
Neural Networks

1Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their
course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes,
provided that you include proper attribution. Please send comments and corrections to Eric.

Neural Function

• Brain function (thought) occurs as the result of

the firing of neurons

• Neurons connect to each other through synapses,

which propagate action potential (electrical

impulses) by releasing neurotransmitters
– Synapses can be excitatory (potential-increasing) or

inhibitory (potential-decreasing), and have varying

activation thresholds
– Learning occurs as a result of the synapses’ plasticicity:

They exhibit long-term changes in connection strength

• There are about 1011 neurons and about 1014

synapses in the human brain!

2Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Biology of a Neuron

3

Brain Structure
• Different areas of the brain have different functions
– Some areas seem to have the same function in all humans

(e.g., Broca’s region for motor speech); the overall layout
is generally consistent

– Some areas are more plastic, and vary in their function;
also, the lower-level structure and function vary greatly

• We don’t know how different functions are
�assigned� or acquired
– Partly the result of the physical layout / connection to

inputs (sensors) and outputs (effectors)
– Partly the result of experience (learning)

• We really don’t understand how this neural structure
leads to what we perceive as �consciousness� or
�thought�

4Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

The “One Learning Algorithm” Hypothesis

5

Auditory cortex learns to see

Auditory Cortex

[Roe et al., 1992]

Somatosensory cortex
learns to see

[Metin & Frost, 1989]

Somatosensor
y Cortex

Based on slide by Andrew Ng

Sensor Representations in the Brain

6

Seeing with your tongue Human echolocation (sonar)

Haptic belt: Direction sense Implanting a 3rd eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]

Slide by Andrew Ng

Comparison of computing power

• Computers are way faster than neurons…
• But there are a lot more neurons than we can reasonably

model in modern digital computers, and they all fire in
parallel

• Neural networks are designed to be massively parallel
• The brain is effectively a billion times faster

INFORMATION CIRCA 2012 Computer Human Brain
Computation Units 10-core Xeon: 109 Gates 1011 Neurons

Storage Units 109 bits RAM, 1012 bits disk 1011 neurons, 1014 synapses

Cycle time 10-9 sec 10-3 sec

Bandwidth 109 bits/sec 1014 bits/sec

7

Neural Networks
• Origins: Algorithms that try to mimic the brain.
• Very widely used in 80s and early 90s; popularity

diminished in late 90s.
• Recent resurgence: State-of-the-art technique for

many applications
• Artificial neural networks are not nearly as complex

or intricate as the actual brain structure

8Based on slide by Andrew Ng

Neural networks

• Neural networks are made up of nodes or units,
connected by links

• Each link has an associated weight and activation level
• Each node has an input function (typically summing over

weighted inputs), an activation function, and an output

Output units

Hidden units

Input units
Layered feed-forward network

9Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Neuron Model: Threshold Unit

10

h✓(x) =
1

1 + e�✓Tx

✓1

✓2

✓3

Based on slide by Andrew Ng

X

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b
X

i

✓ixi � b � 0

X

i

✓ixi � b

1

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b
X

i

✓ixi � b � 0

X

i

✓ixi � b

1

“bias unit”

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b
X

i

✓ixi � b � 0

X

i

✓ixi � b

1

Step activation function:

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b

h✓(x) =

(
1 if

P
i ✓ixi � b

0 otherwise

1

Activate if weighted
sum of inputs is
larger than
“threshold”

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b
X

i

✓ixi � b � 0

X

i

✓ixi � b

1

h✓(x) =
1

1 + e�✓Tx

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b

h✓(x) =

(
1 if

P
i ✓ixi � b

0 otherwise

1

Neuron Model: Logistic Unit

11

Sigmoid (logistic) activation function: g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775x0 = 1x0 = 1

“bias unit”

✓0
✓1

✓2

✓3

Based on slide by Andrew Ng

X

h✓(x) =
1

1 + e�✓Tx

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b

h✓(x) =

(
1 if

P
i ✓ixi � b

0 otherwise

1

h✓(x) = g (✓|x)
sigmoid

h✓(x) =
1

1 + e�✓Tx

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b

h✓(x) =

(
1 if

P
i ✓ixi � b

0 otherwise

1

h✓(x) = g (✓|x)
threshold

h✓(x) =
1

1 + e�✓Tx

Neural Network

13

Layer 3
(Output Layer)

