

# Lecture 12: Exploring Data Through Preprocessing and Unsupervised ML Part 2

Feb 22, 2023 CIS 4190/5190

Spring 2023

#### Recap: Clustering

What natural groupings exist in this data?



# Recap: K-Means Clustering

#### K-Means (K, X)

- Randomly choose *K* cluster center locations (centroids)
- Loop until convergence, do:
  - Assign each point to the cluster of the closest centroid
  - Re-estimate the cluster centroids based on the data assigned to each cluster

#### KMeans Iteration:



## Recap: The Choice of Distance Function

- Clustering techniques all usually accept a matrix of pairwise distances between data points as input.
- The choice of distance function affects the clustering outcomes. This boils down to: different distance functions might consider different point pairs more similar.



$$L_{\infty}(a,b) = 5 \qquad \qquad L_{\infty}(c,d) = 4$$
  
$$L_{2}(a,b) = (5^{2} + \varepsilon^{2})^{\frac{1}{2}} = 5 + \varepsilon \qquad L_{2}(c,d) = (4^{2} + 4^{2})^{\frac{1}{2}} = 4\sqrt{2} = 5.66$$

# Mahalanobis distance

- One common choice is to tie the distance measure itself to the structure of the data.
- Mahalanobis Distance:  $d(x, y) = \sqrt{(x y)^T \Sigma^{-1} (x y)}$ 
  - $\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$  is the mean vector, which represents the average of the data

• 
$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x - \mu) (x - \mu)^T$$
 is the covariance matrix of the data.

- When  $\Sigma$  is identity, this is the same as Euclidean distance.
- In 1D, this measures how many standard deviations away two points are.
- The Mahalanobis distance generalizes this to higher dimensions ...



#### **Covariance Matrix Of Data**

For zero-centered data,

Covariance = 
$$\Sigma = \mathbb{E}[\mathbf{x}_i \mathbf{x}_i^T] = \mathbb{E}\begin{bmatrix} x_{i1}x_{i1} & \cdots & x_{i1}x_{iD} \\ \vdots & x_{ij}x_{ik} & \vdots \\ x_{iD}x_{i1} & \cdots & x_{iD}x_{iD} \end{bmatrix}$$



$$\sigma(x, y) = \mathbb{E}[(x - \mathbb{E}(x))(y - \mathbb{E}(y))]$$
$$\Sigma = \begin{bmatrix} \sigma(x, x) & \sigma(x, y) \\ \sigma(y, x) & \sigma(y, y) \end{bmatrix}$$

#### Covariance Matrix in Terms of Data Matrix X

Covariance = 
$$\Sigma = \mathbb{E} \begin{bmatrix} x_i x_i^T \end{bmatrix} = \mathbb{E} \begin{bmatrix} x_{i1} x_{i1} & \cdots & x_{i1} x_{iD} \\ \vdots & x_{ij} x_{ik} & \vdots \\ x_{iD} x_{i1} & \cdots & x_{iD} x_{iD} \end{bmatrix} = \frac{1}{N} \sum_i x_i x_i^T$$
  
$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} \qquad X^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$
$$\frac{1}{N} X^T X = \frac{1}{N} (x_1 x_1^T + x_2 x_2^T + \cdots + x_N x_N^T)$$

Thus, the data covariance matrix is typically computed as  $\frac{1}{N}X^{T}X$ 

#### Covariance Matrix Is Related to Dataset "Shape"



"Distances matter more when they are along directions in which the data varies less."

Mahalanobis Distance:  $d(x, y) = \sqrt{(x - y)^T \Sigma^{-1}(x - y)}$ 

#### **Covariance Matrix Of Data**



"Distances matter more when they are along directions in which the data varies less."

