Lecture 1: Introduction

CIS 4190/5190 Spring 2023

Agenda

Logistics

- Course description
- Tentative Schedule
- Grading

Introduction

- Motivation
- Basic definitions
- Examples

Description

Key skills

- Identify opportunities for applying machine learning (ML) algorithms
- Diagnose and debug issues in ML models
- Lectures will focus on developing mathematical understanding
- Assignments will focus on applying this understanding to implementing ML solutions

Prerequisites

- Math: University-level courses in probability, linear algebra, and multivariable calculus
 - Understand prior and posterior probabilities, $\mathbb{E}[X] = \int p(x)dx$, etc.
 - Understand matrix ranks, inverses, and eigenvalues
 - Understand how to compute $\nabla_A(Ax)$ for a matrix A and vector x
 - Tested in HW 1
- **Programming:** Previously coded up projects (preferably in Python) that were at least 100 lines of code long
 - We will provide Python help (primer + office hours) for students who know how to program but do not know Python

Course Comparisons

CIS 4190/5190 (this course)

- Basic mathematical ideas behind ML
- Apply existing ML algorithms to new problems as an engineer or researcher

• CIS 5200

- Deeper, more mathematically demanding introduction to ML
- Perhaps do fundamental ML research in the future

Course Comparisons

CIS 4190/5190 (this course)

- Basic mathematical ideas behind ML
- Apply existing ML algorithms to new problems as an engineer or researcher

• CIS 5220

Deep learning techniques and applications in more detail

• CIS 5450

- Data science workflow including data wrangling, ML modeling, and analytics
- Scaling ML to big datasets and clusters

Also see: https://priml.upenn.edu/courses

CIS 4190 vs. 5190

• 5190 will have extra, mandatory components in the HW, which are optional for 4190

Example

- HW may have 45 points for 4190, and 5 extra points for 5190 (total of 50)
- Student taking 4190 will get 100% if they get at least 45 points (typically by skipping the 5190 problem, but not necessarily)
- You cannot score more than 100%
- The written and coding portion are counted separately; you cannot make up written points using coding points and vice versa

Schedule (Tentative)

Week	Content	Homework
1	Introduction	
2	Introduction	
3	Linear Regression	HW 1 Due
4	Logistic Regression	
5	Decision Trees	HW 2 Due
6	Neural Networks	
7	Computer Vision	HW 3 Due
8	Unsupervised Learning	
9	Natural Language Processing	HW 4 Due
10	Bayesian Networks	
11	Reinforcement Learning	HW 5 Due
12	Recommender Systems	
13	Additional Topics	HW 6 Due
14	Additional Topics	
15	Additional Topics	
16	Review	

Grading Scheme (Tentative)

 Homeworks (6×): 	30%
• Project:	20%
 Final exam (during exam week): 	35%
 Quizzes (12×, roughly weekly): 	10%
 50% correct sufficient for full credit 	
 Class participation: 	5%

Grading Scheme (Tentative)

• **A+:** 95+

• **A:** 90-95

• **A-:** 85-90

• **B+:** 80-85

• **B**: 75-80

• **B-:** 70-75

• Lower passing grades: 50-70

May be curved up

Late Policy (Tentative)

- For each hour late, lose 0.5% on the points for that assignment
 - Homeworks, quizzes, project milestones
 - Max 48 late hours per assignment

Example

- Submit HW 1 20 hours late
- Lose $20 \times 0.5 = 10\%$ on HW 1 (0.5% of overall grade)
- If you have a medical reason, email both professors a copy of your medical visit report, and we will grant an extension (typically 2 days)
 - We will consider other reasons on a case-by-case basis

Office Hours

- Each instructor & TA will have 1 hour of office hours each week
 - Times still being decided

Communication

- We will use **Ed Discussion** for questions and course discussions
 - Send a message to "instructors" to contact professors and Tas
 - You can contact the professors directly on Ed Discussion or by email (posted on course website); always contact both of us

Homework Schedule

6 homeworks

- Released every other Wednesday
- Due Wednesday 2 weeks later (with an exception for HW 6)

• HW 1

- Designed to test mathematical background
- Expected time: 3 hours
- Full points if you score 50% or more
- Opportunity to get used to the workflow

