
Lecture 12: Exploring Data Through
Preprocessing and Unsupervised ML

Part 2
Feb 22, 2023

CIS 4190/5190
Spring 2023

Recap: Clustering

2

What natural groupings exist in this data?

Recap: K-Means Clustering

3

K-Means (𝐾 , 𝑋)
• Randomly choose K cluster

center locations (centroids)
• Loop until convergence, do:

• Assign each point to the cluster
of the closest centroid

• Re-estimate the cluster
centroids based on the data
assigned to each cluster

Recap: The Choice of Distance Function

• Clustering techniques all usually accept
a matrix of pairwise distances between
data points as input.

• The choice of distance function affects
the clustering outcomes. This boils
down to: different distance functions
might consider different point pairs
more similar.

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥%

𝑥!
𝑥"
𝑥#

𝑥%

𝑥$
•

•

•

• • •

𝑑(𝑥& , 𝑥')

𝐿!(𝑎, 𝑏) = 5

𝐿"(𝑎, 𝑏) = 5" + 𝜀"
#
" = 5 + 𝜀

𝐿!(𝑐, 𝑑) = 4

𝐿"(𝑐, 𝑑) = 4" + 4"
#
" = 4 2 = 5.66

db
4

4

5

a c 𝐿!(𝑐, 𝑑) < 𝐿!(𝑎, 𝑏)
𝐿"(𝑐, 𝑑) > 𝐿"(𝑎, 𝑏)

5

• One common choice is to tie the distance measure itself to the structure
of the data.
• Mahalanobis Distance: 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 + Σ,- 𝑥 − 𝑦

§ 𝜇 = -
.
∑/0-. 𝑥/ is the mean vector, which represents the average of

the data
§ Σ = -

.
∑/0-. 𝑥 − 𝜇 𝑥 − 𝜇 + is the covariance matrix of the data.

• When Σ is identity, this is the same as Euclidean distance.

• In 1D, this measures how many standard deviations away two points
are.
• The Mahalanobis distance generalizes this to higher dimensions …

Mahalanobis distance

Covariance Matrix Of Data

For zero-centered data,

Covariance = Σ = 𝔼 𝒙/𝒙/+ = 𝔼
𝑥/-𝑥/- ⋯ 𝑥/-𝑥/1
⋮ 𝑥/2𝑥/3 ⋮

𝑥/1𝑥/- ⋯ 𝑥/1𝑥/1

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Covariance Matrix in Terms of Data Matrix 𝑋

Covariance = Σ = 𝔼 𝒙/𝒙/+ = 𝔼
𝑥!"𝑥!" ⋯ 𝑥!"𝑥!#
⋮ 𝑥!$𝑥!% ⋮

𝑥!#𝑥!" ⋯ 𝑥!#𝑥!#

𝑋+𝑋 = (𝑥-𝑥-+ + 𝑥4𝑥4+ +⋯+ 𝑥5𝑥5+)

𝑋+ = 𝑥- 𝑥4 … 𝑥6

1
𝑁

1
𝑁

=
1
𝑁
6
/

𝑥/𝑥/+

Thus, the data covariance matrix is typically computed as -
5
𝑋+𝑋

Covariance Matrix Is Related to Dataset “Shape”

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Mahalanobis Distance: 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 # Σ$% 𝑥 − 𝑦

“Distances matter more when they are along
directions in which the data varies less.”

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Covariance Matrix Of Data

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Mahalanobis Distance: 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 # Σ$% 𝑥 − 𝑦

“Distances matter more when they are along
directions in which the data varies less.”

pink and green distance are equal in the Euclidean distance sense.

pink distance > green distance in the Mahalanobis distance sense.

