

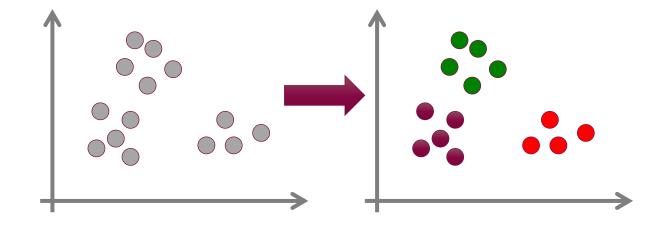
Lecture 12: Exploring Data Through Preprocessing and Unsupervised ML Part 2

Feb 22, 2023 CIS 4190/5190

Spring 2023

Recap: Clustering

What natural groupings exist in this data?

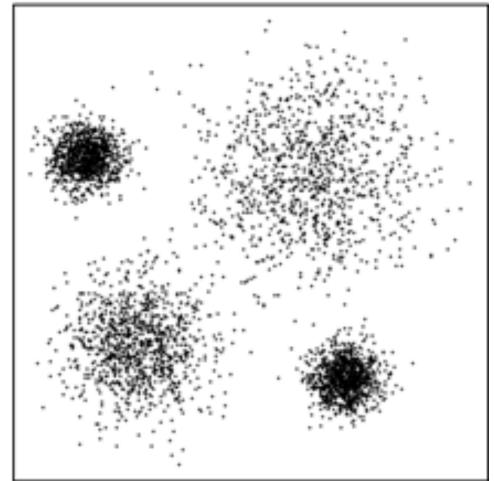


Recap: K-Means Clustering

K-Means (K, X)

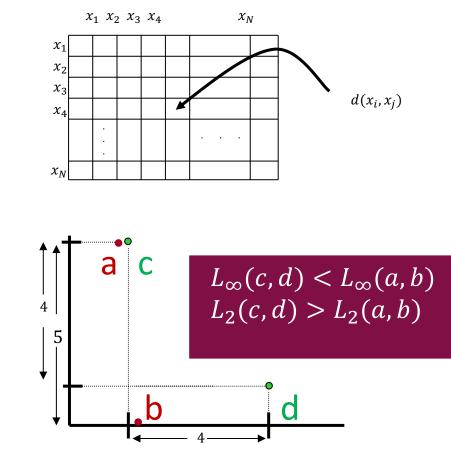
- Randomly choose *K* cluster center locations (centroids)
- Loop until convergence, do:
 - Assign each point to the cluster of the closest centroid
 - Re-estimate the cluster centroids based on the data assigned to each cluster

KMeans Iteration:



Recap: The Choice of Distance Function

- Clustering techniques all usually accept a matrix of pairwise distances between data points as input.
- The choice of distance function affects the clustering outcomes. This boils down to: different distance functions might consider different point pairs more similar.



$$L_{\infty}(a,b) = 5 \qquad \qquad L_{\infty}(c,d) = 4$$

$$L_{2}(a,b) = (5^{2} + \varepsilon^{2})^{\frac{1}{2}} = 5 + \varepsilon \qquad L_{2}(c,d) = (4^{2} + 4^{2})^{\frac{1}{2}} = 4\sqrt{2} = 5.66$$

Mahalanobis distance

- One common choice is to tie the distance measure itself to the structure of the data.
- Mahalanobis Distance: $d(x, y) = \sqrt{(x y)^T \Sigma^{-1} (x y)}$
 - $\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$ is the mean vector, which represents the average of the data

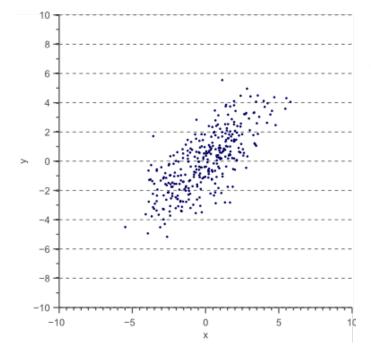
•
$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x - \mu) (x - \mu)^T$$
 is the covariance matrix of the data.