Homework

- Written problems: GradeScope submission
 - LaTeX encouraged; handwritten + scanned at your own risk
 - Won't be graded if you don't annotate your answers correctly!
- Coding problems: AutoGrader + GradeScope submission of notebook
 - Colab/iPython notebook skeletons; AutoGrader as unit tests within skeleton
 - Only difference between AutoGrader and unit tests is different data
 - If code passes the unit tests and you didn't "game" it, it should pass AutoGrader
- Discussion permitted for clarifications, but never share solutions/code;
 acknowledge all your discussions at the beginning of your report

Quiz Schedule

- 12 quizzes
 - Released every Wednesday
 - Due Thursday 8 days later
- Checks basic understanding of material covered the previous week

Agenda

Logistics

- Course description
- Tentative Schedule
- Grading

Introduction

- Motivation
- Basic definitions
- Examples

First Assignments

- HW 1: Released today, due 1/25
 - No office hours planned for HW 1
 - You can ask questions via Ed Discussion
 - 50% = full credit
- Quiz 1: Released 1/19, due 1/26

What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

Herbert Simon

What is Machine Learning?

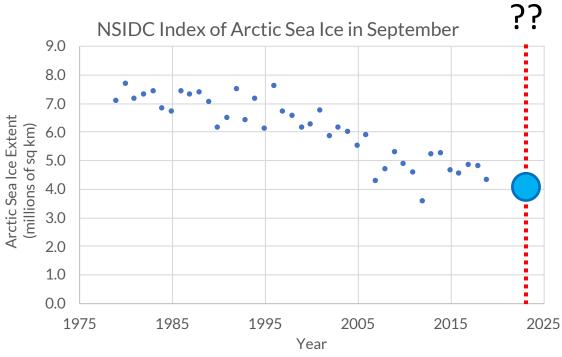
"Machine learning ... gives computers the ability to learn without being explicitly programmed."

Arthur Samuel

What is Machine Learning?

- Tom Mitchell: Algorithms that
 - improve their **performance** *P*
 - at **task** *T*
 - with **experience** *E*
- A well-defined machine learning task is given by (P, T, E)

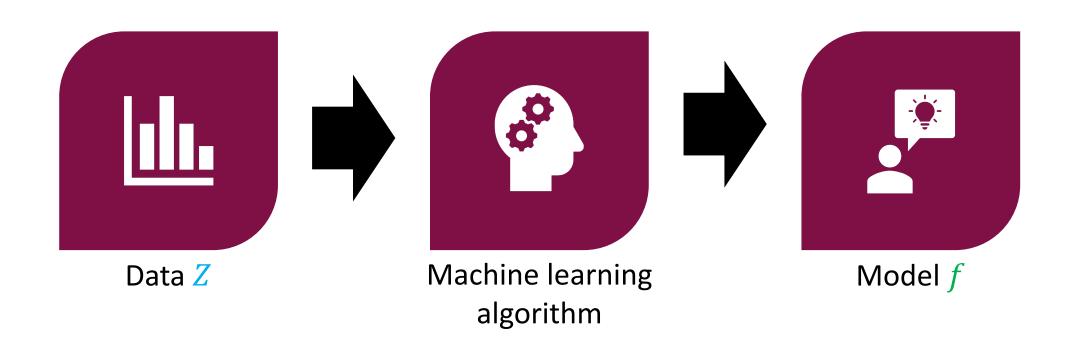
Example: Prediction



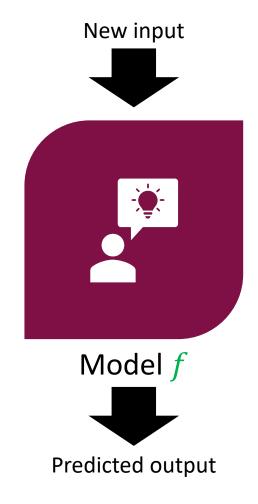
Example: Prediction

- Tom Mitchell: Algorithms that
 - improve their **performance** *P*
 - at some **task** *T*
 - with **experience** *E*
- T =predict Arctic sea ice extent
- *P* = prediction error (e.g., absolute difference)
- E = historical data

