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Neural Function

• Brain function (thought) occurs as the result of 

the firing of neurons

• Neurons connect to each other through synapses, 

which propagate action potential (electrical 

impulses) by releasing neurotransmitters
– Synapses can be excitatory (potential-increasing) or 

inhibitory (potential-decreasing), and have varying 

activation thresholds
– Learning occurs as a result of the synapses’ plasticicity: 

They exhibit long-term changes in connection strength

• There are about 1011 neurons and about 1014

synapses in the human brain!
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Biology of a Neuron
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Brain Structure
• Different areas of the brain have different functions
– Some areas seem to have the same function in all humans 

(e.g., Broca’s region for motor speech); the overall layout 
is generally consistent

– Some areas are more plastic, and vary in their function; 
also, the lower-level structure and function vary greatly

• We don’t know how different functions are 
�assigned� or acquired
– Partly the result of the physical layout / connection to 

inputs (sensors) and outputs (effectors)
– Partly the result of experience (learning)

• We really don’t understand how this neural structure 
leads to what we perceive as �consciousness� or 
�thought�

4Based on slide by T. Finin, M. desJardins, L Getoor, R. Par



The “One Learning Algorithm” Hypothesis
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Auditory cortex learns to see

Auditory Cortex

[Roe et al., 1992]

Somatosensory cortex 
learns to see

[Metin & Frost, 1989]

Somatosensor
y Cortex
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Sensor Representations in the Brain
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Seeing with your tongue Human echolocation (sonar)

Haptic belt: Direction sense Implanting a 3rd eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]
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Comparison of computing power

• Computers are way faster than neurons…
• But there are a lot more neurons than we can reasonably 

model in modern digital computers, and they all fire in 
parallel

• Neural networks are designed to be massively parallel
• The brain is effectively a billion times faster

INFORMATION CIRCA 2012 Computer Human Brain
Computation Units 10-core Xeon: 109 Gates 1011 Neurons

Storage Units 109 bits RAM, 1012 bits disk 1011 neurons, 1014 synapses

Cycle time 10-9 sec 10-3 sec

Bandwidth 109 bits/sec 1014 bits/sec
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Neural Networks
• Origins: Algorithms that try to mimic the brain.
• Very widely used in 80s and early 90s; popularity 

diminished in late 90s.
• Recent resurgence: State-of-the-art technique for 

many applications
• Artificial neural networks are not nearly as complex 

or intricate as the actual brain structure
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Neural networks

• Neural networks are made up of nodes or units, 
connected by links

• Each link has an associated weight and activation level
• Each node has an input function (typically summing over 

weighted inputs), an activation function, and an output

Output units

Hidden units

Input units
Layered feed-forward network
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Neuron Model: Threshold Unit
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Neuron Model: Logistic Unit
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Sigmoid (logistic) activation function: g(z) =
1

1 + e�z

h✓(x) =
1

1 + e�✓Tx
h✓(x) = g (✓|x)

h✓(x) =
1

1 + e�✓Tx

x =

2

664

x0

x1

x2

x3

3

775 ✓ =

2

664

✓0
✓1
✓2
✓3

3

775x0 = 1x0 = 1

“bias unit”

✓0
✓1

✓2

✓3

Based on slide by Andrew Ng

X

h✓(x) =
1

1 + e�✓Tx

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b

h✓(x) =

(
1 if

P
i ✓ixi � b

0 otherwise

1

h✓(x) = g (✓|x)
sigmoid

h✓(x) =
1

1 + e�✓Tx

Math

mendezme

April 2017

x =

2

4
x1

x2

x3

3

5

✓ =

2

4
✓1
✓2
✓3

3

5

�b

h✓(x) =

(
1 if

P
i ✓ixi � b

0 otherwise

1

h✓(x) = g (✓|x)
threshold



h✓(x) =
1

1 + e�✓Tx

Neural Network
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Layer 3
(Output Layer)

Layer 1
(Input Layer)

Layer 2
(Hidden Layer)

x0 = 1bias units a(2)0
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Feed-Forward Process
• Input layer units are set by some exterior function 