- When Σ is identity, this is the same as Euclidean distance.
- In 1D, this measures how many standard deviations away two points are.
- The Mahalanobis distance generalizes this to higher dimensions ...

Covariance Matrix Of Data

For zero-centered data,

Covariance =
$$\Sigma = \mathbb{E}[\mathbf{x}_i \mathbf{x}_i^T] = \mathbb{E}\begin{bmatrix} x_{i1}x_{i1} & \cdots & x_{i1}x_{iD} \\ \vdots & x_{ij}x_{ik} & \vdots \\ x_{iD}x_{i1} & \cdots & x_{iD}x_{iD} \end{bmatrix}$$



$$\sigma(x, y) = \mathbb{E}[(x - \mathbb{E}(x))(y - \mathbb{E}(y))]$$
$$\Sigma = \begin{bmatrix} \sigma(x, x) & \sigma(x, y) \\ \sigma(y, x) & \sigma(y, y) \end{bmatrix}$$

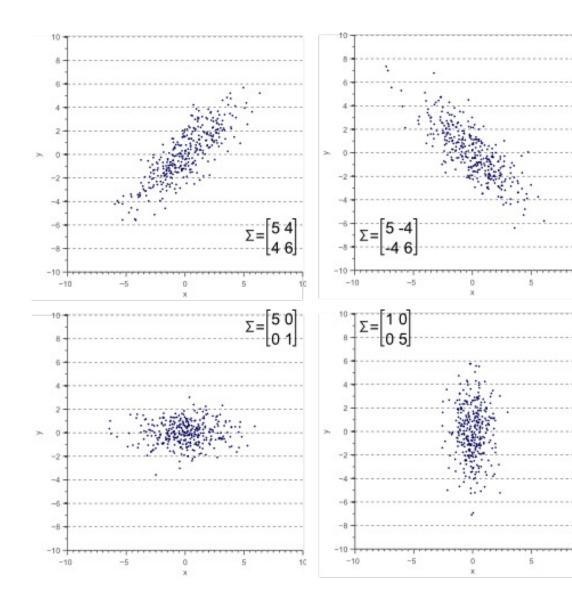
Covariance Matrix in Terms of Data Matrix X

Covariance =
$$\Sigma = \mathbb{E} \begin{bmatrix} x_i x_i^T \end{bmatrix} = \mathbb{E} \begin{bmatrix} x_{i1} x_{i1} & \cdots & x_{i1} x_{iD} \\ \vdots & x_{ij} x_{ik} & \vdots \\ x_{iD} x_{i1} & \cdots & x_{iD} x_{iD} \end{bmatrix} = \frac{1}{N} \sum_i x_i x_i^T$$

$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} \qquad X^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$
$$\frac{1}{N} X^T X = \frac{1}{N} (x_1 x_1^T + x_2 x_2^T + \cdots + x_N x_N^T)$$

Thus, the data covariance matrix is typically computed as $\frac{1}{N}X^{T}X$

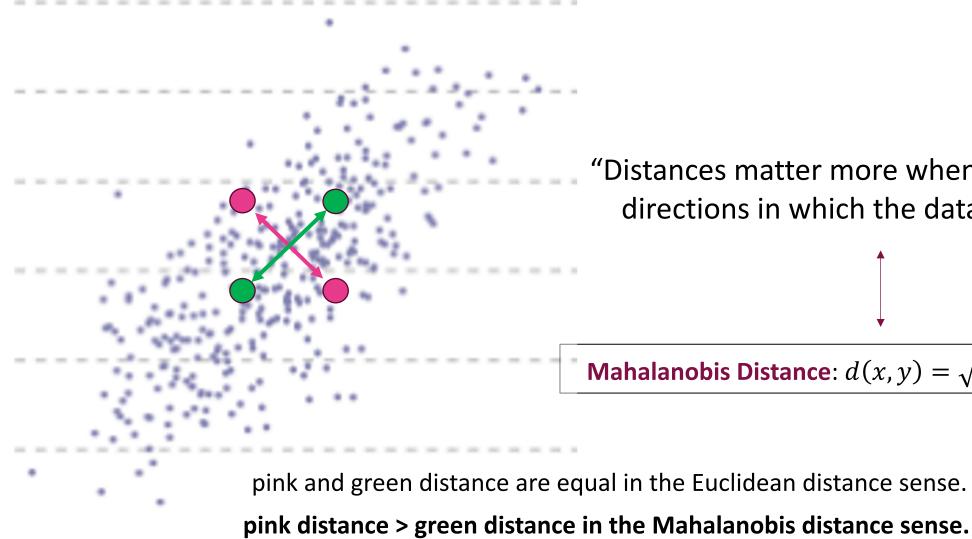
Covariance Matrix Is Related to Dataset "Shape"