Layer 1
(Input Layer)

Layer 2
(Hidden Layer)

x0 = 1bias units a(2)0

Slide by Andrew Ng

Feed-Forward Process
• Input layer units are set by some exterior function

(think of these as sensors), which causes their output
links to be activated at the specified level

• Working forward through the network, the input
function of each unit is applied to compute the input
value
– Usually this is just the weighted sum of the activation on

the links feeding into this node

• The activation function transforms this input
function into a final value
– Typically this is a nonlinear function, often a sigmoid

function corresponding to the �threshold� of that node

14Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

Neural Network

15

ai
(j) = “activation” of unit i in layer j

Θ(j) = weight matrix controlling function
mapping from layer j to layer j + 1

If network has sj units in layer j and sj+1 units in layer j+1,
then Θ(j) has dimension sj+1 � (sj+1) .

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4

Slide by Andrew Ng

h✓(x) =
1

1 + e�✓Tx

⇥(1) ⇥(2)

Feed-Forward Steps:

Vectorization

16

a(2)1 = g
⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z(2)1

⌘

a(2)2 = g
⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z(2)2

⌘

a(2)3 = g
⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z(2)3

⌘

h⇥(x) = g
⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z(3)1

⌘

a(2)1 = g
⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z(2)1

⌘

a(2)2 = g
⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z(2)2

⌘

a(2)3 = g
⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z(2)3

⌘

h⇥(x) = g
⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z(3)1

⌘

a(2)1 = g
⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z(2)1

⌘

a(2)2 = g
⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z(2)2

⌘

a(2)3 = g
⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z(2)3

⌘

h⇥(x) = g
⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z(3)1

⌘

a(2)1 = g
⇣
⇥(1)

10 x0 +⇥(1)
11 x1 +⇥(1)

12 x2 +⇥(1)
13 x3

⌘
= g

⇣
z(2)1

⌘

a(2)2 = g
⇣
⇥(1)

20 x0 +⇥(1)
21 x1 +⇥(1)

22 x2 +⇥(1)
23 x3

⌘
= g

⇣
z(2)2

⌘

a(2)3 = g
⇣
⇥(1)

30 x0 +⇥(1)
31 x1 +⇥(1)

32 x2 +⇥(1)
33 x3

⌘
= g

⇣
z(2)3

⌘

h⇥(x) = g
⇣
⇥(2)

10 a
(2)
0 +⇥(2)

11 a
(2)
1 +⇥(2)

12 a
(2)
2 +⇥(2)

13 a
(2)
3

⌘
= g

⇣
z(3)1

⌘

Based on slide by Andrew Ng

z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))

z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))

z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))⇥(1) ⇥(2)

h✓(x) =
1

1 + e�✓Tx

Other Network Architectures

L denotes the number of layers

contains the numbers of nodes at each layer
– Not counting bias units
– Typically, s0 = d (# input features) and sL-1=K (# classes)

17

Layer 3Layer 1 Layer 2 Layer 4

h✓(x) =
1

1 + e�✓Tx

s 2 N+L

s = [3, 3, 2, 1]

Multiple Output Units: One-vs-Rest

18

Pedestrian Car Motorcycle Truck

h⇥(x) 2 RK

when pedestrian when car when motorcycle when truck

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We want:

Slide by Andrew Ng

Multiple Output Units: One-vs-Rest

• Given {(x1,y1), (x2,y2), ..., (xn,yn)}
• Must convert labels to 1-of-K representation

– e.g., when motorcycle, when car, etc.
19

h⇥(x) 2 RK

when pedestrian when car when motorcycle when truck

h⇥(x) ⇡

2

664

0
0
0
1

3

775h⇥(x) ⇡

2

664

0
0
1
0

3

775h⇥(x) ⇡

2

664

0
1
0
0

3

775h⇥(x) ⇡

2

664

1
0
0
0

3

775

We want:

yi =

2

664

0
1
0
0

3

775yi =

2

664

0
0
1
0

3

775

Based on slide by Andrew Ng

Neural Network Classification

20

Binary classification
y = 0 or 1

1 output unit (sL-1= 1)