(think of these as sensors), which causes their output 
links to be activated at the specified level

• Working forward through the network, the input 
function of each unit is applied to compute the input 
value
– Usually this is just the weighted sum of the activation on 

the links feeding into this node

• The activation function transforms this input 
function into a final value
– Typically this is a nonlinear function, often a sigmoid

function corresponding to the �threshold� of that node
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Neural Network
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ai
(j) = “activation” of unit i in layer j

Θ(j) = weight matrix controlling function 
mapping from layer j to layer j + 1

If network has sj units in layer j and sj+1 units in layer j+1, 
then Θ(j) has dimension sj+1 � (sj+1) .

⇥(1) 2 R3⇥4 ⇥(2) 2 R1⇥4
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Feed-Forward Steps:

Vectorization
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z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))

z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))

z(2) = ⇥(1)x

a(2) = g(z(2))

Add a(2)0 = 1

z(3) = ⇥(2)a(2)

h⇥(x) = a(3) = g(z(3))⇥(1) ⇥(2)
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Other Network Architectures

L denotes the number of layers

contains the numbers of nodes at each layer
– Not counting bias units
– Typically, s0 = d (# input features) and sL-1=K (# classes) 

17

Layer 3Layer 1 Layer 2 Layer 4

h✓(x) =
1

1 + e�✓Tx

s 2 N+L

s = [3, 3, 2, 1]



Multiple Output Units:  One-vs-Rest
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Pedestrian Car Motorcycle Truck
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Multiple Output Units:  One-vs-Rest

• Given {(x1,y1), (x2,y2), ..., (xn,yn)}
• Must convert labels to 1-of-K representation

– e.g.,                    when motorcycle,                      when car, etc. 
19
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Neural Network Classification
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Binary classification
y = 0 or 1

1 output unit (sL-1= 1)

Multi-class classification (K classes)

K output units (sL-1= K)

y 2 RK

pedestrian   car     motorcycle   truck

e.g.           ,             ,                 ,

Given:
{(x1,y1), (x2,y2), ..., (xn,yn)}

contains # nodes at each layer
– s0 = d (# features) 

s 2 N+L

Slide by Andrew Ng



Understanding Representations
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Representing Boolean Functions
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Simple example: AND

x1 x2 hΘ(x)
0 0
0 1
1 0
1 1

g(z) =
1

1 + e�z

Logistic / Sigmoid Function

hΘ(x) = g(-30 + 20x1 + 20x2)

-30

+20

+20
h✓(x) =
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Based on slide and example by Andrew Ng

x1 x2 hΘ(x)
0 0 g(-30) ≈ 0
0 1 g(-10) ≈ 0
1 0 g(-10) ≈ 0
1 1 g(10) ≈ 1



Representing Boolean Functions

23

-10

+20
+20

h✓(x) =
1

1 + e�✓Tx

OR
-30

+20
+20

h✓(x) =
1

1 + e�✓Tx

AND

+10

-20
h✓(x) =

1

1 + e�✓Tx

NOT
+10

-20
-20

h✓(x) =
1

1 + e�✓Tx

(NOT x1) AND (NOT x2)



Combining Representations to Create 
Non-Linear Functions
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Layering Representations

Each image is “unrolled” into a vector x of pixel intensities
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20 � 20 pixel images
d = 400     10 classes

x1 ... x20x21 ... x40
x41 ... x60

x381 ... x400

...



Layering Representations
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x1
x2
x3

x4
x5

xd

“0”

“1”

“9”

Input Layer

Output Layer
Hidden Layer

Visualization of 
Hidden Layer
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LeNet 5 Demonstration:  http://yann.lecun.com/exdb/lenet/ 



Neural Network Learning
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Learning in NN: Backpropagation
• We cycle through our examples
– If the output of the network is correct, no changes are made
– If there is an error, weights are adjusted to reduce the error

• The trick is to assess the blame for the error and divide 
it among the contributing weights
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Logistic Regression:

Neural Network:
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Optimizing the Neural Network
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Need code to compute:
•
•