Mahalanobis Distance:  $d(x, y) = \sqrt{(x - y)^T \Sigma^{-1} (x - y)}$ 

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

# Summary of Clustering

- Critical to understanding the structure of our data
- Often useful for creating high-level features useful for supervised learning
- We saw one approach in detail: K-Means

## **Optional readings: Clustering**

- Bishop Ch 9.1 on K-Means Clustering: <u>https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf</u>
- Hastie and Tibshirani, Elements of Statistical Learning, Ch 14.5.1 and 14.5.2. <u>https://hastie.su.domains/ElemStatLearn/</u>
- Hands-On ML Unsupervised ML: <u>https://github.com/ageron/handson-ml2/blob/master/09\_unsupervised\_learning.ipynb</u> (Play with lots of clustering approaches, including K-Means in detail)
- Scikit-Learn documentation of clustering approaches: <u>https://scikit-learn.org/stable/modules/clustering.html#clustering</u>



# Dimensionality Reduction

#### **Dimensionality Reduction**

#### **Dimensionality Reduction**

Map samples  $\boldsymbol{x}_i \in \mathbb{R}^D$  to  $f(\boldsymbol{x}_i) \in \mathbb{R}^{D' \ll D}$ 

Can think of this as generalizing clustering,  $f(\mathbf{x}_i) \in \mathbb{N}^1 \to f(\mathbf{x}_i) \in \mathbb{R}^{D' \ll D}$ 

• Rather than groupings, we want to recover "low-dimensional structure"

Also a generalization of "feature selection".

• Dimensionality-reduced  $f(x_i)$  need not just have a subset of the elements of the original vector  $x_i$ .

#### What Is The "Structure" Of A Dataset?

LLE (0.11 sec) LTSA (0.19 sec) Hessian LLE (0.37 sec) Modified LLE (0.22 sec) 2 0 1 0<sup>1<sup>2</sup></sup>  $^{-1}$ 0 Isomap (0.34 sec) MDS (2.5 sec) SpectralEmbedding (0.16 sec) t-SNE (5.8 sec)

Manifold Learning with 1000 points, 10 neighbors

## The Uses of Dimensionality Reduction

- Feature Learning: For preprocessing inputs to an ML algorithm, since lower-dimensional features permit smaller models and fewer data samples.
- Compression (for storage): e.g. JPEG standard for images is now adopting unsupervised ML approaches <a href="https://jpeg.org/items/20190327\_press.html">https://jpeg.org/items/20190327\_press.html</a>
- Visualization: Exploring a dataset, or an ML model's outputs

