ≥ 5% of training points are

SVs and training error rate is ≤ 5%

– Harder to optimize than C-SVM and not as scalable

• SVMs for regression

• One-class SVMs

• SVMs for clustering

...

68

⌫ = 0.05

Conclusion
• SVMs find optimal linear separator
• The kernel trick makes SVMs learn non-linear

decision surfaces

• Strength of SVMs:
– Good theoretical and empirical performance
– Supports many types of kernels

• Disadvantages of SVMs:
– “Slow” to train/predict for huge data sets (but relatively fast!)

– Need to choose the kernel (and tune its parameters)

