
CIS 4190/5190: Applied Machine Learning Spring 2023

Homework 3

Handed Out: February 8 Due: February 22, 8:00 p.m.

• You are encouraged to format your solutions using LATEX. You’ll find some pointers
to resources for learning LATEX among the Canvas primers. Handwritten solutions are
permitted, but remember that you bear the risk that we may not be able to read your
work and grade it properly — do not count on providing post hoc explanations for
illegible work. You will submit your solution manuscript for written HW3 as a single
PDF file.

• The homework is due at 8:00 PM on the due date. We will be using Gradescope
for collecting the homework assignments. Please submit your solution manuscript as a
PDF file via Gradescope. Post on Ed Discussion and contact the TAs if you are having
technical difficulties in submitting the assignment.

1 Multiple Choice & Written Questions

Note: You do not need to show work for multiple choice questions. If formatting your answer
in LATEX, use our LaTeX template hw3 template.tex (This is a read-only link. You’ll
need to make a copy before you can edit. Make sure you make only private copies.).

1. [Logistic Regression/Regularization] (10 pts) Alice is given a task to classify the data-
points given in Figure 1.

Figure 1: Training Data

Here, the plus signs correspond to class y = 1 and the circles correspond to class y = 0.
She tries to approach the problem with a logistic regression model:

P (y = 1|x,θ) = h(θ0 + θ1x1 + θ2x2) =
1

1 + exp(−θ0 − θ1x1 − θ2x2)
(1)
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Alice observes that the datapoints can be perfectly divided with a linear boundary
(training error is zero). She plans to train a logistic regression model with the following
form of regularization, aiming to minimize:

−
N∑
i=1

[yi log hθ(xi) + (1− yi) log(1− hθ(xi))] + λ0θ
2
0 + λ1θ

2
1 + λ2θ

2
2 (2)

for large λd, where d ∈ {0, 1, 2}. Note that when all λd’s are equal, this is equivalent
to ℓ2 regularization, discussed in class.

(a) State how the training error changes (increases, decreases, or remains the same
with respect to the original training error) for each of the following experiments
Alice performs. Briefly justify with reasoning.

i. (2pts) Only regularizes θ0 (i.e., λ1 = 0, λ2 = 0 and λ0 is large, tending to ∞)

ii. (2pts) Only regularizes θ1 (i.e., λ0 = 0, λ2 = 0 and λ1 is large, tending to ∞)

iii. (2pts) Only regularizes θ2 (i.e., λ0 = 0, λ1 = 0 and λ2 is large, tending to ∞)

(b) For the following scenarios, estimate what value(s) Alice can expect θ0 to take.

i. (2pts) Assume we have equal number of points from each class. We regularize
θ1 and θ2 (i.e., λ0 = 0, λ1 and λ2 are large, tending to ∞).

ii. (2pts) Assume we have more points for class 1 (plus sign). We regularize θ1
and θ2 (i.e., λ0 = 0, λ1 and λ2 are large, tending to ∞).

2. [k Nearest Neighbors] (10 pts) Consider properties of k-NN models:

a. (2 pts) Suppose that we are using k-NN with just two training points, which have
different (binary) labels. Assuming we are using k = 1 and Euclidean distance, what
is the decision boundary? Include a drawing with a brief explanation.

b. (2 pts) For binary classification, given infinite data points, can k-NN with k = 1 express
any decision boundary? If yes, describe the (infinite) dataset you would use to realize
a given classification decision boundary. If no, give an example of a decision boundary
that cannot be achieved.

c. (2 pts) Suppose we take k → ∞; what is the resulting model family?

d. (2 pts) What effect does increasing the number of nearest neighbors k have on the
bias-variance tradeoff? Explain your answer. [Hint: Use parts (b) and (c) in your
explanation.]

e. (2 pts) In logistic regression, we learned that we can tune the threshold of the linear
classifier to trade off the true negative rate and the true positive rate. Explain how we
can do so for k-NNs for binary classification. [Hint: By default, k-NN uses majority
vote to aggregate labels of the k nearest neighbors; consider another option.]
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3. [Decision Trees] (15) You are a surfing enthusiast visiting Hawaii for, of course, surfing,
but you don’t know how to tell if it is a good day for surfing here. So you step into
a surf shop, and the shop owner, who happens to love machine learning, shows the
following table to you.

