CIS 419/519

Primer - Geometry

In this primer, we will review some geometry concepts in linear algebra fashion. The key concepts are:

- Line
- Distance

Line

In 2D space, we usually represent a line(green) using its equation.

Equation:

$$
x_{1}=x_{2}, 0=x_{1}-x_{2}
$$

Alternatively, we could represent a line using a point through which the line passes, and the line's direction(a unit vector):

Vector Equation:

$$
L(t)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], t \in \mathbb{R}
$$

Using the vector equation, we could represent points on the line by selecting appropriate t values. For exmaple, point [1, 1] could be represented as

$$
L(\sqrt{2})=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\sqrt{2}\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We could also represent the same line using its normal vector(red). The is the general way to define a hyperplane in space.

Using Normal Vector:

$$
0=[1,-1]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Here the vector $[1,-1]$ is perpendicular to the direction of the line.

Hyperplane and Normal Vectors

Lines can also be called hyperplanes in 2D space. In geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. For example a 2-dimensional plane in 3D space. In general a hyper plane in a n-dimensional space could be defined as:

$$
0=\theta^{T} x+b
$$

Where $w \in \mathbb{R}^{n}$ is the normal vector of the hyperplane. The normal vector, often simply called the "normal," to a hyperplane is a vector which is perpendicular to the hyperplane at a given point. In the example above, $\theta=[1,-1]$ is a normal vector of the green hyperplane.

Distance

Distance between two points

In 2D space, the Euclidean distance between two points $P_{A}=\left(x_{A}, y_{A}\right)$ and $P_{B}=\left(x_{B}, y_{B}\right)$ can be calculated as:

$$
d=\sqrt{\left(x_{A}-x_{B}\right)^{2}+\left(y_{A}-y_{B}\right)^{2}}
$$

This is also the $\mathbf{L 2}$ norm of the vector between this two points:

$$
d=\left\|P_{A}-P_{B}\right\|_{2}=\left\|\left(x_{A}-x_{B}, y_{A}-y_{B}\right)\right\|_{2}
$$

Similarly, in 3D space (points represented as $P=\left[x_{1}, x_{2}, x_{3}\right]$), the Euclidean distance between two points P_{A} and P_{B} is:

$$
d=\left\|\left(x_{1 A}-x_{1 B}, x_{2 A}-x_{2 B}, x_{3 A}-x_{3 B}\right)\right\|_{2}
$$

This could be easily generalized to n-dimensional space where $P_{A}, P_{B} \in \mathbb{R}^{n}$:

$$
d=\left\|\left(x_{1 A}-x_{1 B}, \ldots, x_{n A}-x_{n B}\right)\right\|_{2}
$$

Distance between two parallel hyperplanes

Suppose we have two hyperplanes in 2D:

$$
\begin{aligned}
& H_{1}: \theta^{T} x+b=a_{1} \\
& H_{2}: \theta^{T} x+b=a_{2}
\end{aligned}
$$

The distance between this two hyperplanes can be calculated as follow:
Let x_{1} be any point on H_{1} such that:

$$
\theta^{T} x_{1}+b=a_{1}
$$

Consider the line L that passes through x_{1} in the direction of the normal vector θ and intersects H_{2} at point x_{2}. An equation for L is given by

$$
L(t)=x_{1}+t \frac{\theta}{\|\theta\|}
$$

where $t \in \mathbb{R}$ is a scaling factor(Vector Equation of a line). As x_{2} is also on L, we can represent x_{2} as:

$$
x_{2}=x_{1}+d \frac{\theta}{\|\theta\|}
$$

where d is the distance between x_{1} and x_{2}. Note that the distance between these two points is also the distance between the hyperplanes as L is perpendicular to both H_{1} and H_{2}. Plug this into the expression of H_{2} we get:

$$
\theta^{T}\left(x_{1}+d \frac{\theta}{\|\theta\|}\right)+b=a_{2} \Longleftrightarrow\left(\theta^{T} x_{1}+b\right)+d \frac{\theta^{T} \theta}{\|\theta\|}=a_{2}
$$

Note here $\theta^{T} x_{1}+b=a_{1}$ (Equation for H_{1}), and therefore we have:

$$
a_{1}+d\|\theta\|=a_{2} \Longleftrightarrow d=\frac{\left|a_{1}-a_{2}\right|}{\|\theta\|}
$$

