Support Vector Machines

e & Kernels
\b' Jr:, e

| A

Doing really well with linear decision surfaces

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made
their course materials freely available online. Feel free to reuse or adapt these slides for your own academic
purposes, provided that you include proper attribution. Please send comments and corrections to Eric.

Adapted from slides by Tim Oates

Outline

m Prediction

= Why might predictions be wrong?
m Support vector machines

® Doing really well with linear models

m Kernels

= Making the non-linear linear

Why Might Predictions be Wrong?

* True non-determinism
— Flip a biased coin
— p(heads) = @
— Estimate @
— If 8> 0.5 predict ‘heads’, else ‘tails’

Lots of ML research on problems like this:
— Learn a model
— Do the best you can in expectation

Why Might Predictions be Wrong?

e Partial observability
— Something needed to predict y is missing from observation x
— IN-bit parity problem
* x contains N-1 bits (hard PO)

e x contains NN bits but learner ignores some of them (soft PO)

e Noise in the observation x

— Measurement error
— Instrument limitations

Why Might Predictions be Wrong?

True non-determinism

Partial observability
— hard, soft

Representational bias
Algorithmic bias
Bounded resources

Representational Bias

* Having the right features (x) is crucial

o $ ¥ ola ¥

Support Vector Machines

Doing Really Well with Linear
Decision Surfaces

Strengths of SVMs

Good generalization

— in theory

— In practice

Works well with few training instances
Find globally best model

Efficient algorithms

Amenable to the kernel trick

Minor Notation Change

To better match notation used in SVMs

...and to make matrix formulas simpler

We will drop using superscripts for the it instance

it instance (1)
1t instance label y(i)

5t feature of it instance ng.i)

Non-bold
denotes scalar

Linear Separators

* Training instances
X & Rd—'_l,mo =1

ye{~L1} Recall:
* Model parameters Inner (dot) product:
0 c RAt1 (,v) =u-v=u'v
* Hyperplane _ Zuivi
0Tx =(0,x) =0 i

* Decision function
h(x) = sign(07x) = sign((0,x))

Intuitions

Intuitions

Intuitions

Intuitions

A “Good” Separator

* . =
$ T e -
¢ T F =

Noise in the Observations

® OPS
& ¢
JEP Ce©

Ruling Out Some Separators

® ¢ = ©
S\ ot

G N\ ®

Lots of Noise

Maximizing the Margin

“Fat” Separators

“Fat” Separators

margin

Why Maximize Margin

Increasing margin reduces capacity

* j.e., fewer possible models

Lesson from Learning Theory:

* If the following holds:
— H is sufficiently constrained in size
— and/or the size of the training data set n is large,

then low training error is likely to be evidence of low
generalization error

Alternative View of Logistic Regression
1

o) = o (o) =a(e) |
J z=0"x

The Logistic Regression Objective Function:

n

J(0) = = [yiloghe(x;) + (1 — y;) log (1 — he(x;))]

1=1 \ Y J \ ' J

mein J(0) cost1(07x;) costo (07x;)

ntuition: If y =1, wewant hg(x) =~ 1, 8'x > 0
If y =0, wewant hg(x)~0, 8'x <0

Alternate View of Logistic Regression

Cost of example: —y; log hg(x;) — (1 — y;) log (1 — hg(%;))

1
h = _ T
B(X) 1 n e—HTX Z 0'x
fy=1(want@'x>>0): Ify=0(want@'x < 0):
35 T T r : 1 : 35 T T T 1 T
— log ' T —log(1 —)

1 +e*-

Based on slide by Andrew Ng

Logistic Regression to SVMs

Logistic Regression:

n d
. A 2
min —;m log g (x;) + (1 = i) log (1 — ha(x:))] + 3 Zfﬂ‘
1= j=
Support Vector Machines:
n d
. 1 5
min C;[yicostl(mxi) + (1 — y;) costg(0Tx;)] + 5 Zl 0
1= 7=

You can think of (' as similar to %

Support Vector Machine

n d
1
mein C’Z[yicostl(mxi) + (1 — ;) cost(07x;)] + 5 Z 9?
i=1 j=1
If y =1 (want 87x > 1): Ify =0 (want 0Tx < —1):
1 '1 1 I

lhinge(h(x)) = max(0, 1 — y - h(x))

