
Reinforcement
Learning

Slides based on those used in Berkeley's AI class taught by Dan Klein

Robot Image Credit: Viktoriya Sukhanova © 123RF.com

These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others
who made their course materials freely available online. Feel free to reuse or adapt these slides for
your own academic purposes, provided that you include proper attribution. Please send comments
and corrections to Eric.

Reinforcement Learning
§ Basic idea:

§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must (learn to) act so as to maximize expected rewards

Grid World
§ The agent lives in a grid
§ Walls block the agent’s path
§ The agent’s actions do not always

go as planned:
§ 80% of the time, the action North

takes the agent North
(if there is no wall there)

§ 10% of the time, North takes the
agent West; 10% East

§ If there is a wall in the direction the
agent would have been taken, the
agent stays put

§ Small “living” reward each step
§ Big rewards come at the end
§ Goal: maximize sum of rewards*

Grid Futures

4

Deterministic Grid World Stochastic Grid World

X

X

E N S W

X

E N S W

?

X

X X

Markov Decision Processes
§ An MDP is defined by:

§ A set of states s Î S
§ A set of actions a Î A
§ A transition function T(s,a,s’)

§ Prob that a from s leads to s’
§ i.e., P(s’ | s,a)
§ Also called the model

§ A reward function R(s, a, s’)
§ Sometimes just R(s) or R(s’)

§ A start state (or distribution)
§ Maybe a terminal state

§ MDPs are a family of non-
deterministic search problems
§ Reinforcement learning: MDPs

where we don’t know the
transition or reward functions

5

What is Markov about MDPs?
§ Andrey Markov (1856-1922)

§ “Markov” generally means that given
the present state, the future and the
past are independent

§ For Markov decision processes,
“Markov” means:

Solving MDPs
§ In deterministic single-agent search problems, want an

optimal plan, or sequence of actions, from start to a goal
§ In an MDP, we want an optimal policy p*: S → A

§ A policy p gives an action for each state
§ An optimal policy maximizes expected utility if followed
§ Defines a reflex agent

Optimal policy when
R(s, a, s’) = -0.03 for all
non-terminals s

Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

8

MDP Search Trees
§ Each MDP state gives an expectimax-like search tree

a

s

s’

s, a
(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

9

Utilities of Sequences
§ In order to formalize optimality of a policy, need to

understand utilities of sequences of rewards
§ Typically consider stationary preferences:

§ Theorem: only two ways to define stationary utilities
§ Additive utility:

§ Discounted utility:

10

Infinite Utilities?!

§ Problem: infinite state sequences have infinite rewards

§ Solutions:

§ Finite horizon:

§ Terminate episodes after a fixed T steps (e.g. life)

§ Gives nonstationary policies (p depends on time left)

§ Absorbing state: guarantee that for every policy, a terminal state

will eventually be reached

§ Discounting: for 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

11

Discounting

§ Typically discount
rewards by g < 1
each time step
§ Sooner rewards

have higher utility
than later rewards

§ Also helps the
algorithms
converge

12

Recap: Defining MDPs

§ Markov decision processes:
§ States S
§ Start state s0

§ Actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount g)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’

13

Optimal Utilities
§ Fundamental operation: compute

the values (optimal expectimax
utilities) of states s

§ Why? Optimal values define
optimal policies!

§ Define the value of a state s:
V*(s) = expected utility starting in s

and acting optimally

§ Define the value of a q-state (s,a):
Q*(s,a) = expected utility starting in s,

taking action a and thereafter
acting optimally

§ Define the optimal policy:
p*(s) = optimal action from state s

a

s

s, a

s,a,s’
s’

14

The Bellman Equations
§ Definition of “optimal utility” leads to a

simple one-step lookahead relationship
amongst optimal utility values:

Optimal rewards = maximize over first
action and then follow optimal policy

§ Formally:

a

s

s, a

s,a,s’
s’

15

Solving MDPs
§ We want to find the optimal policy p*

§ Proposal 1: modified expectimax search, starting from
each state s:

a

s

s, a

s,a,s’
s’

16

Why Not Search Trees?
§ Why not solve with expectimax?

§ Problems:
§ This tree is usually infinite (why?)
§ Same states appear over and over (why?)
§ We would search once per state (why?)