## Consider: Visualizing High-Dimensional Data

| Lot                                                    | Frontage                         | LotArea                         | Street           | LotShape | Utilities | LandSlope | OverallQual | OverallCond   | YearBuilt                                   | YearRemodAdd                                 | MasVnrArea                 | ExterQual | ExterCond | BsmtQual         | BsmtExposure                                              | BsmtFinType1 | BsmtFinSF1 | BsmtFinType2          | SaleCondition_A    | norr |
|--------------------------------------------------------|----------------------------------|---------------------------------|------------------|----------|-----------|-----------|-------------|---------------|---------------------------------------------|----------------------------------------------|----------------------------|-----------|-----------|------------------|-----------------------------------------------------------|--------------|------------|-----------------------|--------------------|------|
| 0                                                      | 65.0                             | 8450                            | 2                | 4        | 4         | 3         | 7           | 5             | 2003                                        | 2003                                         | 196.0                      | 4         | 3         | 4                | 0                                                         | 6            | 706        |                       |                    |      |
| 1                                                      | 80.0                             | 9600                            | 2                | 4        | 4         | 3         | 6           | 8             | 1976                                        | 1976                                         | 0.0                        | 3         | 3         | 4                | 3                                                         | 5            | 978        | 1                     |                    |      |
| 2                                                      | 68.0                             | 11250                           | 2                | 3        | 4         | 3         | 7           | 5             | 2001                                        | 2002                                         | 162.0                      | 4         | 3         | 4                | 1                                                         | 6            | 486        | 1                     |                    |      |
| 3                                                      | 60.0                             | 9550                            | 2                | 3        | 4         | 3         | 7           | 5             | 1915                                        | 1970                                         | 0.0                        | 3         | 3         | 3                | 0                                                         | 5            | 216        | 1                     |                    |      |
| 4                                                      | 84.0                             | 14260                           | 2                | 3        | 4         | 3         | 8           | 5             | 2000                                        | 2000                                         | 350.0                      | 4         | 3         | 4                | 2                                                         | 6            | 655        | 1                     |                    |      |
| 5                                                      | 85.0                             | 14115                           | 2                | 3        | 4         | 3         | 5           | 5             | 1993                                        | 1995                                         | 0.0                        | 3         | 3         | 4                | 0                                                         | 6            | 732        | 1                     |                    |      |
| 6                                                      | 75.0                             | 10084                           | 2                | 4        | 4         | 3         | 8           | 5             | 2004                                        | 2005                                         | 186.0                      | 4         | 3         | 5                | 2                                                         | 6            | 1369       | 1                     |                    |      |
| 7                                                      | 0.0                              | 10382                           | 2                | 3        | 4         | 3         | 7           | 6             | 1973                                        | 1973                                         | 240.0                      | 3         | 3         | 4                | 1                                                         | 5            | 859        | 4                     |                    |      |
| 8                                                      | 5                                |                                 |                  |          |           |           | 7           | -             |                                             |                                              |                            | 0         | •         |                  | 2                                                         |              |            |                       | _                  | 1    |
|                                                        | 5                                | <b>To</b>                       | de               | eal v    | vitl      | h hv      | ber-        | plane         | es i                                        | n a 14                                       | l-din                      | nens      | sion      | al si            | oace.                                                     | visua        | alize      | a 3-D                 |                    |      |
|                                                        | 51                               |                                 |                  |          |           |           |             |               |                                             |                                              |                            |           |           |                  |                                                           |              |            |                       |                    |      |
| )                                                      | /                                |                                 |                  |          |           | -         | -           | -             |                                             |                                              |                            |           |           | • -              | -                                                         |              |            |                       |                    |      |
|                                                        | /                                |                                 |                  |          |           | -         | -           | -             |                                             |                                              |                            |           | oud       | lv. E            | vervo                                                     | one d        | oes        | it."                  |                    |      |
| 2                                                      | /                                |                                 |                  |          |           | -         | -           | -             |                                             | ourse                                        |                            |           | oud       | ly. E            | very                                                      | one d        | oes        | it."                  |                    |      |
| 2                                                      | /                                |                                 |                  |          |           | -         | -           | -             |                                             |                                              |                            |           | oud       | ly. E            | ivery                                                     | one d        |            |                       | Uinton             |      |
| 2                                                      | /                                |                                 |                  |          |           | -         | -           | -             |                                             |                                              |                            |           | oud       | ly. E            | Every                                                     | one d        |            |                       | Hinton             |      |
| 2                                                      | /                                |                                 |                  |          |           | -         | -           | -             |                                             |                                              |                            |           | oud       | ly. E            | Every                                                     | one d        |            |                       | Hinton             |      |
| 2                                                      | /                                |                                 |                  |          |           | -         | -           | -             |                                             |                                              |                            |           | oud       | ly. E            | Every                                                     | one d        |            | ieoff                 |                    |      |
|                                                        | /                                |                                 |                  |          |           | -         | -           | -             |                                             |                                              |                            |           | oud       | <b>Iу. Е</b>     | every<br>°                                                | one d        |            | ieoff                 | Hinton             |      |
| 2                                                      | 9'<br>5'                         | spa                             | ce               |          |           | ay 'fo    | -           | een'          | to y                                        | ourse                                        | elf ve                     | ery l     |           |                  | every<br><sup>0</sup>                                     |              |            | ieoff                 |                    |      |
| 2                                                      | 9<br>5<br>72.0                   | 5 <b>pa</b>                     | 2<br>2           |          |           | ay 'fo    | -           | een'          | <b>to y</b><br>1967                         | OURSE                                        | e <b>lf ve</b>             | ery l     |           | 0                | every<br><sup>0</sup> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |              | - <b>G</b> | <b>eoff</b>           |                    |      |
| 2                                                      | 72.0<br>66.0                     | 10791<br>13695                  | 2<br>2           |          |           | ay 'fo    | -           | een'          | <b>to y</b><br>1967<br>2004                 | <b>OURSE</b><br>1967<br>2004                 | e <b>lf ve</b>             | ery l     |           | 03               | <b>very</b><br>0<br>0<br>2                                |              | - G        | <b>ieoff</b>          |                    |      |
| 2                                                      | 99<br>55<br>72.0<br>66.0<br>70.0 | 10791<br>13695<br>7560          | 2<br>2           |          |           | ay 'fo    | -           | <b>een'</b>   | <b>to y</b><br>1967<br>2004<br>1958         | <b>OURSE</b><br>1967<br>2004<br>1965         | 0.0<br>0.0<br>0.0          | ery l     |           | 0 3 3            | <b>very</b><br>0<br>0<br>2<br>0                           |              | - G        | <b>eoff</b> 0 1 1 1 1 | ····               |      |
| 9 9 11 12 23 33 34 44 55 56 66 77 78 89 99 100 11 12 2 | 72.0<br>66.0<br>70.0<br>101.0    | 10791<br>13695<br>7560<br>14215 | 2<br>2<br>2<br>2 |          |           | ay 'fo    | -           | <b>een'</b> 1 | <b>to y</b><br>1967<br>2004<br>1958<br>2005 | <b>OURSE</b><br>1967<br>2004<br>1965<br>2006 | 0.0<br>0.0<br>0.0<br>380.0 | ery l     |           | 0<br>3<br>3<br>5 | 0<br>0<br>0<br>2                                          |              | - G        | <b>ieoff</b>          | ····<br>···<br>··· |      |



