Announcements

- Homework 3 due in one week
- Quiz due tomorrow
- List of project datasets to be released today
- Computer vision: Object classification/detection
- NLP: Sentiment analysis
- Tabular: Time series forecasting, recommendation systems

Lecture 10: Learning Ensembles

CIS 4190/5190

Spring 2023

Ensemble Design Decisions

- How to learn the base models?
- How to combine the learned base models?

Ensemble Design Decisions

- How to learn the base models?
- How to combine the learned base models?

Combining Learned Base Models

- Regression: Average predictions $F(x)=\frac{1}{k} \sum_{i=1}^{k} f_{i}(x)$
- Works well if the base models have similar performance

Combining Learned Base Models

- Classification: Majority vote $F(x)=1\left(\sum_{i=1}^{k} f_{i}(x) \geq \frac{k}{2}\right)$ (for binary)
- Can also average probabilities for classification

Combining Learned Base Models

- Can use weighted average:

$$
F(x)=\sum_{i=1}^{k} \beta_{i} \cdot f_{i}(x)
$$

- Can fit weights using linear regression on second training set
- More generally, can fit a second layer model

$$
F(x)=g_{\beta}\left(f_{1}(x), \ldots, f_{k}(x)\right)
$$

Combining Learned Base Models

- Second model as "mixture of experts":

$$
F(x)=\sum_{i=1}^{k} g(x)_{i} \cdot f_{i}(x)
$$

- Second stage model predicts weights over "experts" $f_{i}(x)$

Combining Learned Base Models

- Second model as "mixture of experts":
- Special case: $g(x)$ is one-hot
- Advantage: Only need to run $g(x)$ and $f_{g(x)}(x)$

Ensemble Design Decisions

- How to learn the base models?
- How to combine the learned base models?

Ensemble Design Decisions

- How to learn the base models?
- How to combine the learned base models?

Learning Base Models

- Successful ensembles require diversity
- Different model families
- Different training data
- Different features
- Different hyperparameters
- Intuition: Models should make independent mistakes

Learning Base Models

－Intuition：Models should make independent mistakes

	क x 和 1解 1 动 x 的

Learning Base Models

- Intuition: Models should make independent mistakes

x_{2}
?
x_{3}
x_{4}

$$
\begin{aligned}
& \text { acc }=\frac{3}{4} \\
& F \quad \text { acc } \rightarrow 1 \text { as } k \rightarrow \infty
\end{aligned}
$$

Learning Base Models

- Ensemble can be built from different learning algorithms
- Example: Decision tree, logistic regression, kNN, ...
- What if we want an ensemble of decision trees?
- Issue: Decision tree learning algorithm is deterministic
- Solution: Randomize the learning algorithm (may sacrifice performance)!
- Randomize decisions inside learning algorithm
- Example: Randomize splits weighted (somehow) by information gain
- Issue: Very specific to the algorithm
- Solution: Randomize input to learning algorithm (i.e., training data)!

Randomizing Learning Algorithms

- Bagging: Randomize training data ("Boostrap Aggregating")
- Random examples: Subsample examples $\{(x, y)\}$ (obtain $X \in \mathbb{R}^{n^{\prime} \times d}$) Random features: Subsample features x_{j} (obtain $X \in \mathbb{R}^{n \times d^{\prime}}$)
- Meta-strategy that can build ensembles from arbitrary base learners
- Can be thought of as a form of regularization

Bootstrap

- Subsample examples $\{(x, y)\}$ with replacement (obtain $X \in \mathbb{R}^{n \times d}$)
- Excludes $\left(1-\frac{1}{n}\right)^{n}$ of the training examples
- Separately in each of the replicates
- As $n \rightarrow \infty$, excludes $\rightarrow \frac{1}{e} \approx 36.8 \%$ examples
- Has good statistical properties

Randomizing Learning Algorithms

Ensemble Learning

- Step 1: Create bootstrap replicates of the original training dataset
- Step 2: Train a classifier for each replicate
- Step 3 (Optional): Use held-out validation set to weight models
- Can just use average predictions

Ensemble Learning

Random Forests

- Ensemble of decision trees using bagging
- Typically use simple average (over probabilities for classification)
- Intuition:
- Large decision trees are good nonlinear models, but high variance
- Random forests average over many decision trees to reduce variance without increasing bias

Random Forests

- Tweak 1: Randomize features in learning algorithm instead of bagging
- At DT node splitting step, subsample $\approx \sqrt{d}$ features
- Allows each tree to use all features, but not at every node
- Aside: If a few features are highly predictive, then they will be selected in many trees, causing the base models to be highly correlated
- Tweak 2: Train unpruned decision trees
- Ensures base models have higher capacity
- Intuition: Skipping pruning increases variance

Bias Variance Tradeoff for Random Forests

- Naïvely, skipping pruning yields high variance
- Introduce randomness to average away "excess" variance
- Without randomness, all models in the random forest would be the same (large) decision tree, so the random forest would still have very large variance
- Randomness should ideally make base models more independent