Based on slide by Andrew Ng 23

Support Vector Machine

n d
. 1
min CZ[yicostl(HTxi) + (1 — ;) cost(07x;)] + Z 0
T . v=1/o T
with C=1 y=+1/-1
, |
- 2 . 2
i3 o130
_ —
s.t. 0Tx; > 1 if y; =1 o fF yi(HTXz‘) > 1

Maximum Margin Hyperplane

2

margin =
1612
1

A

Support Vectors

Large Margin Classifier in
Presence of Outliers

C very large

X X
X
X
C' not too large

7

on slide by Andrew Ng

32

asedone

Vector Inner Product

---------------- B |ufl2 = length(u) € R

i = \Jut 43

u'v=vlu
= U1V] + ULV
= |lull2 [|v]|2 cos b

= p|lull]2 where p = ||v||2 cos @

xample by Andrew Ng

33

Understanding the Hyperplane

d
I
ot s Z 03 Assume 6, = 0 so that the
Jj=1 hyperplane is centered at
the origin, and that d =2

]
p—

S.t. HTXi Z 1 if Y;

0Tx = |05 ||x]|2 cos 6
6 p

= pll0]]2

Based on example by Andrew Ng 4

Based on example by Andrew Ng

Maximizing the Margin

1 d
: 2
ngn§ 216’]-
J:

S.tT. HTXi

HTXi

NIV
p—
—

=

]

Assume 6, = 0 so that the
hyperplane is centered at
the origin, and that d =2

Let p, be the projection of
x,; onto the vector @

Since p is small, therefore ||@]/2 must
be large to have p||0||2 > 1 (or<-1)

Since pis larger, ||@]|2 can be smaller
in order to have p||@||2 > 1 (or<-1)

Size of the Margin

For the support vectors, we have pl||@|> = +1
* pisthe length of the projection of the SVs onto 6

,—ZZ—\ Therefore,
5 1
" el
margin = 2p = 2
160]]

.
margin

36

The SVM Dual Problem

The primal SVM problem was given as
d
.1 2
1in 5 Z 0
71=1
S.T. yZ(HTXZ) 2 1 Ve

Can solve it more efficiently by taking the Lagrangian dual
* Duality is a common idea in optimization

* |t transforms a difficult optimization problem into a simpler one
* Keyidea: introduce slack variables a; for each constraint

— q; indicates how important a particular constraint is to the solution

The SVM Dual Problem

 The Lagrangian is given by
d n
1
LO.a) =5) 07— oi(yifTx—1)
j=1 i=1

S.T. ; >0 V2

* We must minimize over # and maximize over a
* At optimal solution, partials w.r.t #'s are O

Solve by a bunch of algebra and calculus ...

and we obtain ...

SVM Dual Representation

'n, n

7::1 j:1

The decision function is given by

h(x) = sign (Z oy (X, X)) + b)
€SV
(yz Z ;Y X17XJ>)

where b = Z
|SV’ 1ESVY

1€SY

Understanding the Dual

Maximize J(«

S.t.

Balances between the
weight of constraints for
different classes

Z%——

n n

azag Yily; <Xu X >

7,131

OéZZO \4)

Z%‘yz‘ = 0]\
=

~_

Constraint weights (a’s)
cannot be negative

Understanding the Dual

’I’L n

Maximize J(« Z ; — — ozzajyzyj (xi,X;)

/

Pomts with different labels Measures the similarity
increase the sum

between points

Points with same label
decrease the sum

Intuitively, we should be more careful around points
near the margin

Understanding the Dual

'n, n

1= 1 7= 1

s.t. a; >0 V2

Z%‘Z/i =0

In the solution, either:

« o,> 0 and the constraint is tight (y;(07x;) = 1)
» point is a support vector

* a,=0

» point is not a support vector

Employing the Solution

* Given the optimal solution a*, optimal weights are

0" = Z o Yi Xy

1€SVs
— In this formulation, have not added 7,=1

 Therefore, we can solve one of the SV constraints
yz(g* - X3 —+ (9()) =1
to obtain 6,

— Or, more commonly, take the average solution over all
support vectors

What if Data Are Not
Linearly Separable?

* Cannot find @ that satisfies y;(07x;) > 1 Vi

* Introduce slack variables &,
yi(0Txi) =21 =& Vi

* New problem:

d
méin%ZH?JrCZ&
j=1 i

S.t. yZ(HTXZ) Z 1 — fz \4)

Strengths of SVMs

Good generalization in theory

Good generalization in practice

Work well with few training instances
Find globally best model

Efficient algorithms

Amenable to the kernel trick ...