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Summary of Clustering

• Critical to understanding the structure of our data

• Often useful for creating high-level features useful for supervised learning

• We saw one approach in detail: K-Means

Optional readings: Clustering

• Bishop Ch 9.1 on K-Means Clustering: https://www.microsoft.com/en-
us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-
Machine-Learning-2006.pdf
• Hastie and Tibshirani, Elements of Statistical Learning, Ch 14.5.1 and 14.5.2.

https://hastie.su.domains/ElemStatLearn/
• Hands-On ML Unsupervised ML: https://github.com/ageron/handson-

ml2/blob/master/09_unsupervised_learning.ipynb (Play with lots of
clustering approaches, including K-Means in detail)
• Scikit-Learn documentation of clustering approaches: https://scikit-

learn.org/stable/modules/clustering.html#clustering

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://hastie.su.domains/ElemStatLearn/
https://github.com/ageron/handson-ml2/blob/master/09_unsupervised_learning.ipynb
https://scikit-learn.org/stable/modules/clustering.html

Dimensionality
Reduction

Dimensionality Reduction
Dimensionality Reduction

Map samples 𝒙/ ∈ ℝ1 to 𝑓 𝒙/ ∈ ℝ1!≪1

Can think of this as generalizing clustering, 𝑓 𝒙/ ∈ ℕ- → 𝑓 𝒙/ ∈ ℝ1!≪1

• Rather than groupings, we want to recover “low-dimensional structure”

Also a generalization of “feature selection”.
• Dimensionality-reduced 𝑓 𝒙/ need not just have a subset of the elements

of the original vector 𝒙/.

What Is The “Structure” Of A Dataset?

The Uses of Dimensionality Reduction

• Feature Learning: For preprocessing inputs to an ML algorithm, since
lower-dimensional features permit smaller models and fewer data samples.
• Compression (for storage): e.g. JPEG standard for images is now adopting

unsupervised ML approaches https://jpeg.org/items/20190327_press.html

• Visualization: Exploring a dataset, or an ML model’s outputs

https://jpeg.org/items/20190327_press.html

Consider: Visualizing High-Dimensional Data

Data from: De Cock. Journal of Statistics Education 19(3), 2011

227 features

17

“To deal with hyper-planes in a 14-dimensional space, visualize a 3-D
space and say 'fourteen' to yourself very loudly. Everyone does it.”

- Geoff Hinton

Data Visualization

Is there a representation better than the raw features?

Maybe it isn’t necessary to visualize all 227 dimensions

Image : https://arxiv.org/pdf/1703.08893.pdf

Idea: find a lower-dimensional
subspace that retains most of
the information about the
original data

There are many methods;
our focus will be on Principal
Components Analysis

18

https://arxiv.org/pdf/1703.08893.pdf

Principal Components Analysis

Dimensionality Reduction Through Orthogonal Projections?
• We often view 3D objects in 2D by “projecting them” onto a plane. Drop

perpendicular lines from every point on the object to the plane.
• “Good projections” are views that preserve information about the shape of

the data.
• PCA does something similar to every instance in a dataset. Finds good

“views” of the dataset.

Fig: http://www.grad.hr/geomteh3d/Monge/06projekcije/projekcije_eng.html

http://www.grad.hr/geomteh3d/Monge/06projekcije/projekcije_eng.html

Orthogonal Projection Example: from 2D to 1D

• Let’s project 𝑥 ∈ ℝ4 down to a new vector 𝑣 ∈ ℝ- (i.e., a scalar), by
orthogonally projecting onto the direction represented by the unit vector 𝑣

𝑦 = 𝑥+𝑣 𝑣

𝑦

http://mathonline.wikidot.com/orthogonal-projections

𝑥

𝑣

Orthogonal Projection Of An Entire Dataset?

• Every point in the set is projected
• E.g., projecting a 3D dataset in

XYZ (see figure, left) onto:
§ the XY plane (top), or
§ the YZ plane (bottom)

• Which of these “views” is better
in terms of preserving info about
the structure of the data?
• In general, projections need not

be axis-aligned. How to find good
structure-preserving views?
§ Solution: PCA!

Fig: https://www.geeksforgeeks.org/dimensionality-reduction/

https://www.geeksforgeeks.org/dimensionality-reduction/

Orthogonal Projection Of An Entire Dataset?

𝒙! =
𝑥!"
⋮
𝑥!# $

= 𝑥!%𝑒& 𝑒& + 𝑥!%𝑒' 𝑒' + 𝑥!%𝑒(𝑒(

= 𝑥!%
1
0
0

1
0
0

+ 𝑥!%
0
1
0

0
1
0

+ 𝑥!%
0
0
1

0
0
1

𝑥!"
1
0
0

1
0
0

+ 𝑥!"
0
1
0

0
1
0

𝑥!%
0
1
0

0
1
0

+ 𝑥!%
0
0
1

0
0
1

Thus, each choice of view can be parameterized by the basis vectors
So, finding good views = finding good basis vectors.