Solve via: 
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J(Θ) is not convex, so GD on a 
neural net yields a local optimum
• But, tends to work well in practice
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Forward Propagation
• Given one labeled training instance (x, y):

Forward Propagation
• a(1) = x
• z(2) = Θ(1)a(1)

• a(2) = g(z(2))     [add a0(2)]
• z(3) = Θ(2)a(2)

• a(3) = g(z(3))     [add a0
(3)]

• z(4) = Θ(3)a(3)

• a(4) = hΘ(x) = g(z(4))
35

a(1)

a(2) a(3) a(4)

Based on slide by Andrew Ng



Backpropagation Intuition
• Each hidden node j is �responsible� for some 

fraction of the error δj(l) in each of the output nodes 
to which it connects

• δj(l) is divided according to the strength of the 
connection between hidden node and the output 
node

• Then, the “blame” is propagated back to provide the 
error values for the hidden layer

36Based on slide by T. Finin, M. desJardins, L Getoor, R. Par



�(l)j =
@

@z(l)j

cost(xi)

where cost(xi) = yi log h⇥(xi) + (1� yi) log(1� h⇥(xi))

Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,

37
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Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,
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Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,
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Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,
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δ1(3) = Θ11(3)×δ1(4)× g1’(3)



Backpropagation Intuition

δj(l) = “error” of node j in layer l
Formally,
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Backpropagation: Gradient Computation
Let δj(l) = “error” of node j in layer l

(#layers L = 4)

Backpropagation
• δ(4) = a(4) – y
• δ(3) = (Θ(3))Tδ(4) .* g’(z(3)) 
• δ(2) = (Θ(2))Tδ(3) .* g’(z(2))
• (No δ(1))
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g’(z(3)) = a(3) .* (1–a(3))

g’(z(2)) = a(2) .* (1–a(2))

@

@⇥(l)
ij

J(⇥) = a(l)j �(l+1)
i (ignoring λ; if λ = 0)

δ(4)
δ(3)δ(2)

Element-wise 
product .*

Based on slide by Andrew Ng



Backpropagation
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Note:  Can vectorize as
�(l)

ij = �(l)
ij + a(l)j �(l+1)

i

�(l) = �(l) + �(l+1)a(l)
|

�(l)
ij = �(l)

ij + a(l)j �(l+1)
i

�(l) = �(l) + �(l+1)a(l)
|

D(l) is the matrix of partial derivatives of J(Θ)

Based on slide by Andrew Ng

(Used to accumulate gradient)
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Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
ij =

(
1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached
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Training a Neural Network via Gradient 
Descent with Backprop

44
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Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Set �
(l)
i,j = 0 8l, i, j

For each training instance (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute avg regularized gradient D(l)
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1
n�

(l)
ij + �⇥(l)

ij if j 6= 0

1
n�
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ij otherwise
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(l)
ij � ↵D(l)

ij
Until weights converge or max #epochs is reached

1

(Used to accumulate gradient)
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Training a Neural Network via Stochastic 
Gradient Descent with Backprop
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Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Loop

Sample training instance (xk, yk) without replacement

Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = a(l)j �(l+1)

i

Compute stochastic regularized gradient D(l)
ij =

(
�

(l)
ij + �⇥(l)

ij if j 6= 0

�
(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until all training instances are seen

Until weights converge or max #epochs is reached

1
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Training a Neural Network via Mini-batch 
Gradient Descent with Backprop
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Math
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Given: training set {(x1, y1), . . . , (xn, yn)}
Initialize all ⇥

(l)
randomly (NOT to 0!)