What if Surface is Non-Linear?

Kernel Methods

Making the Non-Linear Linear

When Linear Separators Falil

Mapping into a New Feature Space

Input Space Fealure Space
d: X = X =d(x)

* For example, with x;, € R?
(I)([%;h 337,2]) — [331'1, L2y Li1Lg2, 33?17 33222]
* Rather than run SVM on x,, run it on ®(x,)

— Find non-linear separator in input space

* What if ®(x,) is really big?
* Use kernels to compute it implicitly!

Image from http://web.engr.oregonstate.edu/ ~afern/classes/cs534/

Kernels

Find kernel K such that
K(xi,x;) = (P(x), P(x4))

Computing K (x;,%;) should be efficient, much
more so than computing ®(x;) and ®(x,)

Use K (x;,x;) in SVM algorithm rather than (x;,x;)
Remarkably, this is possible!

The Polynomial Kernel
Let X; = [xz'l,il’)ig] and X = [ZUjl,Q?jQ]

Consider the following function:
2
K (xi,%x5) = (Xi,X;)

(lele _x22x32)2
= (7 zlm %225’332 2Ti1Ti2Tj1T52)
= (P(x4), D(x5))

o
s
||

7,17 227 \/—lexZQ]

D(x;) = :wgusza \/ilexﬂ]

The Polynomial Kernel

* @Given by K(Xi,Xj) — <X¢,Xj>d

— @(x) contains all monomials of degree d

* Useful in visual pattern recognition
— Example:
* 16x16 pixel image
* 10'° monomials of degree 5

* Never explicitly compute ®(x) !

+ Variation: K(x;,x;) = ((x;,%;) + 1)
— Adds all lower-order monomials (degrees 1,...,d)!

The Kernel Trick

“Given an algorithm which is formulated
in terms of a positive definite kernel K;,
one can construct an alternative
algorithm by replacing K, with another
positive definite kernel K,”

» SVMs can use the kernel trick

Incorporating Kernels into SVM

Z o — = az@jyzyj P
7::1 s

1 n
J(a) = Za -3 S‘ Y oy K (xi, %)

The Gaussian Kernel

* Also called Radial Basis Function (RBF) kernel
xi — x;I3
K(x;,Xx;) =ex
o P 207

— Has value 1 when x; = x;
— Value falls off to 0 with increasing distance

— Note: Need to do feature scaling before using Gaussian Kernel

022 o 2:

[;.;u i
%51#'09,0‘0\“\\\‘\“
il

i
il

il
il
i

Y

AT

BRI

SRR
AR

W

A

B
W

L
R

LR
200

SR

3 -5
lower bias, higher bias,

higher variance <) lower variance

Gaussian Kernel Example

X; — X5 2
o b K(X%Xj):exp< H ZUZJHQ)

Imagine we’ve learned that:

2960 0 =|-0.51,1,0]

>

Predict +1 if 0y + HlK(X,El) + HQK(X,EQ) + QgK(X,Eg) > ()

Based on example by Andrew Ng

Base

d

Gaussian Kernel Example

A E]_
©,
X

1 ‘EQ K(x;,x;) = exp (

Ix; — %13

202

)

Imagine we’ve learned that:

2960 0 =|-0.51,1,0]

>

Predict +1 if 0y + HlK(X,El) + HQK(X,EQ) + 93K(X,£3) > ()

* Forx,;, we have K(x;,¢1)~ 1, other similarities =0
0o + 01(1) + 62(0) + 03(0)

on example by Andrew Ng

= —0.5+1(1) + 1(0) + 0(0)
= 0.5 > 0, so predict +1

Gaussian Kernel Example

X; — X5 2
o b K(X%Xj):exp< H QOZJHQ)

Imagine we’ve learned that:

3 © QXQ 0 = [_0-5717170]

>

Predict +1 if 0y + HlK(X,El) + HQK(X,EQ) + 93K(X,£3) > ()

* Forx,, we have K(xg,¢3)~ 1, other similarities = 0
0o + 01(0) 4 02(0) + 05(1)
— —0.5+ 1(0) 4 1(0) + 0(1)
= —0.5 < 0, so predict -1