§ Idea: Value iteration
§ Compute optimal values for all states all at

once using successive approximations
§ Will be a bottom-up dynamic program

similar in cost to memoization
§ Do all planning offline, no replanning

needed!

17

Value Estimates

§ Calculate estimates Vk
*(s)

§ Not the optimal value of s!
§ The optimal value

considering only next k
time steps (k rewards)

§ As k ®¥, it approaches
the optimal value

§ Almost solution: recursion
(i.e. expectimax)

§ Correct solution: dynamic
programming

18

Value Iteration

§ Idea:
§ Start with V0

*(s) = 0, which we know is right (why?)
§ Given Vi

*, calculate the values for all states for depth i+1:

§ This is called a value update or Bellman update
§ Repeat until convergence

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

19

Example: Bellman Updates

20

max happens for
a=right, other
actions not shown

Example: g=0.9, living
reward=0, noise=0.2

Example: Value Iteration

§ Information propagates outward from terminal
states and eventually all states have correct
value estimates

V2 V3

21

Convergence*
§ Define the max-norm:

§ Theorem: For any two approximations U and V

§ I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

§ Theorem:

§ I.e. once the change in our approximation is small, it must also
be close to correct

22

Practice: Computing Actions

§ Which action should we chose from state s:
§ Given optimal values V?

§ Given optimal q-values Q?

§ Lesson: actions are easier to select from Q’s!

23

Utilities for Fixed Policies

§ Another basic operation: compute
the utility of a state s under a fix
(general non-optimal) policy

§ Define the utility of a state s, under a
fixed policy p:
Vp(s) = expected total discounted

rewards (return) starting in s and
following p

§ Recursive relation (one-step look-
ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),s’

s’

25

Value Iteration

§ Idea:
§ Start with V0

*(s) = 0, which we know is right (why?)
§ Given Vi

*, calculate the values for all states for depth i+1:

§ This is called a value update or Bellman update
§ Repeat until convergence

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

26

Policy Iteration

§ Problem with value iteration:

§ Considering all actions each iteration is slow: takes |A| times longer

than policy evaluation

§ But policy doesn’t change each iteration, time wasted

§ Alternative to value iteration:

§ Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal

utilities!) until convergence (fast)

§ Step 2: Policy improvement: update policy using one-step lookahead

with resulting converged (but not optimal!) utilities (slow but infrequent)

§ Repeat steps until policy converges

§ This is policy iteration

§ It’s still optimal!

§ Can converge faster under some conditions

28

Policy Iteration
§ Policy evaluation: with fixed current policy p, find values

with simplified Bellman updates:
§ Iterate until values converge

§ Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

29

Comparison
§ In value iteration:

§ Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

§ In policy iteration:
§ Several passes to update utilities with frozen policy
§ Occasional passes to update policies

§ Hybrid approaches (asynchronous policy iteration):
§ Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

30

Reinforcement Learning

§ Reinforcement learning:
§ Still assume an MDP:

§ A set of states s Î S
§ A set of actions (per state) A
§ A model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ i.e. don’t know which states are good or what the actions do
§ Must actually try actions and states out to learn

35

Passive Learning

§ Simplified task
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You are given a policy p(s)
§ Goal: learn the state values
§ … what policy evaluation did

§ In this case:
§ Learner “along for the ride”
§ No choice about what actions to take
§ Just execute the policy and learn from experience
§ We’ll get to the active case soon
§ This is NOT offline planning! You actually take actions in the

world and see what happens…
36

Example: Direct Evaluation

§ Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

V(2,3) ~ (96 + -103) / 2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

g = 1, R = -1

+100

-100

37

Recap: Model-Based Policy Evaluation

§ Simplified Bellman updates to
calculate V for a fixed policy:
§ New V is expected one-step-look-

ahead using current V
§ Unfortunately, need T and R

38

p(s)

s

s, p(s)

s, p(s),s’

s’

Model-Based Learning
§ Idea:

§ Learn the model empirically through experience
§ Solve for values as if the learned model were correct

§ Simple empirical model learning
§ Count outcomes for each s,a
§ Normalize to give estimate of T(s,a,s’)
§ Discover R(s,a,s’) when we experience (s,a,s’)

§ Solving the MDP with the learned model
§ Iterative policy evaluation, for example

39

p(s)

s

s, p(s)

s, p(s),s’

s’

Example: Model-Based Learning

§ Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

g = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

40

Model-Free Learning
§ Want to compute an expectation weighted by P(x):

§ Model-based: estimate P(x) from samples, compute expectation

§ Model-free: estimate expectation directly from samples

§ Why does this work? Because samples appear with the right
frequencies!