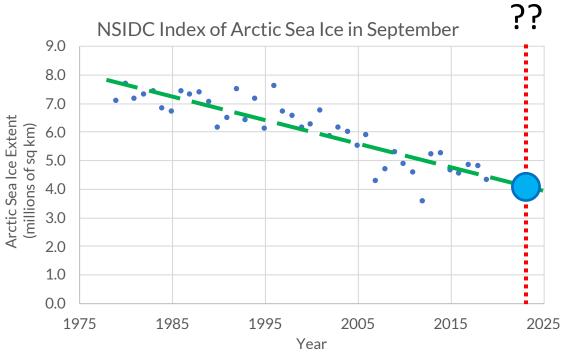
Machine Learning for Prediction



Machine Learning for Prediction



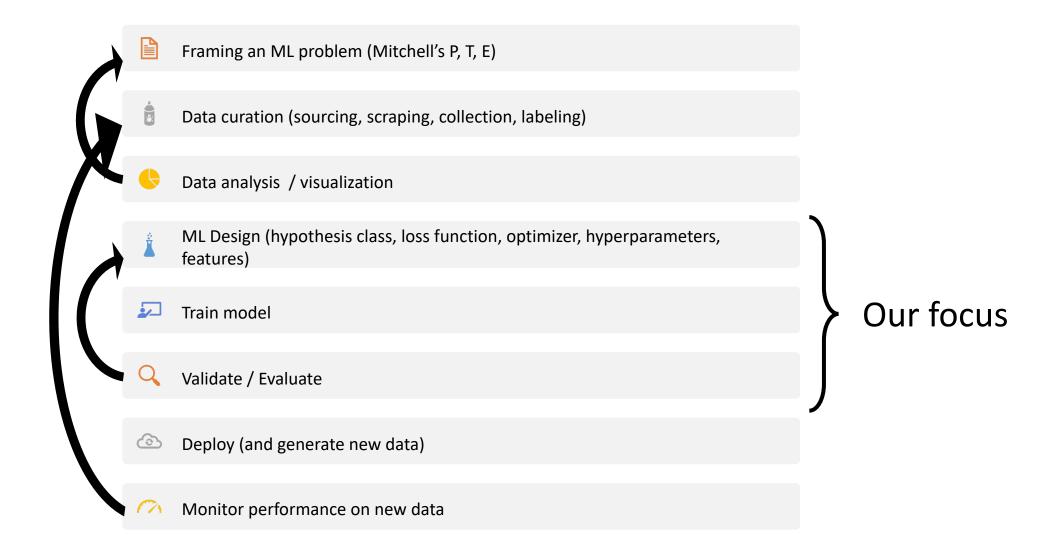
Example: Prediction



Example: Game Playing

- Tom Mitchell: Algorithms that
 - improve their **performance** *P*
 - at some **task** *T*
 - with **experience** *E*
- T =playing Chess
- P = win rate against opponents
- E = playing games against itself

Machine Learning Workflow



Types of Learning

Supervised learning

- Input: Examples of inputs and desired outputs
- Output: Model that predicts output given a new input

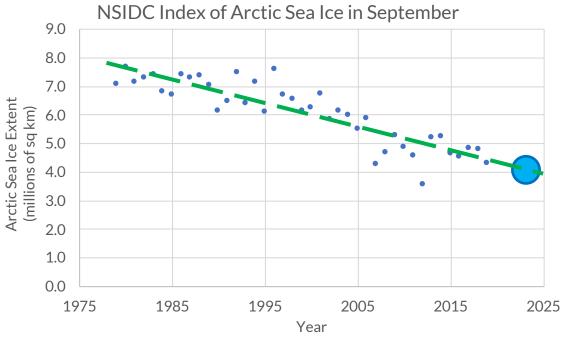
Unsupervised learning

- Input: Examples of some data (no "outputs")
- Output: Representation of structure in the data

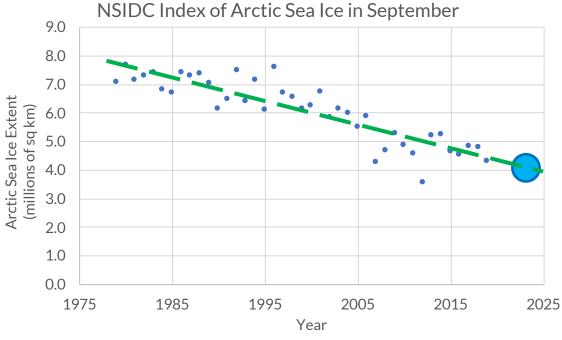
Reinforcement learning

- **Input:** Sequence of interactions with an environment
- Output: Policy that performs a desired task

