Announcements

* Homework 3 due in one week
* Quiz due tomorrow

* List of project datasets to be released today

* Computer vision: Object classification/detection
* NLP: Sentiment analysis

* Tabular: Time series forecasting, recommendation systems

Lecture 10: Learning Ensembles

CIS 4190/5190
Spring 2023

Ensemble Design Decisions

e How to learn the base models?

e How to combine the learned base models?

Ensemble Design Decisions

e How to learn the base models?

e How to combine the learned base models?

Combining Learned Base Models

* Regression: Average predictions F(x) = %Zﬁ;lfi(x)

* Works well if the base models have similar performance

1

fr

Combining Learned Base Models

* Classification: Majority vote F(x) = 1 (L filx) = g) (for binary)

e Can also average probabilities for classification

1

fr

Combining Learned Base Models

e Can use weighted average:
k
FGO =) fie fild)
i=1

* Can fit weights using linear regression on second training set

* More generally, can fit a second layer model

F(x) = gg(f1(x), ., fir (X))

Combining Learned Base Models

* Second model as “mixture of experts”:
K
FGO =) 9@ fi(0)
i=1

* Second stage model predicts weights over “experts” f;(x)

Combining Learned Base Models

* Second model as “mixture of experts”:
* Special case: g(x) is one-hot
* Advantage: Only need to run g(x) and f;(,) (x)

1
fk

g > i = g(x)

Ensemble Design Decisions

e How to learn the base models?

e How to combine the learned base models?

Ensemble Design Decisions

e How to learn the base models?

e How to combine the learned base models?

Learning Base Models

* Successful ensembles require diversity
e Different model families
* Different training data
» Different features
e Different hyperparameters

* Intuition: Models should make independent mistakes

Learning Base Models

* Intuition: Models should make independent mistakes
X1 X2

X3 X4
J y 4 ¢ P4 o x Z Y 4

Learning Base Models

* Intuition: Models should make independent mistakes
X1 X2

X3 X4

3 “ V 4 “ y 4 & o y 4

4 ¢ -) ©) 7

e 3 o o g O g O

acc = — ¢ x ¢ ¢ ¢
3 g o o gy O

acc = — ‘ “ x “)
4 A . W A . A . Ww ‘ . W

F acc > lask » o

Learning Base Models

* Ensemble can be built from different learning algorithms
 Example: Decision tree, logistic regression, kNN, ...

* What if we want an ensemble of decision trees?
* |ssue: Decision tree learning algorithm is deterministic
e Solution: Randomize the learning algorithm (may sacrifice performance)!

* Randomize decisions inside learning algorithm
* Example: Randomize splits weighted (somehow) by information gain
* |ssue: Very specific to the algorithm
* Solution: Randomize input to learning algorithm (i.e., training data)!

Randomizing Learning Algorithms

e Bagging: Randomize training data (“Boostrap Aggregating”)

« Random examples: Subsample examples {(x, y)} (obtain X € R"'Xd)
Random features: Subsample features x; (obtain X € RX4)

* Meta-strategy that can build ensembles from arbitrary base learners

* Can be thought of as a form of regularization

Bootstrap

* Subsample examples {(x, y)} with replacement (obtain X € R"*4)

n
* Excludes (1 — %) of the training examples

e Separately in each of the replicates

1
* Asn — o0, excludes — o~ 36.8% examples

* Has good statistical properties

Randomizing Learning Algorithms

@,@@@

Original
Training Data

Bootstrap Replicates
of the Training Data

Ensemble Learning

» Step 1: Create bootstrap replicates of the original training dataset

» Step 2: Train a classifier for each replicate

 Step 3 (Optional): Use held-out validation set to weight models
* Can just use average predictions

Ensemble Learning

Random Forests

* Ensemble of decision trees using bagging
* Typically use simple average (over probabilities for classification)

* Intuition:
* Large decision trees are good nonlinear models, but high variance

 Random forests average over many decision trees to reduce variance without
increasing bias

Random Forests

* Tweak 1: Randomize features in learning algorithm instead of bagging

* At DT node splitting step, subsample = Vd features
* Allows each tree to use all features, but not at every node

* Aside: If a few features are highly predictive, then they will be selected in
many trees, causing the base models to be highly correlated

* Tweak 2: Train unpruned decision trees
* Ensures base models have higher capacity
* Intuition: Skipping pruning increases variance

