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Reinforcement Learning
§ Basic idea:

§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must (learn to) act so as to maximize expected rewards



Grid World
§ The agent lives in a grid
§ Walls block the agent’s path
§ The agent’s actions do not always 

go as planned:
§ 80% of the time, the action North 

takes the agent North 
(if there is no wall there)

§ 10% of the time, North takes the 
agent West; 10% East

§ If there is a wall in the direction the 
agent would have been taken, the 
agent stays put

§ Small “living” reward each step
§ Big rewards come at the end
§ Goal: maximize sum of rewards*



Grid Futures
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Markov Decision Processes
§ An MDP is defined by:

§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s,a,s’)

§ Prob that a from s leads to s’
§ i.e., P(s’ | s,a)
§ Also called the model

§ A reward function R(s, a, s’) 
§ Sometimes just R(s) or R(s’)

§ A start state (or distribution)
§ Maybe a terminal state

§ MDPs are a family of non-
deterministic search problems
§ Reinforcement learning: MDPs 

where we don’t know the 
transition or reward functions

5



What is Markov about MDPs?
§ Andrey Markov (1856-1922)

§ “Markov” generally means that given 
the present state, the future and the 
past are independent

§ For Markov decision processes, 
“Markov” means:



Solving MDPs
§ In deterministic single-agent search problems, want an 

optimal plan, or sequence of actions, from start to a goal
§ In an MDP, we want an optimal policy p*: S → A

§ A policy p gives an action for each state
§ An optimal policy maximizes expected utility if followed
§ Defines a reflex agent

Optimal policy when 
R(s, a, s’) = -0.03 for all 
non-terminals s



Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01
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MDP Search Trees
§ Each MDP state gives an expectimax-like search tree

a

s

s’

s, a
(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a 
q-state
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Utilities of Sequences
§ In order to formalize optimality of a policy, need to 

understand utilities of sequences of rewards
§ Typically consider stationary preferences:

§ Theorem: only two ways to define stationary utilities
§ Additive utility:

§ Discounted utility:
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Infinite Utilities?!

§ Problem: infinite state sequences have infinite rewards

§ Solutions:

§ Finite horizon:

§ Terminate episodes after a fixed T steps (e.g. life)

§ Gives nonstationary policies (p depends on time left)

§ Absorbing state: guarantee that for every policy, a terminal state 

will eventually be reached 

§ Discounting: for 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

11



Discounting

§ Typically discount 
rewards by g < 1 
each time step
§ Sooner rewards 

have higher utility 
than later rewards

§ Also helps the 
algorithms 
converge
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Recap: Defining MDPs

§ Markov decision processes:
§ States S
§ Start state s0

§ Actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’
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Optimal Utilities
§ Fundamental operation: compute 

the values (optimal expectimax 
utilities) of states s

§ Why?  Optimal values define 
optimal policies!

§ Define the value of a state s:
V*(s) = expected utility starting in s 

and acting optimally

§ Define the value of a q-state (s,a):
Q*(s,a) = expected utility starting in s, 

taking action a and thereafter 
acting optimally

§ Define the optimal policy:
p*(s) = optimal action from state s

a

s

s, a

s,a,s’
s’
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The Bellman Equations
§ Definition of “optimal utility” leads to a 

simple one-step lookahead relationship 
amongst optimal utility values:

Optimal rewards = maximize over first 
action and then follow optimal policy

§ Formally:

a

s

s, a

s,a,s’
s’
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Solving MDPs
§ We want to find the optimal policy p*

§ Proposal 1: modified expectimax search, starting from 
each state s:

a

s

s, a

s,a,s’
s’
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Why Not Search Trees?
§ Why not solve with expectimax?

§ Problems:
§ This tree is usually infinite (why?)
§ Same states appear over and over (why?)
§ We would search once per state (why?)