Multi-class classification (K classes)

K output units (sL-1= K)

y 2 RK

pedestrian car motorcycle truck

e.g. , , ,

Given:
{(x1,y1), (x2,y2), ..., (xn,yn)}

contains # nodes at each layer
– s0 = d (# features)

s 2 N+L

Slide by Andrew Ng

Understanding Representations

21

Representing Boolean Functions

22

Simple example: AND

x1 x2 hΘ(x)
0 0
0 1
1 0
1 1

g(z) =
1

1 + e�z

Logistic / Sigmoid Function

hΘ(x) = g(-30 + 20x1 + 20x2)

-30

+20

+20
h✓(x) =

1

1 + e�✓Tx

Based on slide and example by Andrew Ng

x1 x2 hΘ(x)
0 0 g(-30) ≈ 0
0 1 g(-10) ≈ 0
1 0 g(-10) ≈ 0
1 1 g(10) ≈ 1

Representing Boolean Functions

23

-10

+20
+20

h✓(x) =
1

1 + e�✓Tx

OR
-30

+20
+20

h✓(x) =
1

1 + e�✓Tx

AND

+10

-20
h✓(x) =

1

1 + e�✓Tx

NOT
+10

-20
-20

h✓(x) =
1

1 + e�✓Tx

(NOT x1) AND (NOT x2)

Combining Representations to Create
Non-Linear Functions

24

-10
+20
+20

h✓(x) =
1

1 + e�✓Tx

OR
-30

+20
+20

h✓(x) =
1

1 + e�✓Tx

AND
+10

-20
-20

h✓(x) =
1

1 + e�✓Tx

(NOT x1) AND (NOT x2)

III

III IV

not(XOR)
-10

+20

+20
h✓(x) =

1

1 + e�✓Tx

-30
+20

+20 in I

+10
-20

-20

in III I or III

Based on example by Andrew Ng

Layering Representations

Each image is “unrolled” into a vector x of pixel intensities

25

20 � 20 pixel images
d = 400 10 classes

x1 ... x20x21 ... x40
x41 ... x60

x381 ... x400

...

Layering Representations

26

x1
x2
x3

x4
x5

xd

“0”

“1”

“9”

Input Layer

Output Layer
Hidden Layer

Visualization of
Hidden Layer

27

LeNet 5 Demonstration: http://yann.lecun.com/exdb/lenet/

Neural Network Learning

28

Learning in NN: Backpropagation
• We cycle through our examples
– If the output of the network is correct, no changes are made
– If there is an error, weights are adjusted to reduce the error

• The trick is to assess the blame for the error and divide
it among the contributing weights

32Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

J(✓) = � 1

n

nX

i=1

[yi log h✓(xi) + (1� yi) log (1� h✓(xi))] +
�

2n

dX

j=1

✓2j

Cost Function

33

Logistic Regression:

Neural Network:

h⇥ 2 RK (h⇥(x))i = ithoutput

J(⇥) =� 1

n

"
nX

i=1

KX

k=1

yik log (h⇥(xi))k + (1� yik) log
⇣
1� (h⇥(xi))k

⌘#

+
�

2n

L�1X

l=1

sl�1X

i=1

slX

j=1

⇣
⇥(l)

ji

⌘2

h⇥ 2 RK (h⇥(x))i = ithoutput

J(⇥) =� 1

n

"
nX

i=1

KX

k=1

yik log (h⇥(xi))k + (1� yik) log
⇣
1� (h⇥(xi))k

⌘#

+
�

2n

L�1X

l=1

sl�1X

i=1

slX

j=1

⇣
⇥(l)

ji

⌘2

h⇥ 2 RK (h⇥(x))i = ithoutput

J(⇥) =� 1

n

"
nX

i=1

KX

k=1

yik log (h⇥(xi))k + (1� yik) log
⇣
1� (h⇥(xi))k

⌘#

+
�

2n

L�1X

l=1

sl�1X

i=1

slX

j=1

⇣
⇥(l)

ji

⌘2 kth class: true, predicted
not kth class: true, predicted

Based on slide by Andrew Ng

Optimizing the Neural Network

34

Need code to compute:
•
•

Solve via:

J(⇥) =� 1

n

"
nX

i=1

KX

k=1

yik log(h⇥(xi))k + (1� yik) log
⇣
1� (h⇥(xi))k

⌘#

+
�

2n

L�1X

l=1

sl�1X

i=1

slX

j=1

⇣
⇥(l)

ji

⌘2

J(Θ) is not convex, so GD on a
neural net yields a local optimum
• But, tends to work well in practice

Based on slide by Andrew Ng

Forward Propagation
• Given one labeled training instance (x, y):

Forward Propagation
• a(1) = x
• z(2) = Θ(1)a(1)

• a(2) = g(z(2)) [add a0(2)]
• z(3) = Θ(2)a(2)

• a(3) = g(z(3)) [add a0
(3)]

• z(4) = Θ(3)a(3)

• a(4) = hΘ(x) = g(z(4))
35

a(1)

a(2) a(3) a(4)

Based on slide by Andrew Ng

Backpropagation Intuition
• Each hidden node j is �responsible� for some

fraction of the error δj(l) in each of the output nodes
to which it connects

• δj(l) is divided according to the strength of the
connection between hidden node and the output
node

• Then, the “blame” is propagated back to provide the
error values for the hidden layer

36Based on slide by T. Finin, M. desJardins, L Getoor, R. Par

�(l)j =
@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,

37

�(4)1�(3)1�(2)1

�(2)2 �(3)2

Based on slide by Andrew Ng

Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,

38

�(4)1�(3)1�(2)1

�(2)2 �(3)2

Based on slide by Andrew Ng

δ(4) = a(4) – y

�(l)j =
@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,

39

�(4)1�(3)1�(2)1

�(2)2 �(3)2

⇥(3)
12

δ2(3) = Θ12(3)×δ1(4)× g2’(3)

Based on slide by Andrew Ng

�(l)j =
@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,

40

�(3)1�(2)1

�(2)2 �(3)2

�(4)1

Based on slide by Andrew Ng

�(l)j =
@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

δ2(3) = Θ12
(3) ×δ1(4)× g2’(3)

δ1(3) = Θ11(3)×δ1(4)× g1’(3)

Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,

41

�(4)1�(3)1�(2)1

�(2)2 �(3)2

⇥(2)
12

⇥(2)
22

δ2(2) = [Θ12(2)×δ1(3) + Θ22(2)×δ2(3)]× g2’(2)

Based on slide by Andrew Ng

�(l)j =
@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation: Gradient Computation
Let δj(l) = “error” of node j in layer l

(#layers L = 4)

Backpropagation
• δ(4) = a(4) – y
• δ(3) = (Θ(3))Tδ(4) .* g’(z(3))
• δ(2) = (Θ(2))Tδ(3) .* g’(z(2))
• (No δ(1))

42

g’(z(3)) = a(3) .* (1–a(3))

g’(z(2)) = a(2) .* (1–a(2))

@

@⇥(l)
ij

J(⇥) = a(l)j �(l+1)
i (ignoring λ; if λ = 0)

δ(4)
δ(3)δ(2)

Element-wise
product .*

Based on slide by Andrew Ng

Backpropagation

43

Note: Can vectorize as
�(l)

ij = �(l)
ij + a(l)j �(l+1)

i

�(l) = �(l) + �(l+1)a(l)
|

�(l)
ij = �(l)

ij + a(l)j �(l+1)
i

�(l) = �(l) + �(l+1)a(l)
|

D(l) is the matrix of partial derivatives of J(Θ)

Based on slide by Andrew Ng

(Used to accumulate gradient)

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

1

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

1

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

1

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

1

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

1

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

1

Training a Neural Network via Gradient
Descent with Backprop

44

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

1

(Used to accumulate gradient)

Based on slide by Andrew Ng

Backpropagation

Training a Neural Network via Stochastic
Gradient Descent with Backprop

45

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Loop

Sample training instance (xk, yk) without replacement

Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = a(l)j �(l+1)

i

Compute stochastic regularized gradient D(l)
ij =

(
�

(l)
ij + �⇥(l)

ij if j 6= 0

�
(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until all training instances are seen

Until weights converge or max #epochs is reached

1

Based on slide by Andrew Ng

Backpropagation

Training a Neural Network via Mini-batch
Gradient Descent with Backprop

46

Math

mendezme

April 2017

Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Loop // each iteration is a mini-batch