#### Data Visualization

#### Is there a representation better than the raw features?

Maybe it isn't necessary to visualize all 227 dimensions

Idea: find a lower-dimensional subspace that retains most of the information about the original data

There are many methods; our focus will be on Principal Components Analysis



# Principal Components Analysis

# Dimensionality Reduction Through Orthogonal Projections?

- We often view 3D objects in 2D by "projecting them" onto a plane. Drop perpendicular lines from every point on the object to the plane.
- "Good projections" are views that preserve information about the shape of the data.
- PCA does something similar to every instance in a dataset. Finds good "views" of the dataset.



## Orthogonal Projection Example: from 2D to 1D

• Let's project  $x \in \mathbb{R}^2$  down to a new vector  $v \in \mathbb{R}^1$  (i.e., a scalar), by orthogonally projecting onto the direction represented by the unit vector v



$$y = (x^T v) v$$

http://mathonline.wikidot.com/orthogonal-projections

# Orthogonal Projection Of An Entire Dataset?

- Every point in the set is projected
- E.g., projecting a 3D dataset in XYZ (see figure, left) onto:
  - the XY plane (top), or
  - the YZ plane (bottom)
- Which of these "views" is better in terms of preserving info about the structure of the data?
- In general, projections need not be axis-aligned. How to find good structure-preserving views?
  - Solution: PCA!



Fig: https://www.geeksforgeeks.org/dimensionality-reduction/

### Orthogonal Projection Of An Entire Dataset?



Thus, each choice of view can be parameterized by the basis vectors So, finding good views = finding good basis vectors.

