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Fairness

• Widespread algorithms with many small interactions
• e.g. search, recommendations, social media

• Specialized algorithms with fewer but higher-stakes 
interactions
• e.g. medicine, criminal justice, finance 

• At this level of impact, algorithms can have 
unintended consequences
• Low classification error is not enough,

need fairness

Based on materials by David Madras



Regulated domains

• Credit (Equal Credit Opportunity Act)
• Education (Civil Rights Act of 1964; Education Amendments of 1972)
• Employment (Civil Rights Act of 1964)
• Housing (Fair Housing Act)
• Public Accommodation (Civil Rights Act of 1964)

Extends to marketing and advertising; not limited to final decision
This list sets aside complex web of laws that regulates the government
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Source: https://www.apa.org/monitor/2014/10/incarceration

Data from 2014

Incarceration Rates per 100,000

Source: https://www.pewresearch.org/fact-tank/2018/01/12/shrinking-
gap-between-number-of-blacks-and-whites-in-prison/

Sentenced Federal and State Prisoners
by Race and Hispanic Origin, 2009-2016

Background on US Prison Population

https://www.pewresearch.org/fact-tank/2018/01/12/shrinking-gap-between-number-of-blacks-and-whites-in-prison/


Case Study: COMPAS

• Software by Northpointe that predicts recidivism
• Used by judges in determining sentencing and bail
• Scores derived from 137 questions answered by defendants or pulled 

from criminal records:
• “Was one of your parents ever sent to jail or prison?”
• “How many of your friends/acquaintances are taking drugs illegally?” 
• “How often did you get in fights while at school?” 
• Agree or disagree? “A hungry person has a right to steal”
• Agree or disagree? “If people make me angry or lose my temper, I can be dangerous.”
• Race is not one of the questions

• The exact method of determining the score is kept as a trade secret



Case Study: COMPAS

• African Americans are almost twice as likely as Caucasians to be 
incorrectly labeled as high risk
• Software predictions can have real consequences

Table 1: ProPublica Analysis of COMPAS Algorithm

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing



Example: Bias in Word Embeddings (Bolukbasi et al. 2016)

• Studied word2vec word embeddings trained on Google News 
• word2vec represents each word as a high-dimensional vector
• Vector arithmetic can be used 

to answer analogies like:
• Paris : France ≅ London : England 

• Other analogies with
stereotyped answers:
• man : woman ≅ programmer : homemaker
• man : woman ≅ surgeon : nurse 

Bolukbasi et al. 2016 : https://arxiv.org/abs/1607.06520
Image from: https://www.analyticsvidhya.com/blog/2017/06/word-
embeddings-count-word2veec/

https://arxiv.org/abs/1607.06520
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/


Example: Bias in Image Classification

• Images from imSitu visual semantic role labeling (vSRL) dataset
• Only 33% of cooking images are of men
• Prediction with a (biased) conditional random field only predicts men in 16% 

of cooking images 

Source: https://arxiv.org/pdf/1707.09457.pdf

https://arxiv.org/pdf/1707.09457.pdf


Algorithmic Fairness
• How can we ensure that our algorithms act in ways that are fair? 
• This definition is vague and somewhat circular 
• Describes a broad set of problems, not a specific technical approach 

• Related to ideas of :
• Accountability: who is responsible for automated behavior? How do we 

supervise/audit machines that have large impact? 
• Transparency/Explainability: why does an algorithm behave in a certain way? 

Can we understand its decisions? Can it explain itself? 
• AI safety: how can we make AI without unintended negative consequences?
• Aligned AI:  How can AI make decisions that align with our values? 

Based on materials by David Madras



Why Fairness is Hard
• Suppose we are a bank trying to fairly decide who should get a loan 

i.e. Who is most likely to pay us back? 
• Suppose we have two groups: A and B (the sensitive attribute) 
• This is where discrimination could occur 

• The simplest approach is to remove the sensitive attribute from the 
data, so that our classifier doesn’t know the sensitive attribute

Age Gender Employed? Zip Code Requested 
Amount

A or B? Grant Loan?

37 F Yes 24729 $50,000 A Yes

23 M Yes 11038 $30,000 B Yes

72 F No 10038 $90,000 A Yes

39 F Yes 30499 $70,000 A No

45 M No 20199 $60,000 B No

68 M Yes 30029 $50,000 B No
Based on materials by David Madras



Legally Recognized “Protected classes”

• Race (Civil Rights Act of 1964)
• Color (Civil Rights Act of 1964)
• Sex (Equal Pay Act of 1963; Civil Rights Act of 1964)
• Religion (Civil Rights Act of 1964)
• National origin (Civil Rights Act of 1964)
• Citizenship (Immigration Reform and Control Act)
• Age (Age Discrimination in Employment Act of 1967)
• Pregnancy (Pregnancy Discrimination Act)
• Familial status (Civil Rights Act of 1968)
• Disability status (Rehabilitation Act of 1973; Americans with Disabilities Act of 1990)
• Veteran status (Vietnam Era Veterans' Readjustment Assistance Act of 1974; 

Uniformed Services Employment and Reemployment Rights Act)
• Genetic information (Genetic Information Nondiscrimination Act)
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Why Fairness is Hard

• However, this won’t work if the sensitive attribute is correlated with others
• E.g., it is easy to predict race given other info (home address, financials, etc.)

• We need more sophisticated approaches

Age Gender Employed? Zip Code Requested 
Amount

A or B? Grant Loan?

37 F Yes 24729 $50,000 ? Yes

23 M Yes 11038 $30,000 ? Yes

72 F No 10038 $90,000 ? Yes

39 F Yes 30499 $70,000 ? No

45 M No 20199 $60,000 ? No

68 M Yes 30029 $50,000 ? No

Based on materials by David Madras



Group Fairness

• Key idea: “Treat different groups equally” 

• Assess fairness based on demographic parity: require that the same 
percentage of A and B receive loans
• What if 80% of A is likely to repay, but only 60% of B is? 
• Then demographic parity is too strong 

• Could require equal false positive/negative rates
• When we make an error, the direction of that error is equally likely for both 

groups
• P(loan|no repay, A) = P(loan|no repay, B) 
• P(no loan|would repay, A) = P(no loan|would repay, B) 

Based on materials by David Madras



Individual Fairness

• Key idea: “Treat similar examples similarly”
• Learn fair representations
• Useful for classification, not for (unfair) discrimination
• Related to domain adaptation
• Generative modelling/adversarial approaches

Based on materials by David Madras



Looking Forward

• This is an open and active area of research
• Lots of progress, long way to go
• Law will catch up with ML technology eventually