Bias Variance Tradeoff for Random Forests

* Naively, skipping pruning yields high variance

* Introduce randomness to average away “excess” variance

* Without randomness, all models in the random forest would be the same
(large) decision tree, so the random forest would still have very large variance

 Randomness should ideally make base models more independent

AdaBoost (Freund & Schapire 1997)

* Like bagging, meta-algorithm that turns base models into ensemble
* Provably learns for base models achieving any error rate > 0.5

» Uses different training example weights (instead of different
subsamples or different features) to introduce diversity

* |n particular, upweights currently incorrectly predicted examples

* Base models should satisfy the following:
» High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)
* Able to incorporate sample weights during learning
 Specific to classification (discuss general losses later)

AdaBoost (Freund & Schapire 1997)

* Input
* Training dataset /
* Learning algorithm Train(Z, w) that can handle weights w
* Hyperparameter T indicating number of models to train

* Output
* Ensemble of models F(x) = X.I_; B¢ - f+(x)

Aside: Learning with Weighted Examples

* Many algorithms can directly incorporate weights into the loss

* For maximum likelihood estimation:
n
2G5 7,w) =) wy-logps (i | %)
i=1

* Alternatively, can subsample the data proportional to weights w;

AdaBoost

size represents weight w;

1 .
Wy « (l, ...,g) (w4 ; weight for (x;, v;))

n

fort €{1,..., T}
f; « Train(Z, w;)
€ < Error(ft: Z; Wt)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(X=1 B¢ - f(x))

No v AwNPE

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

NOoO U AWM E

AdaBoost

1

1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

fortc T{ll, —
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

focus on linear classifiers f;

AdaBoost

1
W1 < (_) (wq ; weight for (x;,y;))

fort € {1,..,T}
fr < Traln(Z, w;)
e; < Error(f;, Z,w;)

oo pwn e

B; becomes largeras| . =~
€: becomes smaller | |

AdaBoost

Wep1i X Wy - e —Beyifexi) (for all i)

1. wy « (1) (wq ; weight for (x;,y;))
2. forte{l,.., T}
3. f; « Traln(Z, W;)
4. € Error(ft,Z, W;)
5. [, « —ln -t
€t
6.
/.

return (1) = s1gn}&t_1ﬁt 70

Use convention y; € {—1,+1}
If correct (y; = f,(x;)) then multiply by e =P t=1
If incorrect (v; # f;(x;)) then multiply by et

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

NOoO U AWM E

AdaBoost

1 1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

n
fort {1 T}
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-
Bt _ln Et
€T

Wep1i X Wy - e —Beyifexi) (for all i)

NS |V AN E

return () = SIgn(Xi=q ;" J: (X))

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=q B¢ « f (%))

NOoO U AWM E

AdaBoost

1 1 .
Wy < (—, ""E) (wq ; weight for (x;,y;))

n
fort {1 T}
f; < Train(Z, w;)

NoO U RWEN R

€, < ErTor(J;, Z, W;)

1 1—€
lBt — _ln L
2

€t
Wipq i X Wy - e Peyiltld (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-
Bt _ln Et
€T

Wep1i X Wy - e —Beyifexi) (for all i)

NS |V AN E

return () = SIgn(Xi=q ;" J: (X))

AdaBoost

wi (=,) (i weight for (x;, 7))

fort € {1,..,T}
fi < Traln(Z ,Wi)
€ < Error(ft: Z; Wt)

1-—
lBt _ln Et
€t

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

NOoO U AWM E

AdaBoost

Wep1; X We; - e —Beyiftxid) (for all i)

return F (x) = sign(T¢=y B¢ « f (%))

L wy < (l) (Wll W9|ght for (xu YL))
2. forte{l,.., T}
3. f; « Traln(Z, W;)
4. € Error(ft,Z, W;)
5. B < -In—"
€t
6.
/.