"Distances matter more when they are along directions in which the data varies less."

Mahalanobis Distance: $d(x, y) = \sqrt{(x - y)^T \Sigma^{-1}(x - y)}$

Covariance Matrix Of Data



"Distances matter more when they are along directions in which the data varies less."

Mahalanobis Distance: $d(x, y) = \sqrt{(x - y)^T \Sigma^{-1} (x - y)}$

https://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Summary of Clustering

- Critical to understanding the structure of our data
- Often useful for creating high-level features useful for supervised learning
- We saw one approach in detail: K-Means

Optional readings: Clustering

- Bishop Ch 9.1 on K-Means Clustering: <u>https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf</u>
- Hastie and Tibshirani, Elements of Statistical Learning, Ch 14.5.1 and 14.5.2. <u>https://hastie.su.domains/ElemStatLearn/</u>
- Hands-On ML Unsupervised ML: <u>https://github.com/ageron/handson-ml2/blob/master/09_unsupervised_learning.ipynb</u> (Play with lots of clustering approaches, including K-Means in detail)
- Scikit-Learn documentation of clustering approaches: <u>https://scikit-learn.org/stable/modules/clustering.html#clustering</u>

Dimensionality Reduction

Dimensionality Reduction

Dimensionality Reduction

Map samples $\boldsymbol{x}_i \in \mathbb{R}^D$ to $f(\boldsymbol{x}_i) \in \mathbb{R}^{D' \ll D}$

Can think of this as generalizing clustering, $f(\mathbf{x}_i) \in \mathbb{N}^1 \to f(\mathbf{x}_i) \in \mathbb{R}^{D' \ll D}$

• Rather than groupings, we want to recover "low-dimensional structure"

Also a generalization of "feature selection".

• Dimensionality-reduced $f(x_i)$ need not just have a subset of the elements of the original vector x_i .

What Is The "Structure" Of A Dataset?

LLE (0.11 sec) LTSA (0.19 sec) Hessian LLE (0.37 sec) Modified LLE (0.22 sec) 2 0 1 0^{1²} $^{-1}$ 0 Isomap (0.34 sec) MDS (2.5 sec) SpectralEmbedding (0.16 sec) t-SNE (5.8 sec)

Manifold Learning with 1000 points, 10 neighbors

The Uses of Dimensionality Reduction

- Feature Learning: For preprocessing inputs to an ML algorithm, since lower-dimensional features permit smaller models and fewer data samples.
- Compression (for storage): e.g. JPEG standard for images is now adopting unsupervised ML approaches https://jpeg.org/items/20190327_press.html
- Visualization: Exploring a dataset, or an ML model's outputs