§ Idea: Value iteration
§ Compute optimal values for all states all at 

once using successive approximations
§ Will be a bottom-up dynamic program 

similar in cost to memoization
§ Do all planning offline, no replanning

needed!
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Value Estimates

§ Calculate estimates Vk
*(s)

§ Not the optimal value of s!
§ The optimal value 

considering only next k 
time steps (k rewards)

§ As k ®¥, it approaches 
the optimal value

§ Almost solution: recursion 
(i.e. expectimax)

§ Correct solution: dynamic 
programming
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Value Iteration

§ Idea:
§ Start with V0

*(s) = 0, which we know is right (why?)
§ Given Vi

*, calculate the values for all states for depth i+1:

§ This is called a value update or Bellman update
§ Repeat until convergence

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do
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Example: Bellman Updates
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max happens for 
a=right, other 
actions not shown

Example: g=0.9, living 
reward=0, noise=0.2



Example: Value Iteration

§ Information propagates outward from terminal 
states and eventually all states have correct 
value estimates

V2 V3
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Convergence*
§ Define the max-norm:

§ Theorem: For any two approximations U and V

§ I.e. any distinct approximations must get closer to each other, so, 
in particular, any approximation must get closer to the true U and 
value iteration converges to a unique, stable, optimal solution

§ Theorem:

§ I.e. once the change in our approximation is small, it must also 
be close to correct
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Practice: Computing Actions

§ Which action should we chose from state s:
§ Given optimal values V?

§ Given optimal q-values Q?

§ Lesson: actions are easier to select from Q’s!
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Utilities for Fixed Policies

§ Another basic operation: compute 
the utility of a state s under a fix 
(general non-optimal) policy

§ Define the utility of a state s, under a 
fixed policy p:
Vp(s) = expected total discounted 

rewards (return) starting in s and 
following p

§ Recursive relation (one-step look-
ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),s’

s’
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Value Iteration

§ Idea:
§ Start with V0

*(s) = 0, which we know is right (why?)
§ Given Vi

*, calculate the values for all states for depth i+1:

§ This is called a value update or Bellman update
§ Repeat until convergence

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do
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Policy Iteration

§ Problem with value iteration:

§ Considering all actions each iteration is slow: takes |A| times longer 

than policy evaluation

§ But policy doesn’t change each iteration, time wasted

§ Alternative to value iteration:

§ Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal 

utilities!) until convergence (fast)

§ Step 2: Policy improvement: update policy using one-step lookahead 

with resulting converged (but not optimal!) utilities (slow but infrequent)

§ Repeat steps until policy converges

§ This is policy iteration

§ It’s still optimal!

§ Can converge faster under some conditions
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Policy Iteration
§ Policy evaluation: with fixed current policy p, find values 

with simplified Bellman updates:
§ Iterate until values converge

§ Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead
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Comparison
§ In value iteration:

§ Every pass (or “backup”) updates both utilities (explicitly, based 
on current utilities) and policy (possibly implicitly, based on 
current policy)

§ In policy iteration:
§ Several passes to update utilities with frozen policy
§ Occasional passes to update policies

§ Hybrid approaches (asynchronous policy iteration):
§ Any sequences of partial updates to either policy entries or 

utilities will converge if every state is visited infinitely often
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Reinforcement Learning

§ Reinforcement learning:
§ Still assume an MDP:

§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ i.e. don’t know which states are good or what the actions do
§ Must actually try actions and states out to learn
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Passive Learning

§ Simplified task
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You are given a policy p(s)
§ Goal: learn the state values
§ … what policy evaluation did

§ In this case:
§ Learner “along for the ride”
§ No choice about what actions to take
§ Just execute the policy and learn from experience
§ We’ll get to the active case soon
§ This is NOT offline planning!  You actually take actions in the 

world and see what happens…
36



Example: Direct Evaluation

§ Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

V(2,3) ~ (96 + -103) / 2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

g = 1, R = -1

+100

-100
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Recap: Model-Based Policy Evaluation

§ Simplified Bellman updates to 
calculate V for a fixed policy:
§ New V is expected one-step-look-

ahead using current V
§ Unfortunately, need T and R
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p(s)

s

s, p(s)

s, p(s),s’

s’



Model-Based Learning
§ Idea:

§ Learn the model empirically through experience
§ Solve for values as if the learned model were correct

§ Simple empirical model learning
§ Count outcomes for each s,a
§ Normalize to give estimate of T(s,a,s’)
§ Discover R(s,a,s’) when we experience (s,a,s’)

§ Solving the MDP with the learned model
§ Iterative policy evaluation, for example
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s

s, p(s)

s, p(s),s’
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Example: Model-Based Learning

§ Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

g = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100 

(done)
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Model-Free Learning
§ Want to compute an expectation weighted by P(x):

§ Model-based: estimate P(x) from samples, compute expectation

§ Model-free: estimate expectation directly from samples

§ Why does this work?  Because samples appear with the right 
frequencies!
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Sample-Based Policy Evaluation?