Loop // each iteration is called an epoch

Loop // each iteration is a mini-batch

Set �
(l)
i,j = 0 8l, i, j

Sample m training instances X = {(x0
1, y

0
1), . . . , (x

0
m, y0m)} without replacement

For each instance in X , (xk, yk):
Set a(1) = xk

Compute {a(2), . . . ,a(L)} via forward propagation

Compute �(L)
= a(L) � yk

Compute errors {�(L�1), . . . , �(2)}
Compute gradients �

(l)
ij = �

(l)
ij + a(l)j �(l+1)

i

Compute mini-batch regularized gradient D(l)
ij =

(
1
m�

(l)
ij + �⇥(l)

ij if j 6= 0

1
m�

(l)
ij otherwise

Update weights via gradient step ⇥
(l)
ij = ⇥

(l)
ij � ↵D(l)

ij
Until all training instances are seen

Until weights converge or max #epochs is reached

1

(Used to accumulate gradient)
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Backprop Issues
�Backprop is the cockroach of machine learning.  It’s 
ugly, and annoying, but you just can’t get rid of it.�

-Geoff Hinton

Problems: 
• black box
• local minima

47



Implementation Details

48



Random Initialization
• Important to randomize initial weight matrices
• Can’t have uniform initial weights, as in logistic regression
– Otherwise, all updates will be identical & the net won’t learn

49
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Implementation Details
• For convenience, compress all parameters into θ

– “unroll” Θ(1), Θ(2),... , Θ(L-1) into one long vector θ
• E.g., if Θ(1) is 10 x 10, then the first 100 entries of θ contain the 

value in Θ(1)

– Use the reshape command to recover the original matrices
• E.g., if Θ(1) is 10 x 10, then

theta1 = reshape(theta[0:100], (10, 10))

• Each step, check to make sure that J(θ) decreases

• Implement a gradient-checking procedure to ensure that 
the gradient is correct...

50



J(✓i+c)

J(✓i�c)

✓i�c ✓i+c

Gradient Checking
Idea: estimate gradient numerically to verify 
implementation, then turn off gradient checking

52

θi+c = [θ1, θ2, ..., θi –1, θi+c, θi+1, ...]

c ⇡ 1E-4
@

@✓i
J(✓) ⇡ J(✓i+c)� J(✓i�c)

2c

J(✓)

Change ONLY the i th

entry in θ, increasing 
(or decreasing) it by c

Based on slide by Andrew Ng



Gradient Checking

53

✓ 2 Rm ✓ is an “unrolled” version of ⇥(1),⇥(2), . . .

✓ = [✓1, ✓2, ✓3, . . . , ✓m]

@

@✓1
J(✓) ⇡ J([✓1 + c, ✓2, ✓3, . . . , ✓m])� J([✓1 � c, ✓2, ✓3, . . . , ✓m])

2c
@

@✓2
J(✓) ⇡ J([✓1, ✓2 + c, ✓3, . . . , ✓m])� J([✓1, ✓2 � c, ✓3, . . . , ✓m])

2c
...

@

@✓m
J(✓) ⇡ J([✓1, ✓2, ✓3, . . . , ✓m + c])� J([✓1, ✓2, ✓3, . . . , ✓m � c])

2c

Check that the approximate numerical gradient matches the 
entries in the Dmatrices 

Put in vector called gradApprox

Based on slide by Andrew Ng



Implementation Steps
• Implement backprop to compute DVec

– DVec is the unrolled  {D(1), D(2), ... } matrices

• Implement numerical gradient checking to compute gradApprox
• Make sure DVec has similar values to gradApprox
• Turn off gradient checking. Use backprop code for learning.

Important: Be sure to disable your gradient checking code before 
training your classifier. 
• If you run the numerical gradient computation on every iteration 

of gradient descent, your code will be very slow
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Putting It All Together
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Training a Neural Network
Pick a network architecture (connectivity pattern between nodes)

• # input units = # of features in dataset
• # output units = # classes

Reasonable default: 1 hidden layer
• or if >1 hidden layer, have same # hidden units in 

every layer (usually the more the better)
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Training a Neural Network
1. Randomly initialize weights
2. Implement forward propagation to get hΘ(xi)

for any instance xi
3. Implement code to compute cost function J(Θ)
4. Implement backprop to compute partial derivatives

5. Use gradient checking to compare                   
computed using backpropagation vs. the numerical 
gradient estimate.  
– Then, disable gradient checking code

6. Use gradient descent with backprop to fit the network
57Based on slide by Andrew Ng