Consider: Visualizing High-Dimensional Data

Lot	Frontage	LotArea	Street	LotShape	Utilities	LandSlope	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	ExterQual	ExterCond	BsmtQual	BsmtExposure	BsmtFinType1	BsmtFinSF1	BsmtFinType2	SaleCondition_A	norr
0	65.0	8450	2	4	4	3	7	5	2003	2003	196.0	4	3	4	0	6	706			
1	80.0	9600	2	4	4	3	6	8	1976	1976	0.0	3	3	4	3	5	978	1		
2	68.0	11250	2	3	4	3	7	5	2001	2002	162.0	4	3	4	1	6	486	1		
3	60.0	9550	2	3	4	3	7	5	1915	1970	0.0	3	3	3	0	5	216	1		
4	84.0	14260	2	3	4	3	8	5	2000	2000	350.0	4	3	4	2	6	655	1		
5	85.0	14115	2	3	4	3	5	5	1993	1995	0.0	3	3	4	0	6	732	1		
6	75.0	10084	2	4	4	3	8	5	2004	2005	186.0	4	3	5	2	6	1369	1		
7	0.0	10382	2	3	4	3	7	6	1973	1973	240.0	3	3	4	1	5	859	4		
8	5						7	-				0	•		2				_	1
	5	To	de	eal v	vitl	h hv	ber-	plane	es i	n a 14	l-din	nens	sion	al si	oace.	visua	alize	a 3-D		
	51																			
)	/					-	-	-						• -	-					
	/					-	-	-					oud	lv. E	vervo	one d	oes	it."		
2	/					-	-	-		ourse			oud	ly. E	very	one d	oes	it."		
2	/					-	-	-					oud	ly. E	ivery	one d			Uinton	
2	/					-	-	-					oud	ly. E	Every	one d			Hinton	
2	/					-	-	-					oud	ly. E	Every	one d			Hinton	
2	/					-	-	-					oud	ly. E	Every	one d		ieoff		
	/					-	-	-					oud	Iу. Е	every °	one d		ieoff	Hinton	
2	9' 5'	spa	ce			ay 'fo	-	een'	to y	ourse	elf ve	ery l			every ⁰			ieoff		
2	9 5 72.0	5 pa	2 2			ay 'fo	-	een'	to y 1967	OURSE	e lf ve	ery l		0	every ⁰ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- G	eoff		
2	72.0 66.0	10791 13695	2 2			ay 'fo	-	een'	to y 1967 2004	OURSE 1967 2004	e lf ve	ery l		03	very 0 0 2		- G	ieoff		
2	99 55 72.0 66.0 70.0	10791 13695 7560	2 2			ay 'fo	-	een'	to y 1967 2004 1958	OURSE 1967 2004 1965	0.0 0.0 0.0	ery l		0 3 3	very 0 0 2 0		- G	eoff 0 1 1 1 1	····	
9 9 11 12 23 33 34 44 55 56 66 77 78 89 99 100 11 12 2	72.0 66.0 70.0 101.0	10791 13695 7560 14215	2 2 2 2			ay 'fo	-	een' 1	to y 1967 2004 1958 2005	OURSE 1967 2004 1965 2006	0.0 0.0 0.0 380.0	ery l		0 3 3 5	0 0 0 2		- G	ieoff	···· ··· ···	

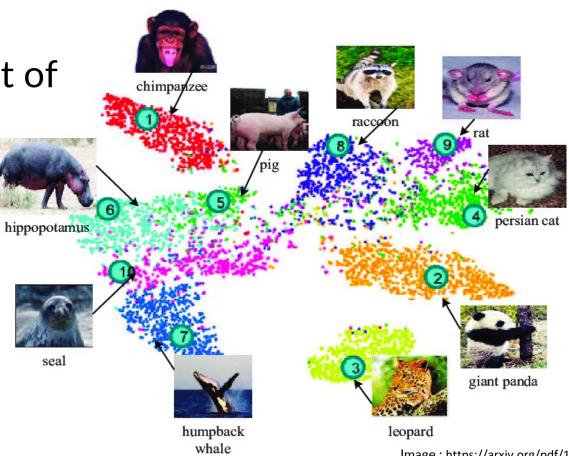
Data Visualization

Is there a representation better than the raw features?