The new dimensionality-reduced
vector has only these two elements.

We are looking for a new coordinate system 𝒗#, … , 𝒗,- to approximate all 𝒙.:

𝒙. =
𝑥.#
⋮
𝑥.,

≈ 𝒙𝒊. 𝒗𝟏 𝒗# + 𝒙𝒊. 𝒗𝟐 𝒗" +⋯+ 𝒙𝒊. 𝒗𝑫" 𝒗,"

where the new axes 𝒗3’s are all 𝐷-dimensional unit norm, and 𝐷- ≪ 𝐷

PCA Dimensionality Reduction Objective

𝑋 =
𝑥-- ⋯ 𝑥-1
⋮ ⋱ ⋮
𝑥5- ⋯ 𝑥51 5×1

We can write each row (each data sample) 𝒙/ as:

𝒙/ =
𝑥/-
⋮
𝑥/1 1

=6
>

𝑥/> . 𝑒> 𝑒>

Original axesProjections

Terminology

• The axis unit vectors 𝒗> of the projection are also called “basis” vectors

• The final 𝐷?- dimensional vector representation is simply the vector of

projections
(𝑥/ . 𝑣-)

⋮
(𝑥/ . 𝑣1?)

We are looking for a new coordinate system 𝒗#, … , 𝒗,- to approximate all 𝒙.:

𝒙. =
𝑥.#
⋮
𝑥.,

≈ 𝒙𝒊. 𝒗𝟏 𝒗# + 𝒙𝒊. 𝒗𝟐 𝒗" +⋯+ 𝒙𝒊. 𝒗𝑫" 𝒗,"

where the new axes 𝒗3’s are all 𝐷-dimensional unit norm, and 𝐷- ≪ 𝐷

Simplest Case: Reduce to 𝐷! = 1 dimension

Simplest case: 𝐷? = 1?
We want to find unit 𝒗- such that:

(𝒙𝒊. 𝒗𝟏)𝒗- best approximates 𝒙/

𝒗-

We are looking for a new coordinate system 𝒗#, … , 𝒗,- to approximate all 𝒙.:

𝒙. =
𝑥.#
⋮
𝑥.,

≈ 𝒙𝒊. 𝒗𝟏 𝒗# + 𝒙𝒊. 𝒗𝟐 𝒗" +⋯+ 𝒙𝒊. 𝒗𝑫" 𝒗,"

where the new axes 𝒗3’s are all 𝐷-dimensional unit norm, and 𝐷- ≪ 𝐷

The Meaning Of “Approximating” The Data

PCA looks for the projection that:
§ minimizes mean squared distance between data point and projections

(sum of squared blue lines)
§ maximizes variance of projected data (roughly, length of purple line)

Based on slide by Barnabás Póczos, UAlberta 27

𝒗-Here,
𝐷 = 2
𝐷) = 1

Objective Function: Maximizing Variance

Find unit vector 𝒗- (with 𝒗- 4 = 1), to optimize:

min
𝒗" #0-

1
𝑁
6
/

‖(𝑥/ . 𝑣-)𝒗- − 𝒙/‖44

Can show, exactly equal to:
max
𝒗" #0-

variance(𝑥/ . 𝑣-)

Intuitively, if the variance of the projection on 𝒗- was low,
then 𝒗- would not be very informative about samples 𝒙/.
Conversely, directions with high variance projections
preserve the most information.

Reconstruction
MSE

𝒗-

Projection error

So, how to find this direction of maximum variance?

(Fig: stats.stackexchange)

Covariance Matrix To The Rescue Again

• Recall:

Covariance Matrix Represents a Linear Transformation

“white data” “transformed data”

= 𝑀𝑀+

Linear transformation
𝑀

Arrows are eigenvectors of Σ,
size represents eigenvalues

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Refresher on Eigenvectors &
Singular vectors

Eigendecomposition

A square matrix 𝐴1×1 can be decomposed as:
𝐴 = 𝑈Λ𝑈,-

Λ is a DxD diagonal matrix of “eigenvalues” 𝑑𝑖𝑎𝑔(𝜆-, … , 𝜆1) usually sorted in
descending order. Hence, “first eigenvalue” means “largest eigenvalue”

𝑈 is a DxD matrix [𝒖𝟏, 𝒖𝟐, … , 𝒖𝑫], whose columns are called “eigenvectors”.
We usually assume these are normalized to be unit length, i.e., unit
eigenvectors.