Date Weather Water Temperature Wave Height Good Day to Surf?

1/8 Sunny Low ≥ 8ft Yes
3/15 Rain Medium < 8ft No
4/27 Sunny High ≥ 8ft Yes
6/1 Cloudy Low < 8ft No
7/21 Sunny Medium ≥ 8ft Yes
8/23 Cloudy High < 8ft No
10/6 Rain Medium ≥ 8ft No
11/9 Cloudy High ≥ 8ft Yes

The shop owner asks you to construct a decision tree to predict whether it is a good day
to surf based on the {Weather, Water Temperature, Wave Height} features.
You will be using the ID3 algorithm introduced in class. Recall that ID3 will split on
the feature that has the largest information gain (or equivalently smallest conditional
entropy). The shop owner then hands you a note with the equations below for entropy
and information gain, which you may find helpful.

Entropy(D) = −(p+log2p+ + p−log2p−)

Gain(D, Xi) = Entropy(D)−
∑

v∈values(Xi)

|Dv|
|D|

· Entropy(Dv)

where Dv ⊆ D such that feature Xi has value v.

a. (8 pts) Based on the principle of information gain, decide which attribute is to be
used for the first split? Be sure to show your computations.

b. (4 pts) Draw the complete (unpruned) decision tree derived from the ID3 algo-
rithm. Your decision tree should be showing the class predictions at the leaves.
You may (1) very neatly hand draw the tree, or (2) draw it using a graphics pro-
gram, or (3) express the tree in a series of if statements, preferably using LaTeX’s
verbatim environment.

c. (1 pts) Using the Decision Tree constructed in the previous question, predict
whether it is a good day to surf when the weather is cloudy, the water temperature
is medium, and the wave height is at 11 ft.

d. (2 pt) In general, does the ID-3 algorithm always guarantee a globally optimal
tree? By globally optimal, we mean a decision tree that perfectly fits the training
data, while having the minimal depth among all trees of such. Briefly justify your
answer (you don’t need to give a formal proof for this part).
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4. [Decision Trees] (5 pts) Describe clearly how to modify a classic decision tree algorithm
(ID3 / C4.5) to obtain oblique splits (i.e, splits that are not necessarily parallel to an
axis). Consider real-valued input features, and describe how you might modify the
process of computing gains and selecting good splits. In specific, explain the criterion
by which the nodes are split and the loss/optimizer you’ll use to select good splits.

5. [Nearest Neighbours; Mandatory for CIS 5190, Optional for CIS 4190] (5 pts) Recall
that we can use k-NN for regression by taking the average of the k nearest neighbors.
More generally, given a new input x rather than simply choosing the k nearest neighbors
of x in the training inputs X, we can think of k-NN as assigning a weight ki(x;X) to
each training input xi based on how “similar” x is to xi; note that ki depends on both
i and X; e.g., for k-NN, the latter is needed to determine whether xi is a k nearest
neighbor of x. Mathematically, we can express the k-NN prediction for x as

fKNN(x;Z) =
n∑

i=1

ki(x;X)yi where ki(x;X) =

{
1
k

if x is k-NN of xi

0 otherwise.

In general, we can use other weighting functions; one option is to use exponential
weighting in terms of the Euclidean distance: ki(x;X) = e−∥x−xi∥22/N , where N =∑n

i=1 e
−∥x−xi∥22 is a normalizing constant. Show an alternative choice of ki(x;X) such

that the resulting predictions equal the linear regression predictions fβ̂(Z)(x) = β̂(Z)⊤x,

where β̂(Z) = (X⊤X)−1X⊤Y are the linear regression parameters. [Hint: You have
previously worked out this formula!]
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