Maybe it isn't necessary to visualize all 227 dimensions

Idea: find a lower-dimensional subspace that retains most of the information about the original data

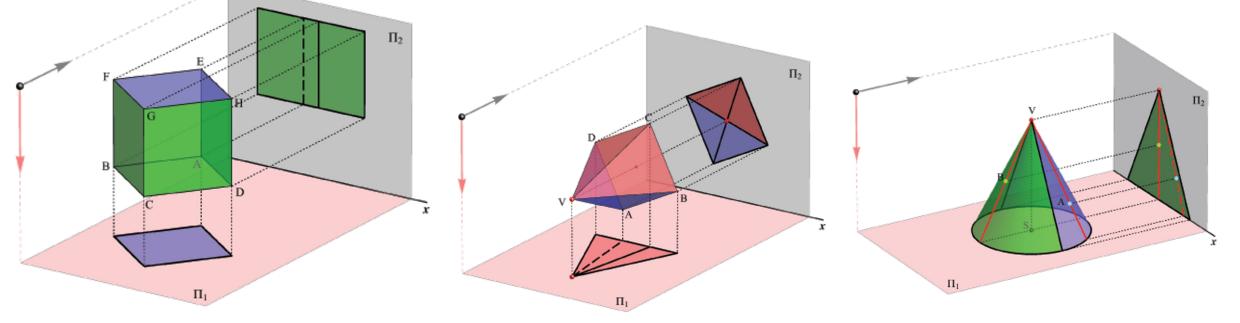
There are many methods; our focus will be on Principal Components Analysis



Principal Components Analysis

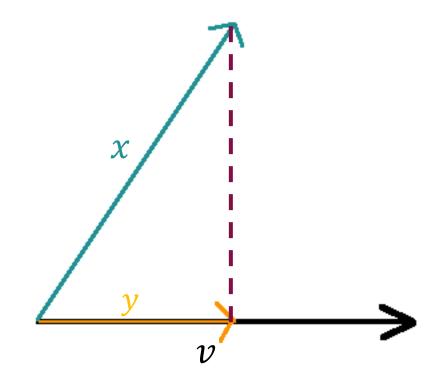
Dimensionality Reduction Through Orthogonal Projections?

- We often view 3D objects in 2D by "projecting them" onto a plane. Drop perpendicular lines from every point on the object to the plane.
- "Good projections" are views that preserve information about the shape of the data.
- PCA does something similar to every instance in a dataset. Finds good "views" of the dataset.



Orthogonal Projection Example: from 2D to 1D

• Let's project $x \in \mathbb{R}^2$ down to a new vector $v \in \mathbb{R}^1$ (i.e., a scalar), by orthogonally projecting onto the direction represented by the unit vector v



$$y = (x^T v) v$$

http://mathonline.wikidot.com/orthogonal-projections

Orthogonal Projection Of An Entire Dataset?

- Every point in the set is projected
- E.g., projecting a 3D dataset in XYZ (see figure, left) onto:
 - the XY plane (top), or
 - the YZ plane (bottom)
- Which of these "views" is better in terms of preserving info about the structure of the data?
- In general, projections need not be axis-aligned. How to find good structure-preserving views?
 - Solution: PCA!