“First eigenvector” = “largest eigenvector” = “eigenvector with largest
eigenvalue”

Eigenvectors: geometric intuition

The eigenvectors 𝒖𝒊 of a matrix 𝐴 are vectors that remain invariant under the
linear transformation represented by 𝐴 i.e. 𝒙 → 𝐴𝒙

𝐴𝒖𝒊 = 𝜆/𝒖𝒊
𝜆/ is the eigenvalue corresponding to 𝒖𝒊.

Youtube: 3blue1brown

Not an eigenvector An eigenvector

Singular vectors: geometric intuition

https://mathformachines.com/posts/eigenvalues-and-singular-values/

Eigenvectors of M

𝑀 = 1 1/3
4/3 1

eigenvectors

Vectors that remain unchanged
after the transformation

Singular value decomposition (SVD)

Any matrix 𝐴 can be decomposed as:
𝐴 = 𝑈UΛ𝑉+

UΛ is a DxD diagonal matrix of “singular values” 𝑑𝑖𝑎𝑔(W𝜆-, … , X𝜆1) usually sorted
in descending order. Hence, “first singular value” means “largest” etc.

𝑈, 𝑉 are DxD orthogonal matrices [𝒖𝟏, 𝒖𝟐, … , 𝒖𝑫] and [𝒗𝟏, 𝒗𝟐, … , 𝒗𝑫], whose
columns are called “left singular vectors” and “right singular vectors”.

Orthogonal ⇒ 𝑈+𝑈 = 𝑉+𝑉 = 𝐼

Note: <Λ is usually denoted as Σ, we are using non-standard
notation to avoid clashing with covariance matrix Σ

Singular vectors: geometric intuition

https://mathformachines.com/posts/eigenvalues-and-singular-values/

Eigenvectors of M Singular vectors of M

𝑀 = 1 1/3
4/3 1

left singular vectors

eigenvectors

(axes of the ellipsoid)

Orthogonal set of vectors that remain
orthogonal after the transformation

Vectors that remain unchanged
after the transformation

right singular vectors

Note: Left Singular Vectors of 𝑀 = Eigenvectors of 𝑀𝑀"

• Suppose the SVD of 𝑀 = 𝑈$Λ𝑉!

• Then 𝑀𝑀! = 𝑈$Λ𝑉!𝑉$Λ𝑈! = 𝑈$Λ"𝑈! = eigendecomposition of 𝑀𝑀!

• In other words,
§ Eigenvectors 𝑈 of Σ = 𝑀𝑀! are the same as left singular vectors of 𝑀

§ Also implies that they are orthogonal!
§ Eigenvalues $Λ" of Σ = 𝑀𝑀! are the squares of the singular values of 𝑀

So, remember: eigenvectors of covariance matrix = left singular vectors of the
corresponding linear transformation

Back to PCA

The Largest Eigenvector of the Covariance Matrix

We can show:

To maximize variance 𝒙. ⋅ 𝒗# , we can set 𝒗# = 𝒆#(Σ), the first unit eigenvector of Σ

(proof sketch on the next slide)

Arrows are eigenvectors of Σ,
size represents eigenvalues

Proof Sketch (For Your Curiosity)

Unit eigenvectors 𝒆>(Σ) for symmetric matrices form an orthonormal basis,
so any 𝒗 can be written:

𝒗 = E
&'%

(

𝒗. 𝒆& Σ 𝒆𝒅(Σ)

Σ𝒗 = ΣE
&'%

(

𝒗. 𝒆& Σ 𝒆&(Σ) = E
&'%

(

𝒗. 𝒆& Σ Σ𝒆&(Σ)

Σ𝒗 = E
&'%

(

𝒗. 𝒆& Σ 𝜆&𝒆&(Σ)

𝒗#Σ𝒗 = 𝒗. Σ𝒗 = E
&'%

(

𝒗. 𝒆& Σ 𝜆& 𝒗. 𝒆& Σ = E
&'%

(

𝒗. 𝒆& Σ
"
𝜆&

To maximize the weighted average, assign all your weight to the highest number!
So, must set 𝑣. 𝑒# Σ = 1 ⇒ 𝑣 = 𝑒#(Σ)

Step 1

Step 2

Step 3

Weighted avg of 𝜆#s. (Why?)