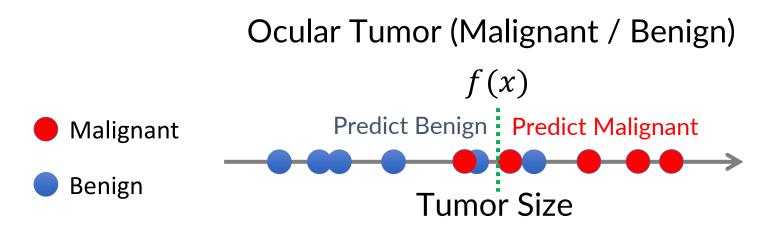
• Given $(x_1, y_1), \dots, (x_n, y_n)$, learn a function that predicts y given x



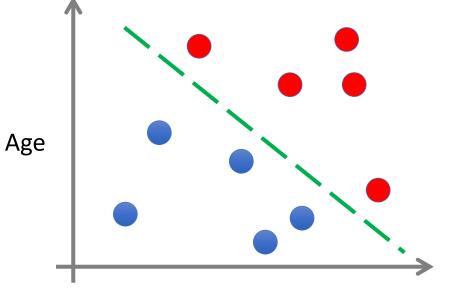
- Given $(x_1, y_1), ..., (x_n, y_n)$, learn a function that predicts y given x
- Regression: Labels y are real-valued



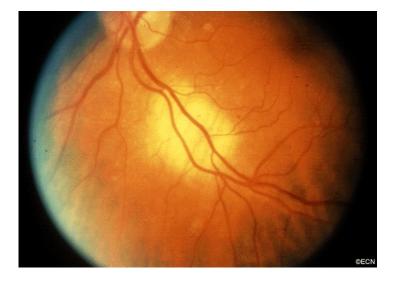
- Given $(x_1, y_1), ..., (x_n, y_n)$, learn a function that predicts y given x
- Classification: Labels y are categories



- Given $(x_1, y_1), ..., (x_n, y_n)$, learn a function that predicts y given x
- Inputs x can be multi-dimensional



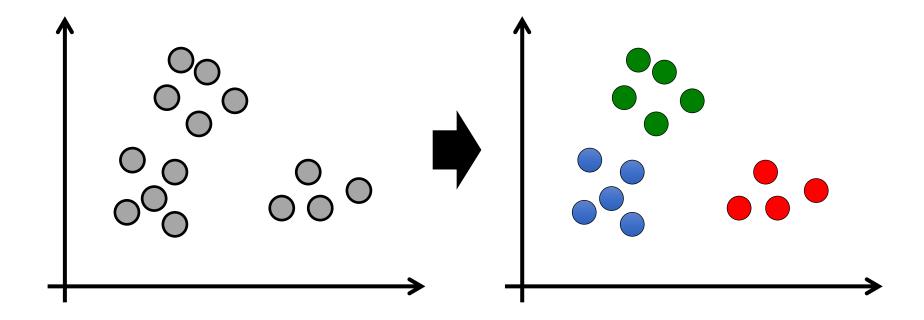
- Patient age
- Clump thickness
- Tumor Color
- Cell type
- ...



Tumor Size

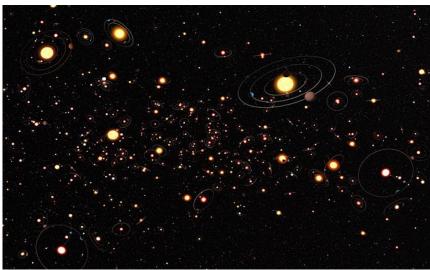
Unsupervised Learning

- Given x_1, \dots, x_n (no labels), output hidden structure in x's
 - E.g., clustering