#### PCA Dimensionality Reduction Objective

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{ND} \end{bmatrix}_{N \times D}$$

We can write each row (each data sample)  $x_i$  as:

$$x_{i} = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix}_{D} = \sum_{d} (x_{id} \cdot e_{d}) e_{d}$$
Projections Original axes

We are looking for a new coordinate system  $v_1, ..., v_D$ , to approximate all  $x_i$ :  $x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (x_i, v_1)v_1 + (x_i, v_2)v_2 + \dots + (x_i, v_{D'})v_{D'}$ where the new axes  $v_d$ 's are all *D*-dimensional unit norm, and  $D' \ll D$ 

### Terminology

We are looking for a new coordinate system  $v_1, ..., v_D$ , to approximate all  $x_i$ :  $x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (x_i, v_1)v_1 + (x_i, v_2)v_2 + \dots + (x_i, v_{D'})v_{D'}$ where the new axes  $v_d$ 's are all *D*-dimensional unit norm, and  $D' \ll D$ 

- The axis unit vectors  $\boldsymbol{v}_d$  of the projection are also called "basis" vectors
- The final D'- dimensional vector representation is simply the vector of projections  $\begin{bmatrix} (x_i, v_1) \\ \vdots \\ (x_i, v_D) \end{bmatrix}$

## Simplest Case: Reduce to D' = 1 dimension

We are looking for a new coordinate system  $v_1, ..., v_D$ , to approximate all  $x_i$ :  $x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (x_i, v_1)v_1 + (x_i, v_2)v_2 + \dots + (x_i, v_{D'})v_{D'}$ where the new axes  $v_d$ 's are all *D*-dimensional unit norm, and  $D' \ll D$ 

#### Simplest case: D' = 1?

We want to find unit  $\boldsymbol{v}_1$  such that:

 $(x_i, v_1)v_1$  best approximates  $x_i$ 



# The Meaning Of "Approximating" The Data



PCA looks for the projection that:

- minimizes mean squared distance between data point and projections (sum of squared blue lines)
- maximizes variance of projected data (roughly, length of purple line)

## Objective Function: Maximizing Variance

Find unit vector 
$$\boldsymbol{v}_1$$
 (with  $\|\boldsymbol{v}_1\|_2 = 1$ ), to optimize:  
Reconstruction  
MSE
$$\begin{aligned}
\min_{\|\boldsymbol{v}_1\|_2=1} \frac{1}{N} \sum_{i} \frac{\|(x_i, \boldsymbol{v}_1)\boldsymbol{v}_1 - \boldsymbol{x}_i\|_2^2}{|\text{Projection error}} \\
\text{Can show, exactly equal to:} \\
\max_{\|\boldsymbol{v}_1\|_2=1} \text{variance}(x_i, \boldsymbol{v}_1)
\end{aligned}$$

Intuitively, if the variance of the projection on  $v_1$  was low, then  $v_1$  would not be very informative about samples  $x_i$ .

Conversely, directions with high variance projections preserve the most information.

#### So, how to find this direction of maximum variance?



(Fig: stats.stackexchange)

#### Covariance Matrix To The Rescue Again

• Recall:



#### **Covariance Matrix Represents a Linear Transformation**



# Refresher on Eigenvectors & Singular vectors

### Eigendecomposition

A square matrix  $A_{D \times D}$  can be decomposed as:  $A = U\Lambda U^{-1}$ 

A is a DxD diagonal matrix of "eigenvalues"  $diag(\lambda_1, ..., \lambda_D)$  usually sorted in descending order. Hence, "first eigenvalue" means "largest eigenvalue"

U is a DxD matrix  $[u_1, u_2, ..., u_D]$ , whose columns are called "eigenvectors". We usually assume these are normalized to be unit length, i.e., unit eigenvectors.

"First eigenvector" = "largest eigenvector" = "eigenvector with largest eigenvalue"

## Eigenvectors: geometric intuition

The eigenvectors  $u_i$  of a matrix A are vectors that remain invariant under the linear transformation represented by A i.e.  $x \to Ax$ 

$$A\boldsymbol{u_i} = \lambda_i \boldsymbol{u_i}$$

 $\lambda_i$  is the eigenvalue corresponding to  $u_i$ .



