CIS 419/519: Applied Machine Learning Spring 2023

Homework 5

Handed Out: March 15 Due: March 29, 7:59 p.m.

e You are encouraged to format your solutions using IXTEX. You’ll find some pointers
to resources for learning XTEXamong the Canvas primers. Handwritten solutions are
permitted, but remember that you bear the risk that we may not be able to read your
work and grade it properly — do not count on providing post hoc explanations for
illegible work. You will submit your solution manuscript for written HW4 as a single

PDF file.

e The homework is due at 7:59 PM on the due date. We will be using Gradescope
for collecting the homework assignments. Please submit your solution manuscript as
a PDF file via Gradescope. Post on Piazza and contact the TAs if you are having
technical difficulties in submitting the assignment.

1 Written Questions

Note: You do not need to show work for multiple choice questions. If formatting your answer
in BTEX, use our LaTeX template hw5 template.tex (This is a read-only link. You'll
need to make a copy before you can edit. Make sure you make only private copies.).

1. [Image Filtering/Convolution] (12 pts) We discussed the use of convolution filters for
images briefly in class, mostly in the context of CNN. However, before CNNs became
popular, convolution filters had already been an essential part of signal processing and
computational photography. You will probably be surprised by how many features in
Photoshop or Lightroom can be easily implemented with the correct choice of convolu-
tion filter(s). In this question, we will take a look at a few common types of convolution
filters for images, and visualize how they would transform the original image. Let’s
take the following image for example. This is a gray-scale image, where each pixel can
be represented by a value between [0, 1], where 0 is black and 1 is white. The gray-scale
image itself can be represented by a matrix of shape width * height, and we are going
to apply 3*3 convolution filters to the matrix. Assume the bias parameter is set to 0
for all these convolution filters.

https://www.overleaf.com/read/xvbhvtrghrzb

For the following sub-questions, you will be given a convolution filter, and a few trans-
formed image. Your task is to pick the one that corresponds to the given filter. Your
TAs have created a skeleton colab notebook, where you can implement + test out these
filters with different images. https://colab.research.google.com/drive/
1 mNaklRCxehWBn8Le3LGGHCfbwA2xUTg?usp=sharing.

(a) [4 pts] Consider the following filter:

1/9 1/9 1/9
X=1[1/9 1/9 1/9
1/9 1/9 1/9

If we apply X as a convolution filter to the original image, which of the following
transformed image will we see? Briefly justify your choice using one or two
sentences.

https://colab.research.google.com/drive/1_mNak1RCxehWBn8Le3LGGHCfbwA2xUTg?usp=sharing
https://colab.research.google.com/drive/1_mNak1RCxehWBn8Le3LGGHCfbwA2xUTg?usp=sharing

(b) [4 pts] Now consider this following filter:

X —

o O O
[enll \V N aw]
o O O

If we apply X as a convolution filter to the original image, which of the following

transformed image will we see? Briefly justify your choice using one or two
sentences.

(c) [4 pts] Now let’s look at a more challenging example:

1 0 -1
X=12 0 -2
1 0 -1

If we apply X as a convolution filter to the original image, which of the following
transformed image will we see? Briefly justify your choice using one or two
sentences.

2. [Neural Networks] (5 pts) You are performing gradient descent to train a model with
2 learnable parameters w; and ws. Suppose the sequence of gradients over k = 3
iterations is (oldest first):

dL/dw; =[1,0,1]
dL/dwy = (2,6, 3]
At the beginning of the k" iteration, the values of w; and w, are both set to 1. What

should the updated value of w; be after the k' iteration, if the learning rule being
used for gradient descent is momentum gradient descent, defined below.

Momentum Gradient Descent : Set initial momentum p to zero before iteration
number 1. Set a = 0.1, u = 0.9. The momentum rule, discussed in class is:

p=pEP— AVylw=uw,
Wiy = Wy +p

3. [CNNs] (8 pts) Consider the following 3-layer neural network, with layers enumerated
starting from the input.