Claim: To maximize 𝒗#>Σ𝒗#, we can set 𝒗# = 𝒆#(Σ), the first unit eigenvector ofΣ

First, easy to show: variance 𝒙/ ⋅ 𝒗- = 𝒗-+Σ𝒗-

Recap for 𝐷! = 1 case

• Subtract means, then compute covariance matrix as Σ- = 𝑋+𝑋
• Compute eigendecomposition of Σ- (e.g., using singular value

decomposition)
• Set 𝒗- = 𝒆-(Σ-)

Note: Right Singular Vectors (𝑋) = Eigenvectors (Σ)
• Let data matrix 𝑋 = 𝑈UΛ𝑉+(SVD)

• Then Σ = -
5
𝑋+𝑋 = -

5
𝑉UΛ𝑈+𝑈UΛ𝑉+ = -

5
𝑉UΛ4𝑉+

• So eigenvectors of covariance matrix are also the right singular vectors of
the data matrix!

More than 1 dimension?
Repeat for 𝑑 = 1,… , 𝐷′
• Subtract means of all dimensions of 𝑋
• Compute Σ> = 𝑋+𝑋
• Set 𝒗> = 𝒆-(Σ>)
• Set 𝒙/ = 𝒙/ − (𝒙/⋅ 𝒗>)𝒗> (i.e., subtract

current reconstructions to compute
residuals… a little bit like gradient boosting!)

Equivalent to simply:
Repeat for 𝑑 = 1,… , 𝐷′
• Set 𝑣> = 𝒆>(Σ-)

𝒙. =
𝑥.#
⋮
𝑥.,

≈ F
3?#

,"

(𝒙.. 𝒗3)𝒗3

So, the new low-dimensional representation is:
𝑓(𝒙.) = [𝒙. ⋅ 𝒗#, 𝒙. ⋅ 𝒗", … , 𝒙. ⋅ 𝒗,"]

We are looking for a new coordinate system 𝒗$, … , 𝒗%& to approximate 𝒙!:

𝒙! =
𝑥!$
⋮
𝑥!%

≈ 𝒙𝒊. 𝒗𝟏 𝒗$ + 𝒙𝒊. 𝒗𝟐 𝒗* +⋯+ 𝒙𝒊. 𝒗𝑫! 𝒗%!

where the new axes 𝒗#’s are all 𝐷-dimensional unit norm, and 𝐷& ≪ 𝐷

1st principal
component

2nd principal
component

PCA on a 2D Gaussian Dataset

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195 46

Each subsequent principal component:
• is orthogonal to all previous

components
• indicates the direction of largest

variance of the residuals

Basis vectors originate
from the mean

1st principal component indicates
the direction of largest variance

PCA Algorithm Summary So Far

Given data {𝒙-, … 𝒙6}, compute covariance matrix Σ
§𝑿 is the 𝑁×𝐷 data matrix
§ Compute data mean (average over all rows of 𝑿)
§ Subtract mean from each row of 𝑿 (centering the data)
§ Compute covariance matrix Σ = -

5
𝑿+𝑿 (Σ is 𝐷×𝐷)

PCA basis vectors (new coordinate axes) are given by the eigenvectors of Σ
§𝑈, Λ = numpy.linalg.eig(Σ)
§ 𝒖> , 𝜆> >0-,…,1 are the eigenvectors/eigenvalues of Σ

(𝜆- ≥ 𝜆4 ≥ ⋯ ≥ 𝜆1)

47

But there are 𝑫 eigenvectors, so where is the dimensionality reduction?
A: Larger eigenvalue Þ “more important” eigenvectors

0

5

10

15

20

25

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Va
ria

nc
e

(%
)

• Can ignore the components of lesser significance

• You do lose some information, but if the eigenvalues are small, you don’t
lose much

– choose only the first 𝐷′ eigenvectors, based on their eigenvalues
– final data set has only 𝐷′ dimensions