§ Who needs T and R?  Approximate the 
expectation with samples (drawn from T!)

42

p(s)

s

s, p(s)

s1’s2’ s3’
s, p(s),s’

s’

Almost!  But we only 
actually make progress 
when we move to i+1.



Temporal-Difference Learning
§ Big idea: learn from every experience!

§ Update V(s) each time we experience (s,a,s’,r)
§ Likely s’ will contribute updates more often

§ Temporal difference learning
§ Policy still fixed!
§ Move values toward value of whatever 

successor occurs: running average!
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p(s)

s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:



Exponential Moving Average
§ Exponential moving average 

§ Makes recent samples more important

§ Forgets about the past (distant past values were wrong anyway)
§ Easy to compute from the running average 

§ Decreasing learning rate can give converging averages

44



Example: TD Policy Evaluation

Take g = 1, a = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)
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Problems with TD Value Learning

§ TD value leaning is a model-free way 
to do policy evaluation

§ However, if we want to turn values into 
a (new) policy, we’re sunk:

§ Idea: learn Q-values directly
§ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’
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Active Learning

§ Full reinforcement learning
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You can choose any actions you like
§ Goal: learn the optimal policy
§ … what value iteration did!

§ In this case:
§ Learner makes choices!
§ Fundamental tradeoff: exploration vs. exploitation
§ This is NOT offline planning!  You actually take actions in the 

world and find out what happens…
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The Story So Far: MDPs and RL

§ If we know the MDP
§ Compute V*, Q*, p* exactly
§ Evaluate a fixed policy p

§ If we don’t know the MDP
§ We can estimate the MDP then solve

§ We can estimate V for a fixed policy p
§ We can estimate Q*(s,a) for the 

optimal policy while executing an 
exploration policy

48

§ Model-based DPs
§ Value and policy 

Iteration
§ Policy evaluation

§ Model-based RL

§ Model-free RL:
§ Value learning
§ Q-learning

Things we know how to do: Techniques:



Q-Learning
§ Q-Learning: sample-based Q-value iteration
§ Learn Q*(s,a) values

§ Receive a sample (s,a,s’,r)
§ Consider your old estimate:
§ Consider your new sample estimate:

§ Incorporate the new estimate into a running average:
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Q-Learning Properties
§ Amazing result: Q-learning converges to optimal policy

§ If you explore enough
§ If you make the learning rate small enough
§ … but not decrease it too quickly!
§ Basically doesn’t matter how you select actions (!)

§ Neat property: off-policy learning
§ learn optimal policy without following it (some caveats)

S E S E
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Exploration / Exploitation

§ Several schemes for forcing exploration
§ Simplest: random actions (e greedy)

§ Every time step, flip a coin
§ With probability e, act randomly
§ With probability 1-e, act according to current policy

§ Problems with random actions?
§ You do explore the space, but keep thrashing 

around once learning is done
§ One solution: lower e over time
§ Another solution: exploration functions
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Exploration Functions
§ When to explore

§ Random actions: explore a fixed amount
§ Better idea: explore areas whose badness is not (yet) 

established

§ Exploration function
§ Takes a value estimate and a count, and returns an optimistic 

utility, e.g.                                    (exact form not important)
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Q-Learning

§ Q-learning produces tables of q-values:
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Q-Learning
§ In realistic situations, we cannot possibly learn 

about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the q-tables in memory

§ Instead, we want to generalize:
§ Learn about some small number of training states 

from experience
§ Generalize that experience to new, similar states
§ This is a fundamental idea in machine learning, and 

we’ll see it over and over again

56



Example: Pacman
§ Let’s say we discover 

through experience 
that this state is bad:

§ In naïve q learning, we 
know nothing about 
this state or its q 
states:

§ Or even this one!
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Feature-Based Representations

§ Solution: describe a state using 
a vector of features

§ Features are functions from states 
to real numbers (often 0/1) that 
capture important properties of the 
state

§ Example features:

§ Distance to closest ghost

§ Distance to closest dot

§ Number of ghosts

§ 1 / (dist to dot)2

§ Is Pacman in a tunnel? (0/1)

§ …… etc.