(a) Conv2d: In channels: 3, Out channels: 5, kernel: 5x5, Stride 1, Padding 0
(b) ReLU

)

)
(¢c) MaxPool2d: kernel: 2x2, Stride 2, Padding 0
(d) Conv2d: In channels: 5, Out channels: 10, kernel: 3x3, Stride 1, Padding 0
(e) ReLU
(f) MaxPool2d: kernel: 2x2; Stride 2, Padding 0
(g) Conv2d: In channels: 10, Out channels: 20, kernel: 3x3, Stride 1, Padding 0
(h) ReLU

(i) MaxPool2d: kernel: 2x2, Stride 2, Padding 0

If the input image is of size 232 (dimension 1) x 232 (dimension 2) x 3 (dimension 3),
compute the following:

Output size dimension 1

(a)
(b)
()

)

(d) Number of learnable parameters

Output size dimension 2

Output size dimension 3

4. [Backpropagation] (15 pts)

w, ' =0.1
x1 I~ W12 =0.1
Sa=-0.4 Output

S
Sigmoid

1
Wy 0.2 W2=02
2 w_ ' =0.3
= RelLU
Input Layer Hidden Layer

Consider the two-layer neural network shown above. You will use the ReLU function
as the activation function to compute activations of the hidden layer, and the Sigmoid
activation function on the output. The input vector is x = [10 8]T. All weights are
displayed on the image (the superscript denotes the layer information).

Suppose that the loss function is L£(output) = output. Compute the gradient of
this loss with respect to each of the weights. Be sure to show the details of your

computational work.
As a reminder, the ReLU function and the derivative of the ReLU function are as

follows:

z ifz>0

0 otherwise

RelLU(z) = {

1 ifz>0

0 otherwise

VReLU(z) = {

5. (5190 mandatory, 4190 optional) [Neural Network Design/Regularization] (9 pts) In
reality, when you are developing a neural network for a machine learning problem,
often times you would need to design a learning objective or network architecture that
is customized towards the problem. A typical challenge in these cases is to make the
forward computation differentiable. An example problem of such would be one that
involves first-order logic. e.g. How can we enforce logical constraints to the output of
your neural network model?

Suppose you are designing a multi-label (i.e. The model outputs multiple labels for
a single input example) image classification model for animal taxonomy. Among the
labels, there are {hamster, cat, mammal}. Ideally, the model should output mamma 1
whenever it outputs hamster or cat, but it should never output hamster and cat
together.

While conceptually neural networks are able to express such logical constraints, in
reality it usually requires many, many training examples before it can learn to do so
consistently. When collecting such data becomes expensive, an alternative strategy is
to formulate such constraints (as a form of “knowledge”) as a regularization term to
the learning objective of the model. In this question, we will look at one specific way
of doing it using t-norm fuzzy logic. Let’s assume that there are three (activated)
output neurons Cj,, C.., C,, for the labels {hamster, cat, mammal} respectively, where
having a value closer to 1 indicates positive, and closer to 0 indicates negative. Then
the aforementioned logical constraint that hamster and cat should never appear
together can be expressed by C, A C, = 0 (i) , and the mammal constraints can be
expressed as Cp, A (= Cy,) =0 (ii) and C. A (= Cy,) = 0 (iid).

As none of the constraints can be directly expressed as differentiable loss function-
s/terms, your goal here is to express the constraints using Lukasiewicz t-norm, a fuzzy,
probabilistic way of expressing first-order logic.

ANB=max(0,A+ B —1)
AV B =min(1,A+ B)
—A=1-A

(a) [3 pts] Express the three constraints (i), (ii) and (iii) with Lukasiewicz t-norm
defined above.

(b) [2 pts] The next step would be expressing the three constraints as three regular-
ization terms to the loss function. Before we do that, we need to think whether we
need an activation functions for the three constraints expressed in t-norm. Why
or why not? Briefly justify your answer.

(c) [4 pts] Now it’s time to design the loss functions for three t-norm constraints
(as regularization terms). Keep in mind the basic criteria for loss function: loss
should be high for mistakes, and low for correct outputs.

(Hint: Think of the t-norm constraints as a 0-1 classification or regression task,
where you want the output of the t-norm constraints to match the ground truth
“labels” in (i), (ii), (iii) respectively.)

https://en.wikipedia.org/wiki/%C5%81ukasiewicz_logic

	Written Questions