Dimensionality Reduction

Based on slide by Barnabás Póczos, UAlberta 48

Recap

• Want to reconstruct data approximately in a new coordinate space
• Must find axes of this coordinate space, because the weights on those axes

are just projections
• Objective: axes with lowest reconstruction error

§ Same as axes with high variance projections
• Solution straight from linear algebra. Axes are eigenvectors of covariance

matrix

PCA Example

𝑼 is the eigenvectors of Σ = X*X;
columns are ordered by importance
(highest eigenvalues first)

𝑿 has 𝐷 columns

𝑼 is 𝐷×𝐷

Each row of 𝑼 corresponds to a
feature; keep only first 𝐷′
columns of 𝑼

51

𝑋 =

0 1 0 1 1 ⋯
1 1 0 1 1 ⋯
0 0 1 1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱
1 0 1 0 1 ⋯

𝑈 =

0.34 0.23 −0.30 −0.23 ⋯
0.04 0.13 −0.40 0.21 ⋯
−0.64 0.93 0.61 0.28 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

−0.20 −0.83 0.78 −0.93 ⋯
𝒖𝟏 𝒖𝟐 … 𝒖𝑫

(just happens to be binary)

PCA

• Each column of 𝑼 gives weights for a linear combination of the original
features

= 0.34×𝑓𝑒𝑎𝑡𝑢𝑟𝑒# + 0.04×𝑓𝑒𝑎𝑡𝑢𝑟𝑒" − 0.64×𝑓𝑒𝑎𝑡𝑢𝑟𝑒@ +⋯

52

𝑈 =

0.34 0.23 −0.30 −0.23 ⋯
0.04 0.13 −0.40 0.21 ⋯
−0.64 0.93 0.61 0.28 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

−0.20 −0.83 0.78 −0.93 ⋯

PCA

Compute 𝒙. 𝒆> to get the new representation for each instance 𝒙

The new 2D representation for 𝒙N is given by [n𝒙N- = 𝒙N. 𝒖-, n𝒙N4 = 𝒙N. 𝒖4]:

The re-projected data matrix can be conveniently computed as p𝑋 = 𝑋U𝑈

𝒙@

n𝑥N- = 0.34 0 + 0.04 0 − 0.64 1 +⋯
n𝑥N4 = 0.23 0 + 0.13 0 + 0.93 1 +⋯

53

𝑋 =

0 1 0 1 1 ⋯
1 1 0 1 1 ⋯
0 0 1 1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱
1 0 1 0 1 ⋯

U𝑈 =

0.34 0.23
0.04 0.13
−0.64 0.93
⋮ ⋮

−0.20 −0.83

Eigenfaces

56

What happens when you compute the principal components of face images?

(1000 64×64 images)
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

57

What happens when you compute the principal components of face images?

“Eigenfaces”: main directions of deviation from the mean face

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

…

…

…

…

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

58

Let’s try reconstructing these faces with the eigenfaces now!

(1000 64×64 images)
https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

59

… with 1000 eigenvectors

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

60

… with 250 eigenvectors

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

61

… with 100 eigenvectors

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

Eigenfaces

62

… with 50 eigenvectors

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

PCA Visualization of Digits

64Fig: Laurens van der Maaten

Utility of PCA

• PCA is often used as a preprocessing step for supervised learning
§ reduces dimensionality
§ eliminates redundant features (i.e. linearly dependent features)

• Can also be used to aid in visualization

PCA Doesn’t Always Work Well

• Here, principal components in
red don’t capture the main
directions in the data.

• In general, PCA is not
guaranteed to recover
semantically aligned features
from the data.

• The true data “shape” might
not be captured by a simple
linear projection of the original
data.

Shlens 2014, A Tutorial on PCA

Beyond PCA: Non-linear dimensionality reduction

Beyond PCA: Non-linear dimensionality reduction

T-SNE and ISOMAP are popular and
powerful nonlinear approaches, but:
• Require careful hyperparameter

tuning
• Harder to optimize
• Not as easy to interpret, no easy

projection back to original data

Fig: Laurens van der Maaten

Recap: Unsupervised Learning

Basic idea: reduce feature space to a much lower set of dimensions

• Clustering: find structural similarity, return one k-valued higher-level feature
• PCA: find orthonormal dimensions in order of most to least variance

• Can be useful for human inspection (visualization) as well as supervised ML