Youtube: 3blue1brown

#### Singular vectors: geometric intuition



Vectors that remain unchanged after the transformation

# Singular value decomposition (SVD)

Any matrix *A* can be decomposed as:

$$A = U\widehat{\Lambda}V^T$$

Note:  $\widehat{\Lambda}$  is usually denoted as  $\Sigma$ , we are using non-standard notation to avoid clashing with covariance matrix  $\Sigma$ 

 $\widehat{\Lambda}$  is a DxD diagonal matrix of "singular values"  $diag(\widehat{\lambda}_1, ..., \widehat{\lambda}_D)$  usually sorted in descending order. Hence, "first singular value" means "largest" etc.

U, V are DxD orthogonal matrices  $[u_1, u_2, ..., u_D]$  and  $[v_1, v_2, ..., v_D]$ , whose columns are called "left singular vectors" and "right singular vectors".

 $Orthogonal \Rightarrow U^T U = V^T V = I$ 

### Singular vectors: geometric intuition



https://mathformachines.com/posts/eigenvalues-and-singular-values/

# Note: Left Singular Vectors of M = Eigenvectors of $MM^T$



- Suppose the SVD of  $M = U\widehat{\Lambda}V^T$
- Then  $MM^T = U\widehat{\Lambda}V^T V\widehat{\Lambda}U^T = U\widehat{\Lambda}^2 U^T$  = eigendecomposition of  $MM^T$
- In other words,
  - Eigenvectors U of  $\Sigma = MM^T$  are the same as left singular vectors of M
    - Also implies that they are orthogonal!
  - Eigenvalues  $\widehat{\Lambda}^2$  of  $\Sigma = MM^T$  are the squares of the singular values of M

So, remember: eigenvectors of covariance matrix = left singular vectors of the corresponding linear transformation

# Back to PCA

#### Objective Function: Maximizing Variance

Find unit vector  $\boldsymbol{v}_1$  (with  $\|\boldsymbol{v}_1\|_2 = 1$ ), to optimize: Reconstruction MSE  $\min_{\substack{\|\boldsymbol{v}_1\|_2=1}} \frac{1}{N} \sum_i \frac{\|(x_i, \boldsymbol{v}_1)\boldsymbol{v}_1 - \boldsymbol{x}_i\|_2^2}{|\text{Projection error}}$ Can show, exactly equal to:  $\max_{\substack{\|\boldsymbol{v}_1\|_2=1}} \text{variance}(x_i, \boldsymbol{v}_1)$ 



Intuitively, if the variance of the projection on  $v_1$  was low, then  $v_1$  would not be very informative about samples  $x_i$ .

Conversely, directions with high variance projections preserve the most information.

#### So, how to find this direction of maximum variance?





## The Largest Eigenvector of the Covariance Matrix



We can show:

To maximize variance  $(x_i \cdot v_1)$ , we can set  $v_1 = e_1(\Sigma)$ , the first unit eigenvector of  $\Sigma$ 

#### (proof sketch on the next slide)

# Proof Sketch (For Your Curiosity)



First, easy to show: variance $(\boldsymbol{x}_i \cdot \boldsymbol{v}_1) = \boldsymbol{v}_1^T \Sigma \boldsymbol{v}_1$ 

**Claim:** To maximize  $\boldsymbol{v}_1^T \Sigma \boldsymbol{v}_1$ , we can set  $\boldsymbol{v}_1 = \boldsymbol{e}_1(\Sigma)$ , the first unit eigenvector of  $\Sigma$ 

Unit eigenvectors  $e_d(\Sigma)$  for symmetric matrices form an orthonormal basis, so any v can be written:



To maximize the weighted average, assign all your weight to the highest number! So, must set  $v \cdot e_1(\Sigma) = 1 \implies v = e_1(\Sigma)$ 