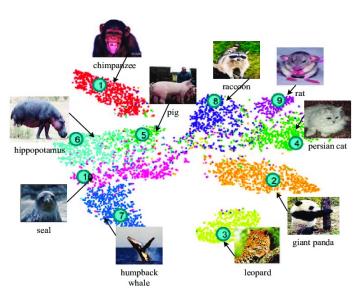


Unsupervised Learning

Find Subgroups in Social Networks



Identify Types of Exoplanets



Visualize Data

Image Credits:

 $\frac{https://medium.com/graph-commons/finding-organic-clusters-in-your-complex-data-networks-5c27e1d4645d}{https://arxiv.org/pdf/1703.08893.pdf}$

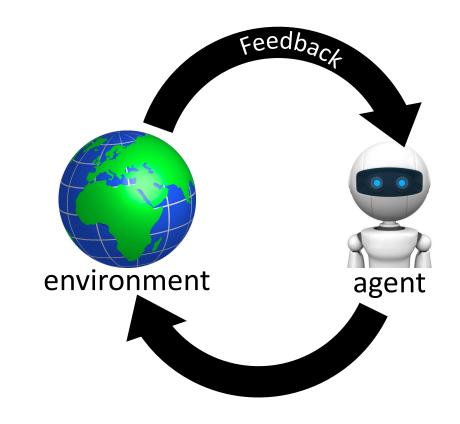
https://en.wikipedia.org/wiki/Exoplanet

Reinforcement Learning

 Learn how to perform a task from interactions with the environment

• Examples:

- Playing chess (interact with the game)
- Robot grasping an object (interact with the object/real world)
- Optimize inventory allocations (interact with the inventory system)



Reinforcement Learning

https://www.youtube.com/watch?v=iaF43Ze1oel

When should we use machine learning ...?

. 10.0		• ~
OVOR tradition	al nragran	2 MING J
over tradition	ลเมเดยเลแ	י אוווווא י
··· over craarcier	ai piopiaii	

Analytical Modeling/ Understanding	Flying ro	ockets to other NO	planets	Ad	ding two numk	pers
	Checkin	g large prime n NO	umbers	_	differential ed	·
			Weather fo			
				Recognizi	ng animals froi YES!	m pictures
		t fashion in 20 NO, PROBABLY	•		ake art and mu	
					ots to make sar YES, PROBABL	

Data Quantity and Quality

Applications of Machine Learning

Everyday Applications

COVID-19 PAYMENT D Spam x

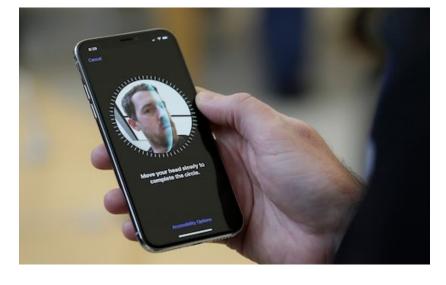
This message seems dangerous

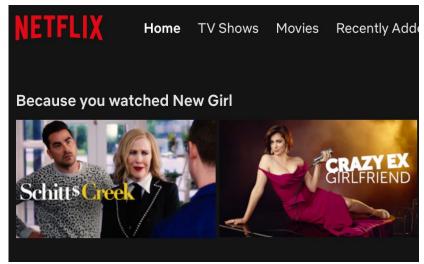
It contains a suspicious link that was used to steal people's personal information. Av personal information.

Good morning

You are advised to download the attached invoice for your review. Please get back to us as soon as $\mathfrak p$ Thanks,