41

Sample-Based Policy Evaluation?

§ Who needs T and R? Approximate the
expectation with samples (drawn from T!)

42

p(s)

s

s, p(s)

s1’s2’ s3’
s, p(s),s’

s’

Almost! But we only
actually make progress
when we move to i+1.

Temporal-Difference Learning
§ Big idea: learn from every experience!

§ Update V(s) each time we experience (s,a,s’,r)
§ Likely s’ will contribute updates more often

§ Temporal difference learning
§ Policy still fixed!
§ Move values toward value of whatever

successor occurs: running average!

43

p(s)

s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average
§ Exponential moving average

§ Makes recent samples more important

§ Forgets about the past (distant past values were wrong anyway)
§ Easy to compute from the running average

§ Decreasing learning rate can give converging averages

44

Example: TD Policy Evaluation

Take g = 1, a = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

45

Problems with TD Value Learning

§ TD value leaning is a model-free way
to do policy evaluation

§ However, if we want to turn values into
a (new) policy, we’re sunk:

§ Idea: learn Q-values directly
§ Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

46

Active Learning

§ Full reinforcement learning
§ You don’t know the transitions T(s,a,s’)
§ You don’t know the rewards R(s,a,s’)
§ You can choose any actions you like
§ Goal: learn the optimal policy
§ … what value iteration did!

§ In this case:
§ Learner makes choices!
§ Fundamental tradeoff: exploration vs. exploitation
§ This is NOT offline planning! You actually take actions in the

world and find out what happens…

47

The Story So Far: MDPs and RL

§ If we know the MDP
§ Compute V*, Q*, p* exactly
§ Evaluate a fixed policy p

§ If we don’t know the MDP
§ We can estimate the MDP then solve

§ We can estimate V for a fixed policy p
§ We can estimate Q*(s,a) for the

optimal policy while executing an
exploration policy

48

§ Model-based DPs
§ Value and policy

Iteration
§ Policy evaluation

§ Model-based RL

§ Model-free RL:
§ Value learning
§ Q-learning

Things we know how to do: Techniques:

Q-Learning
§ Q-Learning: sample-based Q-value iteration
§ Learn Q*(s,a) values

§ Receive a sample (s,a,s’,r)
§ Consider your old estimate:
§ Consider your new sample estimate:

§ Incorporate the new estimate into a running average:

51

Q-Learning Properties
§ Amazing result: Q-learning converges to optimal policy

§ If you explore enough
§ If you make the learning rate small enough
§ … but not decrease it too quickly!
§ Basically doesn’t matter how you select actions (!)

§ Neat property: off-policy learning
§ learn optimal policy without following it (some caveats)

S E S E

52

Exploration / Exploitation

§ Several schemes for forcing exploration
§ Simplest: random actions (e greedy)

§ Every time step, flip a coin
§ With probability e, act randomly
§ With probability 1-e, act according to current policy

§ Problems with random actions?
§ You do explore the space, but keep thrashing

around once learning is done
§ One solution: lower e over time
§ Another solution: exploration functions

53

Exploration Functions
§ When to explore

§ Random actions: explore a fixed amount
§ Better idea: explore areas whose badness is not (yet)

established

§ Exploration function
§ Takes a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important)

54

Q-Learning

§ Q-learning produces tables of q-values:

55

Q-Learning
§ In realistic situations, we cannot possibly learn

about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the q-tables in memory

§ Instead, we want to generalize:
§ Learn about some small number of training states

from experience
§ Generalize that experience to new, similar states
§ This is a fundamental idea in machine learning, and

we’ll see it over and over again

56

Example: Pacman
§ Let’s say we discover

through experience
that this state is bad:

§ In naïve q learning, we
know nothing about
this state or its q
states:

§ Or even this one!

57

Feature-Based Representations

§ Solution: describe a state using
a vector of features

§ Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state

§ Example features:

§ Distance to closest ghost

§ Distance to closest dot

§ Number of ghosts

§ 1 / (dist to dot)2

§ Is Pacman in a tunnel? (0/1)

§ …… etc.