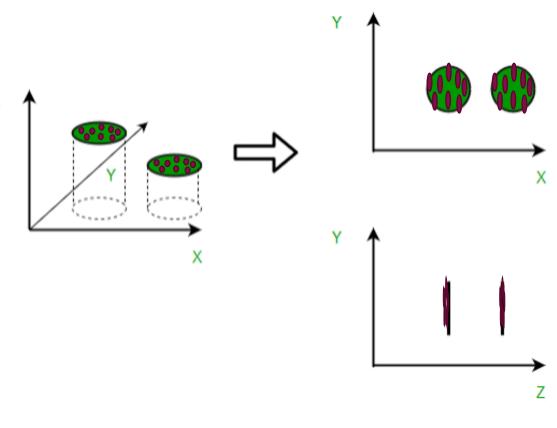
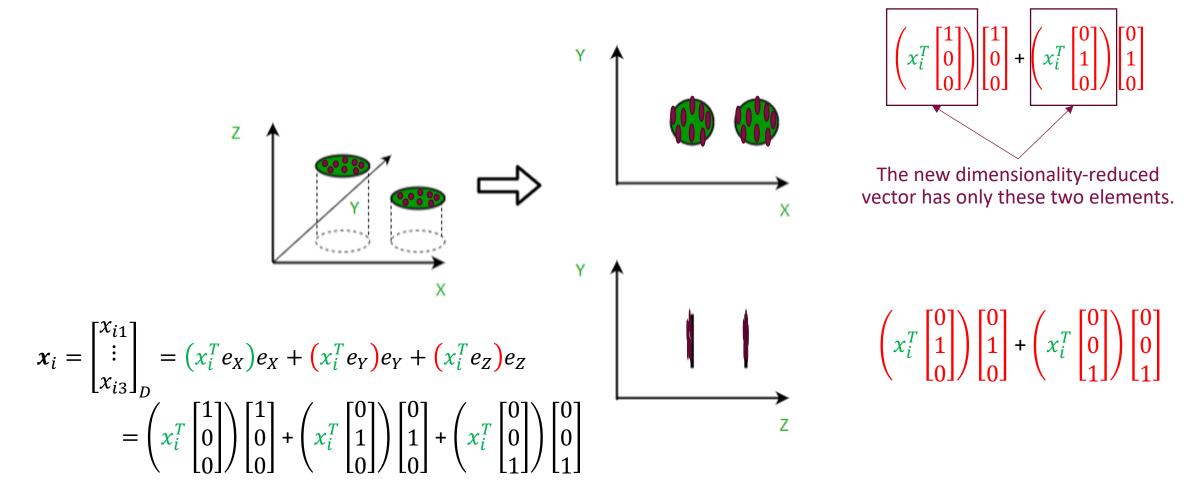


Fig: https://www.geeksforgeeks.org/dimensionality-reduction/

Orthogonal Projection Of An Entire Dataset?



Thus, each choice of view can be parameterized by the basis vectors So, finding good views = finding good basis vectors.

PCA Dimensionality Reduction Objective

$$X = \begin{bmatrix} x_{11} & \cdots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{ND} \end{bmatrix}_{N \times D}$$

We can write each row (each data sample) x_i as:

$$x_{i} = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix}_{D} = \sum_{d} (x_{id} \cdot e_{d}) e_{d}$$
Projections Original axes

We are looking for a new coordinate system $v_1, ..., v_D$, to approximate all x_i : $x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (x_i, v_1)v_1 + (x_i, v_2)v_2 + \dots + (x_i, v_{D'})v_{D'}$ where the new axes v_d 's are all *D*-dimensional unit norm, and $D' \ll D$

Terminology

We are looking for a new coordinate system $v_1, ..., v_D$, to approximate all x_i : $x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (x_i, v_1)v_1 + (x_i, v_2)v_2 + \dots + (x_i, v_{D'})v_{D'}$ where the new axes v_d 's are all *D*-dimensional unit norm, and $D' \ll D$

- The axis unit vectors \boldsymbol{v}_d of the projection are also called "basis" vectors
- The final D'- dimensional vector representation is simply the vector of projections $\begin{bmatrix} (x_i, v_1) \\ \vdots \\ (x_i, v_D) \end{bmatrix}$

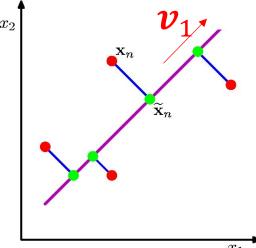
Simplest Case: Reduce to D' = 1 dimension

We are looking for a new coordinate system $v_1, ..., v_D$, to approximate all x_i : $x_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (x_i, v_1)v_1 + (x_i, v_2)v_2 + \dots + (x_i, v_{D'})v_{D'}$ where the new axes v_d 's are all *D*-dimensional unit norm, and $D' \ll D$

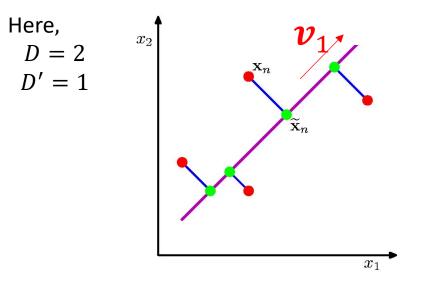
Simplest case: D' = 1?