§ Can also describe a q-state (s, a) 
with features (e.g. action moves 
closer to food)
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Linear Feature Functions
§ Using a feature representation, we can write a 

q function (or value function) for any state 
using a few weights:

§ Advantage: our experience is summed up in a 
few powerful numbers

§ Disadvantage: states may share features but 
be very different in value!
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Function Approximation

§ Q-learning with linear q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g. if something unexpectedly bad happens, disprefer all states 

with that state’s features

§ Formal justification: online least squares
60



Example: Q-Pacman
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Policy Search

http://heli.stanford.edu/
68
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Policy Search
§ Problem: often the feature-based policies that work well 

aren’t the ones that approximate V / Q best
§ E.g. your value functions from project 2 were probably horrible 

estimates of future rewards, but they still produced good 
decisions

§ We’ll see this distinction between modeling and prediction again 
later in the course

§ Solution: learn the policy that maximizes rewards rather 
than the value that predicts rewards

§ This is the idea behind policy search, such as what 
controlled the upside-down helicopter
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Policy Search

§ Simplest policy search:
§ Start with an initial linear value function or q-function
§ Nudge each feature weight up and down and see if 

your policy is better than before

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical
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Policy Search*

§ Advanced policy search:
§ Write a stochastic (soft) policy:

§ Turns out you can efficiently approximate the 
derivative of the returns with respect to the 
parameters w (details in the book, but you don’t have 
to know them)

§ Take uphill steps, recalculate derivatives, etc.
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Deep Q-Learning (DQN)

● Predict Q-values, instead of actions

● Input: the state
● Output: Q-values over actions

● Learning step: 
● gradient descent with the 
● following loss function:

● The policy is then given by maximizing the predicted Q-value

⇣⇣
R(s, a, s0) + �max

a0
Q(s0, a0)

⌘
�Q(s, a)

⌘2



Separate Q- and Target Networks

Issue: Instability (e.g., rapid changes) in the Q-function can 
cause it to diverge

Idea: use two networks to provide stability
§ The Q-network is updated 

regularly
§ The target network is an 

older version of the Q-
network, updated 
occasionally 

⇣⇣
R(s, a, s0) + �max

a0
Q(s0, a0)

⌘
�Q(s, a)

⌘2

computed via
target network

computed via
Q-network



Experience Replay

§ Maintain buffer of previous
experiences

§ Perform Q-updates based 
on a sample from the 
replay buffer

§ Advantages:
§ Breaks correlations between consecutive samples
§ Each experience step may influence multiple 

gradient updates

...

Replay Buffer

FIFO or Priority Queue



Deep Q-Learning (DQN) Algorithm
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DQN on Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/


AlphaGo

Oct 2015: beat Fan Hui, Europe's top player
March 2016: beat Lee Sedol (9-dan) 4:1 games
2017:  beat Ke Jie, the world #1-ranked player

Image from https://www.newscientist.com/article/2117067-deepminds-alphago-is-secretly-beating-human-players-online/

https://www.newscientist.com/article/2117067-deepminds-alphago-is-secretly-beating-human-players-online/


AlphaGo

1. Train a CNN to predict 
(supervised learning) 
moves of human experts

2. Use as starting point for 
policy gradient (self-play 
against older self)

Image from DeepMind’s ICML 2016 tutorial on AlphaGo: https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

3. Train value network with 
examples from policy 
network self-play

4. Use Monte Carlo tree 
search to explore 
possible games

https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf


AlphaGo
Training Requirements:

§ CNN network: 30M human expert 
moves, 50 GPUs for 3 weeks

§ Policy network: 10K minibatches 
of 128 games, 50 GPUs for 1 day

§ Value network: 50M minibatches 
of 32 positions, 50 GPUs for 1 
week (30M distinct positions from 
separate self-play games)

Computational Requirements:
§ Stand-alone version:  40 search 

threads, 48 CPUs, 8 GPUs
§ Distributed version: 40 search 

threads, 1,202 CPUs, 176 GPUs
Image from https://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-asic-chip-tensor-processor-unit-machine-learning

https://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-asic-chip-tensor-processor-unit-machine-learning