AdaBoost (Freund \& Schapire 1997)

- Like bagging, meta-algorithm that turns base models into ensemble
- Provably learns for base models achieving any error rate >0.5
- Uses different training example weights (instead of different subsamples or different features) to introduce diversity
- In particular, upweights currently incorrectly predicted examples
- Base models should satisfy the following:
- High-bias/low-capacity (e.g., depth-limited decision trees, linear classifiers)
- Able to incorporate sample weights during learning
- Specific to classification (discuss general losses later)

AdaBoost (Freund \& Schapire 1997)

- Input
- Training dataset Z
- Learning algorithm Train($Z, w)$ that can handle weights w
- Hyperparameter T indicating number of models to train
- Output
- Ensemble of models $F(x)=\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)$

Aside: Learning with Weighted Examples

- Many algorithms can directly incorporate weights into the loss
- For maximum likelihood estimation:

$$
\ell(\beta ; Z, w)=\sum_{i=1}^{n} w_{i} \cdot \log p_{\beta}\left(y_{i} \mid x_{i}\right)
$$

- Alternatively, can subsample the data proportional to weights w_{i}

AdaBoost

size represents weight w_{i}

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}$ (for all i)
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

focus on linear classifiers f_{t}

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
$\begin{aligned} \text { 2. } & \text { for } t \in\{1, \ldots, T\} \\ \text { 3. } & f_{t} \leftarrow \operatorname{Train}(Z, \\ \text { 4. } & \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}\right. \\ \text { 5. } & \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}\end{aligned}$
2. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
3. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $\left.F(x)=\operatorname{sign} y \sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

Use convention $y_{i} \in\{-1,+1\}$
If correct ($y_{i}=f_{t}\left(x_{i}\right)$) then multiply by $e^{-\beta_{t}}$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
$\begin{aligned} \text { 2. } & \text { for } t \in\{1, \ldots, T\} \\ \text { 3. } & f_{t} \leftarrow \operatorname{Train}(Z, \\ \text { 4. } & \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t},\right. \\ \text { 5. } & \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}\end{aligned}$
2. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
3. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$ 2. for $t \in\{1, \ldots, T\}$
2. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
3. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, \mathrm{Z}, w_{t}\right)$
4. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
5. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
6. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{e_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $\quad w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$

Under certain assumptions, training error
$\xrightarrow{ } t=T$ goes to zero in $O(\log n)$ iterations

AdaBoost

1. $w_{1} \leftarrow\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)\left(w_{1, i}\right.$ weight for $\left.\left(x_{i}, y_{i}\right)\right)$
2. for $t \in\{1, \ldots, T\}$
3. $f_{t} \leftarrow \operatorname{Train}\left(Z, w_{t}\right)$
4. $\quad \epsilon_{t} \leftarrow \operatorname{Error}\left(f_{t}, Z, w_{t}\right)$
5. $\quad \beta_{t} \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_{t}}{\epsilon_{t}}$
6. $w_{t+1, i} \propto w_{t, i} \cdot e^{-\beta_{t} \cdot y_{i} \cdot f_{t}\left(x_{i}\right)}($ for all $i)$
7. return $F(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \beta_{t} \cdot f_{t}(x)\right)$
final model is average of base models weighted by their performance

AdaBoost Weighting Strategy

- On each iteration:
- Misclassified examples are upweighted
- Correctly classified are downweighted
- If an example is repeatedly misclassified, it will eventually be upweighted so much that it is correctly classified
- Emphasizes "hardest" parts of the input space
- Instances with highest weight are often outliers

AdaBoost and Overfitting

- Basic ML theory predicts AdaBoost always overfits as $T \rightarrow \infty$
- Hypothesis keeps growing more complex!
- In practice, AdaBoost often does not overfit

AdaBoost Summary

- Strengths:
- Fast and simple to implement
- No hyperparameters (except for T)
- Very few assumptions on base models
- Weaknesses:
- Can be susceptible to noise/outliers when there is insufficient data
- No way to parallelize
- Small gains over complex base models
- Specific to classification!

Boosting as Gradient Descent

- Both algorithms: new model $=$ old model + update
- Gradient Descent:

$$
\theta_{t+1}=\theta_{t}-\alpha \cdot \nabla_{\theta} L\left(\theta_{t} ; Z\right)
$$

- Boosting:

$$
F_{t+1}(x)=F_{t}(x)+\beta_{t+1} \cdot f_{t+1}(x)
$$

- Here, $F_{t}(x)=\sum_{i=1}^{t} \beta_{i} \cdot f_{i}(x)$

Boosting as Gradient Descent

- Assuming $\beta_{t}=1$ for all t, then:

$$
F_{t}\left(x_{i}\right)+f_{t+1}\left(x_{i}\right)=F_{t+1}\left(x_{i}\right)
$$