We want to find unit \boldsymbol{v}_1 such that:

 $(x_i, v_1)v_1$ best approximates x_i



The Meaning Of "Approximating" The Data



PCA looks for the projection that:

- minimizes mean squared distance between data point and projections (sum of squared blue lines)
- maximizes variance of projected data (roughly, length of purple line)

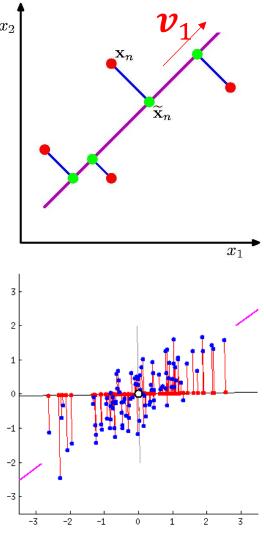
Objective Function: Maximizing Variance

Find unit vector
$$\boldsymbol{v}_1$$
 (with $\|\boldsymbol{v}_1\|_2 = 1$), to optimize:
Reconstruction
MSE
$$\begin{aligned}
\min_{\|\boldsymbol{v}_1\|_2=1} \frac{1}{N} \sum_{i} \frac{\|(x_i, \boldsymbol{v}_1)\boldsymbol{v}_1 - \boldsymbol{x}_i\|_2^2}{|\text{Projection error}} \\
\text{Can show, exactly equal to:} \\
\max_{\|\boldsymbol{v}_1\|_2=1} \text{variance}(x_i, \boldsymbol{v}_1)
\end{aligned}$$

Intuitively, if the variance of the projection on v_1 was low, then v_1 would not be very informative about samples x_i .

Conversely, directions with high variance projections preserve the most information.

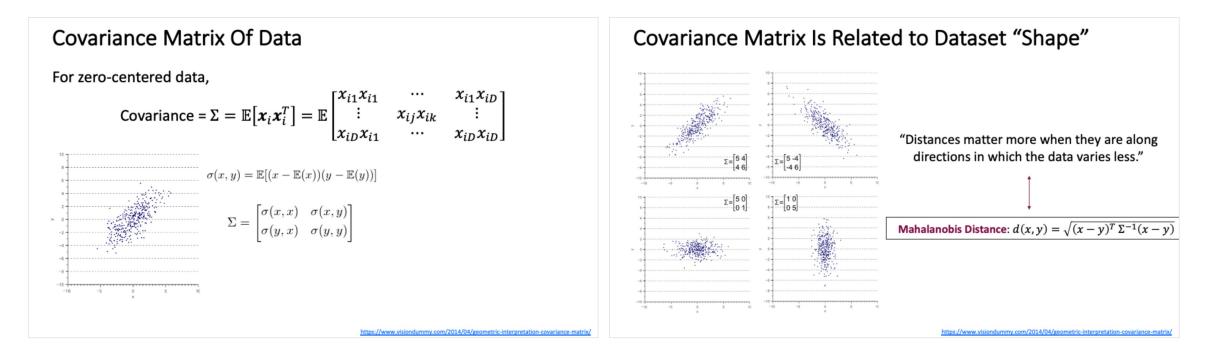
So, how to find this direction of maximum variance?