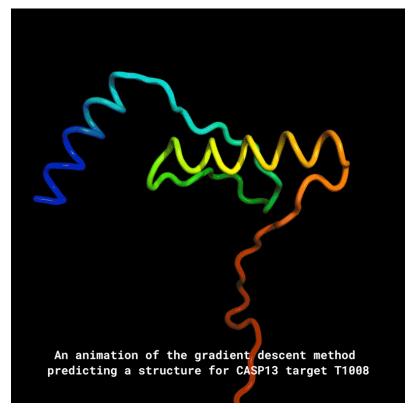
Jane



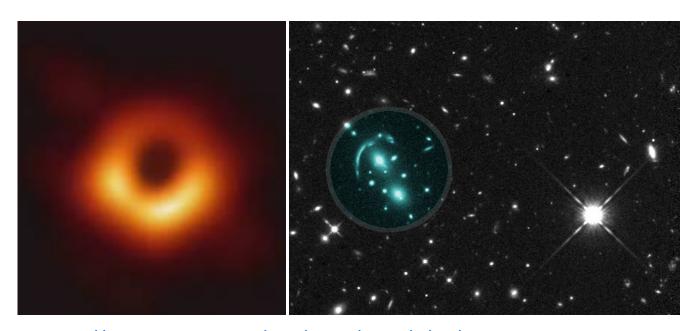




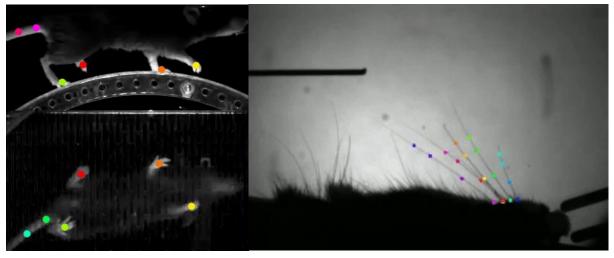
Scientific Discovery



https://deepmind.com/blog/article/AlphaFold-Using-Al-for-scientific-discovery



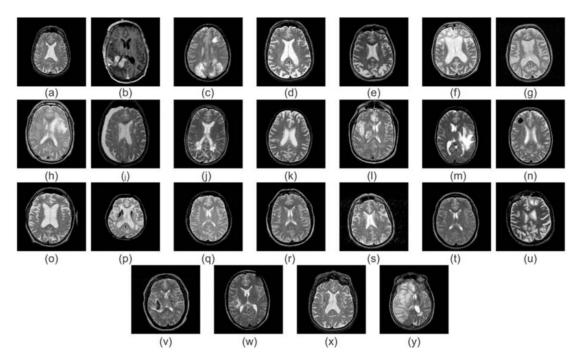
https://www.jpl.nasa.gov/edu/news/2019/4/19/how-scientists-captured-the-first-image-of-a-black-hole/



http://www.mousemotorlab.org/deeplabcut

Radiology and Medicine

Input: Brain scans



Output: Neurological disease labels

Machine learning studies on major brain diseases: 5-year trends of 2014–2018

Applications of machine learning in drug discovery and development

https://www.nature.com/articles/s41573-019-0024-5

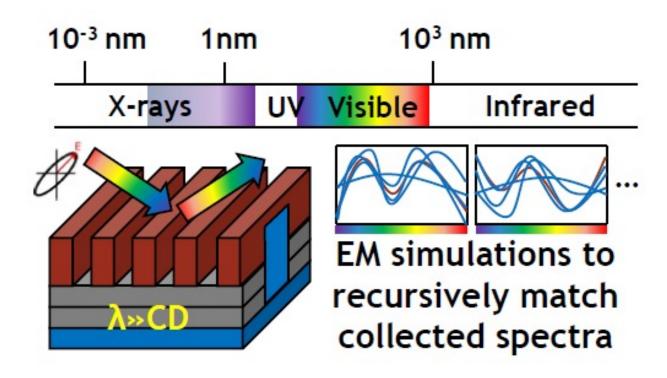
Deep learning-enabled medical computer vision

Andre Esteva ⊡, Katherine Chou, Serena Yeung, Nikhil Naik, Ali Madani, Ali Mottaghi, Yun Liu, Eric Topol, Jeff Dean & Richard Socher

https://www.nature.com/articles/s41746-020-00376-2

Semiconductor Manufacturing

Input: light spectra after bouncing off silicon wafer

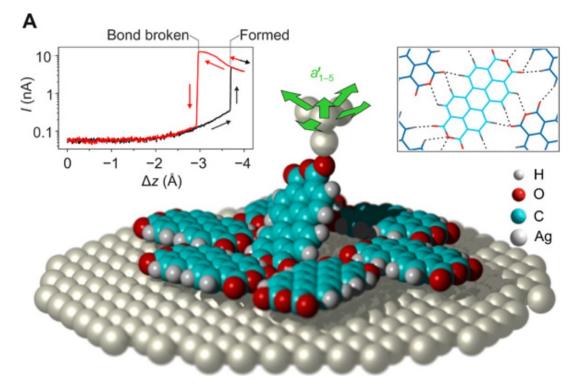


huge gains in manufacturing throughput

→ cheaper phones and computers!