Boosting as Gradient Descent

- Assuming $\beta_{t}=1$ for all t, then:

$$
F_{t}\left(x_{i}\right)+f_{t+1}\left(x_{i}\right)=F_{t+1}\left(x_{i}\right) \approx y_{i}
$$

- Rewriting this equation, we have

$$
f_{t+1}\left(x_{i}\right)=F_{t+1}\left(x_{i}\right)-F_{t}\left(x_{i}\right) \approx \underbrace{y_{i}-F_{t}\left(x_{i}\right)}_{\text {"residuals", i.e., error of the current model }}
$$

Boosting as Gradient Descent

- In other words, at each step, boosting is training the next model f_{t+1} to approximate the residual:

$$
\begin{aligned}
& f_{t+1}\left(x_{i}\right) \approx \underbrace{y_{i}-F_{t}\left(x_{i}\right)}_{\text {"residuals", i.e., error of the current model }}
\end{aligned}
$$

- Idea: $\operatorname{Train} f_{t+1}$ directly to predict residuals $y_{i}-F_{t}\left(x_{i}\right)$
- This strategy works for regression as well!

Boosting as Gradient Descent

- Algorithm: For each $t \in\{1, \ldots, T\}$:
- Step 1: Train f_{t+1} using dataset

$$
Z_{t+1}=\left\{\left(x_{i}, y_{i}-F_{t}\left(x_{i}\right)\right)\right\}_{i=1}^{n}
$$

- Step 2: Take

$$
F_{t+1}(x)=F_{t}(x)+f_{t+1}(x)
$$

- Return the final model F_{T}

Boosting as Gradient Descent

- Consider losses of the form

$$
L(F ; Z)=\frac{1}{n} \sum_{i=1}^{n} \tilde{L}\left(F\left(x_{i}\right) ; y_{i}\right)
$$

- In other words, sum of individual label-level losses $\tilde{L}(\hat{y} ; y)$ of a prediction $\hat{y}=F(x)$ if the ground truth label is y
- For example, $\tilde{L}(\hat{y} ; y)=\frac{1}{2}(\hat{y}-y)^{2}$ yields the MSE loss

Boosting as Gradient Descent

- Residuals are the gradient of the squared error $\tilde{L}(y, \hat{y})=\frac{1}{2}(y-\hat{y})^{2}$:

$$
-\frac{\partial \tilde{L}}{\partial \hat{y}}\left(F_{t}\left(x_{i}\right) ; y_{i}\right)=y_{i}-F_{t}\left(x_{i}\right)=\text { residual }_{\mathbf{i}}
$$

- For general \tilde{L}, instead of $\left\{\left(x_{i}, y_{i}-F_{t}\left(x_{i}\right)\right)\right\}_{i=1}^{n}$ we can train f_{t+1} on

$$
Z_{t+1}=\left\{\left(x_{i},-\frac{\partial \tilde{L}}{\partial \hat{y}}\left(F_{t}\left(x_{i}\right) ; y_{i}\right)\right)\right\}_{i=1}^{n}
$$

Boosting as Gradient Descent

- Algorithm: For each $t \in\{1, \ldots, T\}$:
- Step 1: Train f_{t+1} using dataset

$$
Z_{t+1}=\left\{\left(x_{i}, y_{i}-F_{t}\left(x_{i}\right)\right)\right\}_{i=1}^{n}
$$

- Step 2: Take

$$
F_{t+1}(x)=F_{t}(x)+f_{t+1}(x)
$$

- Return the final model F_{T}

Boosting as Gradient Descent

- Algorithm: For each $t \in\{1, \ldots, T\}$:
- Step 1: Train f_{t+1} using dataset

$$
Z_{t+1}=\left\{\left(x_{i},-\frac{\partial \tilde{L}}{\partial \hat{y}}\left(F_{t}\left(x_{i}\right) ; y_{i}\right)\right)\right\}_{i=1}^{n}
$$

- Step 2: Take

$$
F_{t+1}(x)=F_{t}(x)+f_{t+1}(x)
$$

- Return the final model F_{T}

Boosting as Gradient Descent

- Casts ensemble learning in the loss minimization framework
- Model family: Sum of base models $F_{T}(x)=\sum_{t=1}^{T} f_{t}(x)$
- Loss: Any differentiable loss expressed as

$$
L(F ; Z)=\sum_{i=1}^{n} \tilde{L}\left(F\left(x_{i}\right), y_{i}\right)
$$

- Gradient boosting is a general paradigm for training ensembles with specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

- Gradient boosting with depth-limited decision trees (e.g., depth 3) is one of the most powerful off-the-shelf classifiers available
- Caveat: Inherits decision tree hyperparameters
- XGBoost is a very efficient implementation suitable for production use
- A popular library for gradient boosted decision trees
- Optimized for computational efficiency of training and testing
- Used in many competition winning entries, across many domains
- https://xgboost.readthedocs.io