Under certain assumptions, training error /’ t=T
goes to zero in O(logn) iterations

AdaBoost

Wy < (1) (wq ; weight for (x;,y;))
fort € {1,..,T}

fr < Traln(Z ,Wi)

€ Error(ft,Z, W;)

1 1-— Et
[y < ln -

6 W . o l_/I_IL e :Bt Vi fr(x;) {fnr a)
7. return F(x) = 51gn(2 _1 B ft(x))

T~

final model is average of base models
weighted by their performance

Al e

AdaBoost Weighting Strategy

* On each iteration:
* Misclassified examples are upweighted
* Correctly classified are downweighted

* If an example is repeatedly misclassified, it will eventually be
upweighted so much that it is correctly classified

* Emphasizes “hardest” parts of the input space
* Instances with highest weight are often outliers

AdaBoost and Overfitting

* Basic ML theory predicts AdaBoost always overfits as T — oo

* Hypothesis keeps growing more complex!
* In practice, AdaBoost often does not overfit

1.0-

20- T =]

; AdaBoost on OCR data with S | T = 100
Test 3 _

15 C4.5 as the base learner 2 |— T = 1000
210% g 0.5-
o . © _
3 =]

S E
=5 3

0 —

10 100 1000 -1 0.5 margin

rounds of boosting

AdaBoost Summary

* Strengths:
e Fast and simple to implement
* No hyperparameters (except for T)
* Very few assumptions on base models

* Weaknesses:
» Can be susceptible to noise/outliers when there is insufficient data
* No way to parallelize
* Small gains over complex base models
 Specific to classification!

Boosting as Gradient Descent

* Both algorithms: new model = old model 4+ update

 Gradient Descent:

Or41 =0 —a-VoL(6;; Z)

* Boosting:

Frp1(x) = Fo(x) + Braq - fraa(x)

* Here, Fi(x) = f=1 Bi - fi(x)

Boosting as Gradient Descent

* Assuming 5y = 1 for all t, then:

Fe(x;) + fee1(x;) = Frpq (%)

Boosting as Gradient Descent

* Assuming 5y = 1 for all t, then:
Fr(xi) + fear(x) = Frya (%) =y
* Rewriting this equation, we have

fee1(x;) = Frya1(xy) — Fe(x;) = y; — Fe(x;)
W_/

“residuals”, i.e., error of the current model

Boosting as Gradient Descent

* In other words, at each step, boosting is training the next model f;. ;
to approximate the residual:

fer1(x;) = vy — Fe(x;)
—

“residuals”, i.e., error of the current model

* Idea: Train f;,; directly to predict residuals y; — F; (x;)

* This strategy works for regression as well!

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;, using dataset

Zorr = (20 i — Ft(xi))}:;l
* Step 2: Take

Fii1(x) = Fr(x) + fre1(x)

* Return the final model F;-

Boosting as Gradient Descent

e Consider losses of the form
1 n
L(F;2) = —) L(F(x);)
i=1

* In other words, sum of individual label-level losses L(7; y) of a
prediction ¥ = F(x) if the ground truth label is y

* For example, L(7;y) = %(y“ — v)? yields the MSE loss

Boosting as Gradient Descent

* Residuals are the gradient of the squared error L(y,§) = %(y — 9)%:

~

oL
T A~ (Ft(xl); yl) = Vi — Ft(xi) — reSiduali
oy

* For general L, instead of {(xi,yl- — Ft(xl-))}?=1 we can train f;,, on

(oL "
Liy1 =3\ Xi,— (9—37 (Fi(x;); i)
i=1

\

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;, using dataset

Liiq = {(xi,yi — Ft(xi))}?=1

* Step 2: Take
Ft+1(x) — Ft(x) T ft+1(x)

* Return the final model F;-

Boosting as Gradient Descent

 Algorithm: Foreacht € {1, ...,T}:
* Step 1: Train f;, using dataset

(oL "
Liy1 =3\ Xi,— (3_37 (Fi(x;); i)
i=1

\

* Step 2: Take
Ft+1(x) — Ft(x) T ft+1(x)

* Return the final model F;-

Boosting as Gradient Descent

e Casts ensemble learning in the loss minimization framework
* Model family: Sum of base models Fr(x) = XI_, fi (x)
* Loss: Any differentiable loss expressed as

L(F; 2) =) L(FG,)

* Gradient boosting is a general paradigm for training ensembles with
specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

* Gradient boosting with depth-limited decision trees (e.g., depth 3) is
one of the most powerful off-the-shelf classifiers available

* Caveat: Inherits decision tree hyperparameters

* XGBoost is a very efficient implementation suitable for production use
* A popular library for gradient boosted decision trees
* Optimized for computational efficiency of training and testing
* Used in many competition winning entries, across many domains
 https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