# Recap for D' = 1 case

- Subtract means, then compute covariance matrix as  $\Sigma_1 = X^T X$
- Compute eigendecomposition of  $\Sigma_1$  (e.g., using singular value decomposition)
- Set  $\boldsymbol{v}_1 = \boldsymbol{e}_1(\boldsymbol{\Sigma}_1)$

# Note: Right Singular Vectors (X) = Eigenvectors $(\Sigma)$

• Let data matrix  $X = U\widehat{\Lambda}V^T$  (SVD)

• Then 
$$\Sigma = \frac{1}{N} X^T X = \frac{1}{N} V \widehat{\Lambda} U^T U \widehat{\Lambda} V^T = \frac{1}{N} V \widehat{\Lambda}^2 V^T$$

 So eigenvectors of covariance matrix are also the *right* singular vectors of the data matrix!

# More than 1 dimension?

Repeat for d = 1, ..., D'

- Subtract means of all dimensions of X
- Compute  $\Sigma_d = X^T X$
- Set  $\boldsymbol{v}_d = \boldsymbol{e}_1(\boldsymbol{\Sigma}_d)$
- Set  $x_i = x_i (x_i \cdot v_d) v_d$  (i.e., subtract current reconstructions to compute residuals... a little bit like gradient boosting!)

Equivalent to simply:

Repeat for d = 1, ..., D'

• Set  $v_d = \boldsymbol{e}_d(\Sigma_1)$ 

We are looking for a new coordinate system  $\boldsymbol{v}_1, \dots, \boldsymbol{v}_{D'}$  to approximate  $\boldsymbol{x}_i$ :  $\boldsymbol{x}_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (\boldsymbol{x}_i, \boldsymbol{v}_1) \boldsymbol{v}_1 + (\boldsymbol{x}_i, \boldsymbol{v}_2) \boldsymbol{v}_2 + \dots + (\boldsymbol{x}_i, \boldsymbol{v}_{D'}) \boldsymbol{v}_{D'}$ 

where the new axes  $\boldsymbol{v}_d$ 's are all *D*-dimensional unit norm, and  $D' \ll D$ 



$$\boldsymbol{x}_{i} = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx \sum_{d=1}^{D'} (\boldsymbol{x}_{i}, \boldsymbol{v}_{d}) \boldsymbol{v}_{d}$$

So, the new low-dimensional representation is:  $f(\mathbf{x}_i) = [\mathbf{x}_i \cdot \mathbf{v}_1, \mathbf{x}_i \cdot \mathbf{v}_2, \dots, \mathbf{x}_i \cdot \mathbf{v}_{D'}]$ 

### PCA on a 2D Gaussian Dataset



By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195

# PCA Algorithm Summary So Far

Given data  $\{x_1, ..., x_n\}$ , compute covariance matrix  $\Sigma$ 

- X is the  $N \times D$  data matrix
- Compute data mean (average over all rows of X)
- Subtract mean from each row of X (centering the data)

• Compute covariance matrix 
$$\Sigma = \frac{1}{N} X^T X$$
 ( $\Sigma$  is  $D \times D$ )

PCA basis vectors (new coordinate axes) are given by the eigenvectors of  $\Sigma$ 

- $U, \Lambda = \text{numpy.linalg.eig}(\Sigma)$
- $\{u_d, \lambda_d\}_{d=1,...,D}$  are the eigenvectors/eigenvalues of  $\Sigma$  $(\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_D)$

But there are D eigenvectors, so where is the dimensionality reduction? A: Larger eigenvalue  $\Rightarrow$  "more important" eigenvectors

# **Dimensionality Reduction**

• Can *ignore* the components of lesser significance



- You do lose some information, but if the eigenvalues are small, you don't lose much
  - choose only the first D' eigenvectors, based on their eigenvalues
  - -final data set has only D' dimensions

### Recap

- Want to reconstruct data approximately in a new coordinate space
- Must find axes of this coordinate space, because the weights on those axes are just projections
- Objective: axes with lowest reconstruction error
  - Same as axes with high variance projections
- Solution straight from linear algebra. Axes are eigenvectors of covariance matrix