Set �
(l)
i,j = 0 8l, i, j

Sample m training instances X = {(x0
1, y

0
1), . . . , (x

0
m, y0m)} without replacement

For each instance in X , (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute mini-batch regularized gradient D(l)
ij =

(
1
m�

(l)
ij + �⇥(l)

ij if j 6= 0

1
m�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until all training instances are seen

Until weights converge or max #epochs is reached

1

(Used to accumulate gradient)

Based on slide by Andrew Ng

Backpropagation

Backprop Issues
�Backprop is the cockroach of machine learning. It’s
ugly, and annoying, but you just can’t get rid of it.�

-Geoff Hinton

Problems:
• black box
• local minima

47

Implementation Details

48

Random Initialization
• Important to randomize initial weight matrices
• Can’t have uniform initial weights, as in logistic regression
– Otherwise, all updates will be identical & the net won’t learn

49

�(4)1�(3)1�(2)1

�(2)2 �(3)2

Implementation Details
• For convenience, compress all parameters into θ

– “unroll” Θ(1), Θ(2),... , Θ(L-1) into one long vector θ
• E.g., if Θ(1) is 10 x 10, then the first 100 entries of θ contain the

value in Θ(1)

– Use the reshape command to recover the original matrices
• E.g., if Θ(1) is 10 x 10, then

theta1 = reshape(theta[0:100], (10, 10))

• Each step, check to make sure that J(θ) decreases

• Implement a gradient-checking procedure to ensure that
the gradient is correct...

50

J(✓i+c)

J(✓i�c)

✓i�c ✓i+c

Gradient Checking
Idea: estimate gradient numerically to verify
implementation, then turn off gradient checking

52

θi+c = [θ1, θ2, ..., θi –1, θi+c, θi+1, ...]

c ⇡ 1E-4
@

@✓i
J(✓) ⇡ J(✓i+c)� J(✓i�c)

2c

J(✓)

Change ONLY the i th

entry in θ, increasing
(or decreasing) it by c

Based on slide by Andrew Ng

Gradient Checking

53

✓ 2 Rm ✓ is an “unrolled” version of ⇥(1),⇥(2), . . .

✓ = [✓1, ✓2, ✓3, . . . , ✓m]

@

@✓1
J(✓) ⇡ J([✓1 + c, ✓2, ✓3, . . . , ✓m])� J([✓1 � c, ✓2, ✓3, . . . , ✓m])

2c
@

@✓2
J(✓) ⇡ J([✓1, ✓2 + c, ✓3, . . . , ✓m])� J([✓1, ✓2 � c, ✓3, . . . , ✓m])

2c
...

@

@✓m
J(✓) ⇡ J([✓1, ✓2, ✓3, . . . , ✓m + c])� J([✓1, ✓2, ✓3, . . . , ✓m � c])

2c

Check that the approximate numerical gradient matches the
entries in the Dmatrices

Put in vector called gradApprox

Based on slide by Andrew Ng

Implementation Steps
• Implement backprop to compute DVec

– DVec is the unrolled {D(1), D(2), ... } matrices

• Implement numerical gradient checking to compute gradApprox
• Make sure DVec has similar values to gradApprox
• Turn off gradient checking. Use backprop code for learning.

Important: Be sure to disable your gradient checking code before
training your classifier.
• If you run the numerical gradient computation on every iteration

of gradient descent, your code will be very slow

54Based on slide by Andrew Ng

Putting It All Together

55

Training a Neural Network
Pick a network architecture (connectivity pattern between nodes)

• # input units = # of features in dataset
• # output units = # classes

Reasonable default: 1 hidden layer
• or if >1 hidden layer, have same # hidden units in

every layer (usually the more the better)

56Based on slide by Andrew Ng

Training a Neural Network
1. Randomly initialize weights
2. Implement forward propagation to get hΘ(xi)

for any instance xi
3. Implement code to compute cost function J(Θ)
4. Implement backprop to compute partial derivatives

5. Use gradient checking to compare
computed using backpropagation vs. the numerical
gradient estimate.
– Then, disable gradient checking code

6. Use gradient descent with backprop to fit the network
57Based on slide by Andrew Ng