Output: defective / perfect

Nanofabrication



Autonomous robotic nanofabrication with reinforcement learning

Removing individual molecules autonomously with a scanning probe microscope to manufacture new material

RL agent does better than humans!

https://advances.sciencemag.org/content/6/36/eabb6987

Creating Music, Art, and Photos

https://thispersondoesnotexist.com/

https://openai.com/blog/jukebox/

Text Generation

SYSTEM PROMPT (HUMAN-WRITTEN)

Recycling is good for the world.

NO! YOU COULD NOT BE MORE WRONG!!

MODEL COMPLETION (MACHINE-WRITTEN, 25 TRIES)

Recycling is NOT good for the world. It is bad for the environment, it is bad for our health, and it is bad for our economy. I'm not kidding. Recycling is not good for the environment. It is destructive to the earth and it is a major contributor to global warming. Recycling is not good for our health. It contributes to obesity and diseases like heart disease and cancer. Recycling is bad for our economy. It increases the cost of a product, and in turn, the price of everything that is made with that product. Recycling is not good for our nation. We pay a

https://transformer.huggingface.co/doc/gpt2-large

Ethical Considerations

"The Pennsylvania Board of Probation and Parole has begun using machine learning forecasts to help inform parole release decisions. In this paper, we evaluate the impact of the forecasts on those decisions and subsequent recidivism."

An impact assessment of machine learning risk forecasts on parole board decisions and recidivism

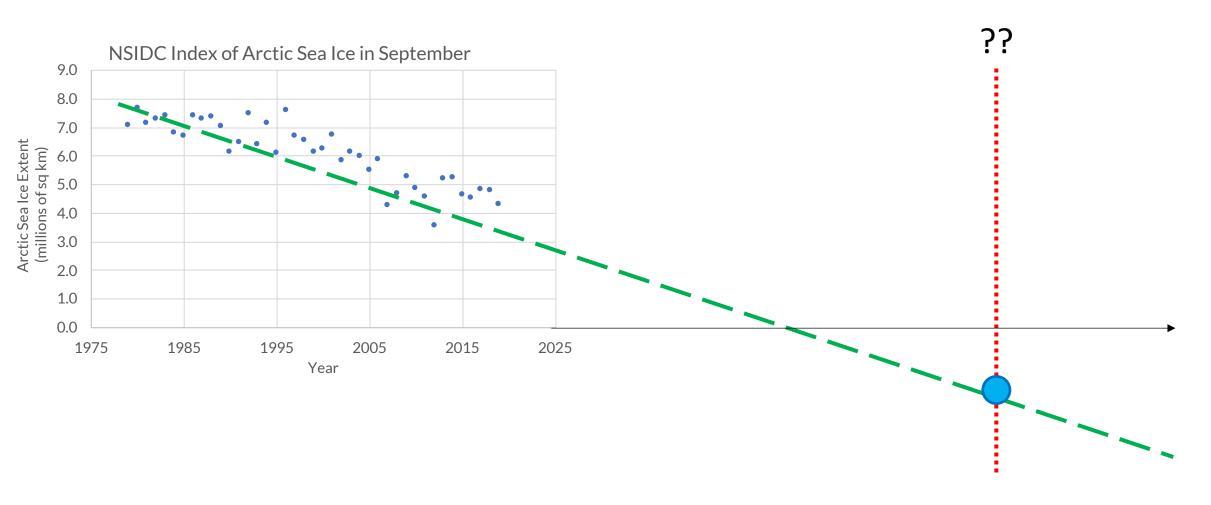
Richard Berk ☑

"In 2013, the University of Texas at Austin's computer science department began using a machine-learning system called GRADE to help make decisions about who gets into its Ph.D. program"

The Death and Life of an Admissions Algorithm

"Videos about vegetarianism led to videos about veganism. Videos about jogging led to videos about running ultramarathons. It seems as if you are never 'hard core' enough for YouTube's recommendation algorithm. It promotes, recommends and disseminates videos in a manner that appears to constantly up the stakes. Given its billion or so users, YouTube may be one of the most powerful radicalizing instruments of the 21st century."

Danger of Out-of-Domain Machine Learning



Any time you are evaluating on data "far" from your training data, beware!