### PCA Example



Each row of **U** corresponds to a

PCA

 Each column of U gives weights for a linear combination of the original features



Compute  $x. e_d$  to get the new representation for each instance x

$$X = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & \cdots \\ 1 & 1 & 0 & 1 & 1 & \cdots \\ 0 & 0 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ 1 & 0 & 1 & 0 & 1 & \cdots \end{bmatrix} x_3 \qquad \widehat{U} = \begin{bmatrix} 0.34 & 0.23 & 0.13 \\ 0.04 & 0.13 \\ -0.64 & 0.93 \\ \vdots & \vdots \\ -0.20 & -0.83 \end{bmatrix}$$

The new 2D representation for  $x_3$  is given by  $[\widehat{x_{31}} = x_3. u_1, \widehat{x_{32}} = x_3. u_2]$ :  $\widehat{x_{31}} = 0.34(0) + 0.04(0) - 0.64(1) + \cdots$  $\widehat{x_{32}} = 0.23(0) + 0.13(0) + 0.93(1) + \cdots$ 

The re-projected data matrix can be conveniently computed as  $\hat{X} = X\hat{U}$ 

#### What happens when you compute the principal components of face images?



Queen Elizabeth II



Michael Jackson



Hillary Clinton





David Beckham



Dwayne Johnson



**Oprah Winfrey** 





Michael Jordan













**Richard Myers** 



Frank Taylor















Colin Powell

George W Bush











Mary Carey



Dean Barkley



Colin Powell



(1000 64×64 images)

56





























What happens when you compute the principal components of face images?

"Eigenfaces": main directions of deviation from the mean face



Figure #5: mean face



57

#### Let's try reconstructing these faces with the eigenfaces now!









**Richard Myers** 



Frank Taylor



George W Bush



Colin Powell

Yasser Arafat



Rubens Barrichello

Sarah Price

Vin Diesel





Noah Wyle







Mary Carey



Dean Barkley



Colin Powell



(1000 64×64 images)





https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

#### ... with 1000 eigenvectors







**Richard Myers** 



Frank Taylor



George W Bush



Colin Powell



Yasser Arafat



Sheryl Crow



Vin Diesel



Rubens Barrichello

Noah Wyle



Sarah Price





Surakait Sathirathai



Mary Carey



Dean Barkley



#### ... with 250 eigenvectors





Billy Crystal



**Richard Myers** 



Frank Taylor





Colin Powell



Yasser Arafat





Sarah Price

Noah Wyle







Rubens Barrichello

Vin Diesel













Dean Barkley



60

#### ... with 100 eigenvectors



**Richard Myers** 



Frank Taylor



George W Bush





Yasser Arafat





Vin Diesel

Sarah Price

Noah Wyle



Rubens Barrichello







Surakait Sathirathai





Dean Barkley



61

#### ... with 50 eigenvectors





Surakait Sathirathai









Dean Barkley



Colin Powell

### PCA Visualization of Digits



# Utility of PCA

- PCA is often used as a preprocessing step for supervised learning
  - reduces dimensionality
  - eliminates redundant features (i.e. linearly dependent features)
- Can also be used to aid in visualization

# PCA Doesn't Always Work Well

- Here, principal components in red don't capture the main directions in the data.
- In general, PCA is not guaranteed to recover semantically aligned features from the data.
- The true data "shape" might not be captured by a simple linear projection of the original data.





# Beyond PCA: Non-linear dimensionality reduction

Manifold Learning with 1000 points, 10 neighbors



### **Beyond PCA: Non-linear dimensionality reduction**

•



Fig: Laurens van der Maaten

# Recap: Unsupervised Learning

Basic idea: reduce feature space to a much lower set of dimensions

- Clustering: find structural similarity, return one k-valued higher-level feature
- PCA: find orthonormal dimensions in order of most to least variance
- Can be useful for human inspection (visualization) as well as supervised ML