Based on example by Andrew Ng

— Gaussian Kernel Example

—
“ I — ;3
(2
K(Xi,Xj) — €XP (20_2])
—
— Imagine we’ve learned that:
2960 0 =]-0.5,1,1,0]
>

Predict +1 if 6y + HlK(X,El) + QQK(X,EQ) + 93K(X,£3) > ()

Rough sketch of decision surface

Based on example by Andrew Ng 59

Other Kernels

e Sigmoid Kernel
K(x;,x;) = tanh (ax] x; + ¢)
— Neural networks use sigmoid as activation function
— SVM with a sigmoid kernel is equivalent to 2-layer perceptron

* Cosine Similarity Kernel

T .
X X

K(x;,x;) =
Il Ml
— Popular choice for measuring similarity of text documents

— L, norm projects vectors onto the unit sphere; their dot
product is the cosine of the angle between the vectors

Other Kernels

e Chi-squared Kernel

xzk x]k 2
K(x;,%;) = exp VZ T + T
v J

— Widely used in computer vision appllcatlons

— Chi-squared measures distance between probability
distributions

— Data is assumed to be non-negative, often with L, norm of 1

e String kernels
* Tree kernels
* Graph kernels

An Aside: The Math Behind Kernels

What does it mean to be a kernel?
° K(Xz', Xj) — <(I)(XZ), (I)(X])> for some @

What does it take to be a kernel?

e The Gram matrix G;; = K(x;,X;)
— Symmetric matrix
— Positive semi-definite matrix:

z'Gz > 0 for every non-zero vector z € R"

Establishing “kernel-hood” from first principles is non-trivial

A Few Good Kernels...

* Linear Kernel K(x;,x;) = (x;,X,)
* Polynomial kernel K(x;,x,) = ({x;,x;) + c)d

— ¢ > 0 trades off influence of lower order terms
.12
HXz X9 Hz)

202

 Sigmoid kernel K(x;,x;) = tanh (ax]x,; + ¢)

* Gaussian kernel K(x;,x;) = exp (

Many more...

* Cosine similarity kernel

e Chi-squared kernel

» String/tree/graph/wavelet/etc kernels

Application: Automatic Photo Retouchmg
(Leyvand et al., 2008)

Original Facial Data

Training Set

feature points distances vector

Modified
distances
vector

distance
embedding

input image image warp result image

Practical Advice for Applying SVMs

* Use SVM software package to solve for parameters
— e.g., SVMlight, libsvm, cvx (fast!), etc.

* Need to specify:
— Choice of parameter
— Choice of kernel function

* Associated kernel parameters

<6 K(Xivxj) — (<X’ivxj> T+ C)d

o~]2
K(XZ,XJ) — eXDP < HXZ X]H2>

202

Multi-Class Classification with SVMs

* Many SVM packages already have multi-class
classification built in

 Otherwise, use one-vs-rest
— Train K SVMs, each picks out one class from rest,
yielding 91 .. (%)

— Predict class 7 with largest (H(i))TX

Based on slide by Andrew Ng 66

SVMs vs Logistic Regression
(Advice from Andrew Ng)

n = # training examples d = # features

If d is large (relative to n) (e.g., d > n with d= 10,000, n = 10-1,000)
e Use logistic regression or SVM with a linear kernel

If dis small (up to 1,000), n is intermediate (up to 10,000)
e Use SVM with Gaussian kernel

If dis small (up to 1,000), n is large (50,000+)

* Create/add more features, then use logistic regression or SVM
without a kernel

Neural networks likely to work well for most of these
settings, but may be slower to train

Based on slide by Andrew Ng

Other SVM Variations

* nuSVM

— Nu parameter controls:

* Fraction of support vectors (lower bound) and
misclassification rate (upper bound)

e E.g., v = (.05 guarantees that > 5% of training points are
SVs and training error rate is £ 5%

— Harder to optimize than C-SVM and not as scalable
* SVMs for regression
* One-class SVMs

* SVMs for clustering

Conclusion

SVMs find optimal linear separator

The kernel trick makes SVMs learn non-linear
decision surfaces

Strength of SVMs:

— Good theoretical and empirical performance
— Supports many types of kernels

Disadvantages of SVMs:
— “Slow” to train/predict for huge data sets (but relatively fast!)
— Need to choose the kernel (and tune its parameters)