§ Can also describe a q-state (s, a)
with features (e.g. action moves
closer to food)

58

Linear Feature Functions
§ Using a feature representation, we can write a

q function (or value function) for any state
using a few weights:

§ Advantage: our experience is summed up in a
few powerful numbers

§ Disadvantage: states may share features but
be very different in value!

59

Function Approximation

§ Q-learning with linear q-functions:

§ Intuitive interpretation:
§ Adjust weights of active features
§ E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

§ Formal justification: online least squares
60

Example: Q-Pacman

61

Policy Search

http://heli.stanford.edu/
68

http://heli.stanford.edu/

Policy Search
§ Problem: often the feature-based policies that work well

aren’t the ones that approximate V / Q best
§ E.g. your value functions from project 2 were probably horrible

estimates of future rewards, but they still produced good
decisions

§ We’ll see this distinction between modeling and prediction again
later in the course

§ Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

§ This is the idea behind policy search, such as what
controlled the upside-down helicopter

69

Policy Search

§ Simplest policy search:
§ Start with an initial linear value function or q-function
§ Nudge each feature weight up and down and see if

your policy is better than before

§ Problems:
§ How do we tell the policy got better?
§ Need to run many sample episodes!
§ If there are a lot of features, this can be impractical

70

Policy Search*

§ Advanced policy search:
§ Write a stochastic (soft) policy:

§ Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, but you don’t have
to know them)

§ Take uphill steps, recalculate derivatives, etc.

71

Deep Q-Learning (DQN)

● Predict Q-values, instead of actions

● Input: the state
● Output: Q-values over actions

● Learning step:
● gradient descent with the
● following loss function:

● The policy is then given by maximizing the predicted Q-value

⇣⇣
R(s, a, s0) + �max

a0
Q(s0, a0)

⌘
�Q(s, a)

⌘2

Separate Q- and Target Networks

Issue: Instability (e.g., rapid changes) in the Q-function can
cause it to diverge

Idea: use two networks to provide stability
§ The Q-network is updated

regularly
§ The target network is an

older version of the Q-
network, updated
occasionally

⇣⇣
R(s, a, s0) + �max

a0
Q(s0, a0)

⌘
�Q(s, a)

⌘2

computed via
target network

computed via
Q-network

Experience Replay

§ Maintain buffer of previous
experiences

§ Perform Q-updates based
on a sample from the
replay buffer

§ Advantages:
§ Breaks correlations between consecutive samples
§ Each experience step may influence multiple

gradient updates

...

Replay Buffer

FIFO or Priority Queue

Deep Q-Learning (DQN) Algorithm

81
Based on https://arxiv.org/pdf/1312.5602v1.pdf

https://arxiv.org/pdf/1312.5602v1.pdf

DQN on Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

AlphaGo

Oct 2015: beat Fan Hui, Europe's top player
March 2016: beat Lee Sedol (9-dan) 4:1 games
2017: beat Ke Jie, the world #1-ranked player

Image from https://www.newscientist.com/article/2117067-deepminds-alphago-is-secretly-beating-human-players-online/

https://www.newscientist.com/article/2117067-deepminds-alphago-is-secretly-beating-human-players-online/

AlphaGo

1. Train a CNN to predict
(supervised learning)
moves of human experts

2. Use as starting point for
policy gradient (self-play
against older self)

Image from DeepMind’s ICML 2016 tutorial on AlphaGo: https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

3. Train value network with
examples from policy
network self-play

4. Use Monte Carlo tree
search to explore
possible games

https://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

AlphaGo
Training Requirements:

§ CNN network: 30M human expert
moves, 50 GPUs for 3 weeks

§ Policy network: 10K minibatches
of 128 games, 50 GPUs for 1 day

§ Value network: 50M minibatches
of 32 positions, 50 GPUs for 1
week (30M distinct positions from
separate self-play games)

Computational Requirements:
§ Stand-alone version: 40 search

threads, 48 CPUs, 8 GPUs
§ Distributed version: 40 search

threads, 1,202 CPUs, 176 GPUs
Image from https://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-asic-chip-tensor-processor-unit-machine-learning

https://www.theverge.com/circuitbreaker/2016/5/19/11716818/google-alphago-hardware-asic-chip-tensor-processor-unit-machine-learning