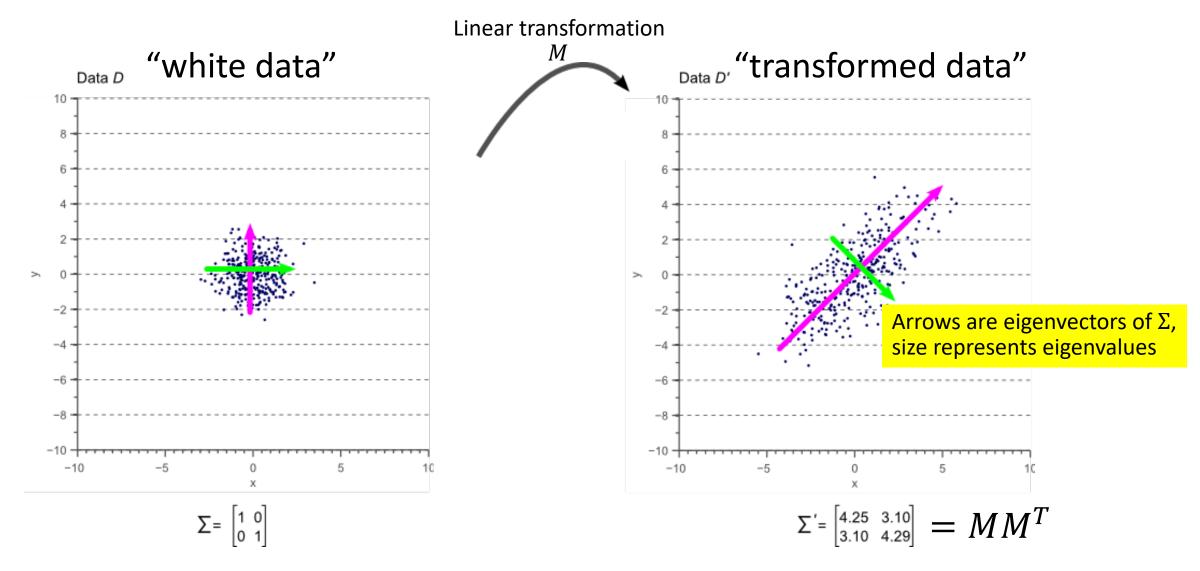
(Fig: stats.stackexchange)

Covariance Matrix To The Rescue Again

• Recall:



Covariance Matrix Represents a Linear Transformation



Refresher on Eigenvectors & Singular vectors

Eigendecomposition

A square matrix $A_{D \times D}$ can be decomposed as: $A = U\Lambda U^{-1}$

A is a DxD diagonal matrix of "eigenvalues" $diag(\lambda_1, ..., \lambda_D)$ usually sorted in descending order. Hence, "first eigenvalue" means "largest eigenvalue"

U is a DxD matrix $[u_1, u_2, ..., u_D]$, whose columns are called "eigenvectors". We usually assume these are normalized to be unit length, i.e., unit eigenvectors.

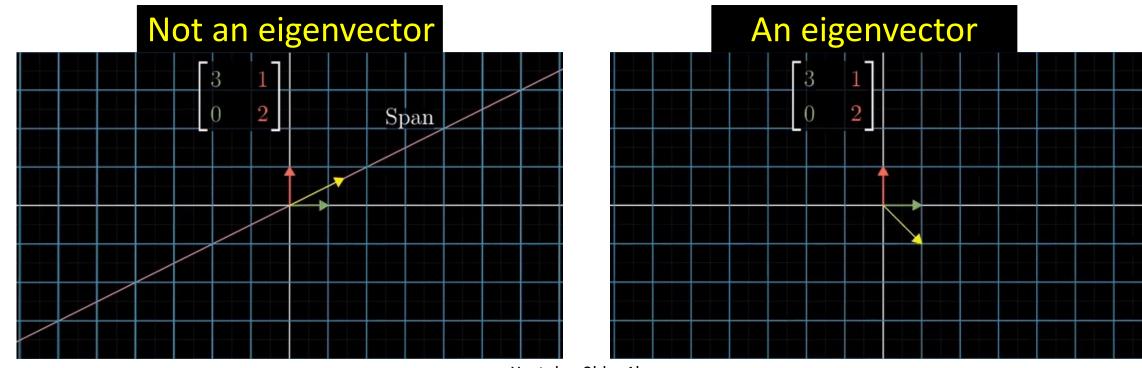
"First eigenvector" = "largest eigenvector" = "eigenvector with largest eigenvalue"

Eigenvectors: geometric intuition

The eigenvectors u_i of a matrix A are vectors that remain invariant under the linear transformation represented by A i.e. $x \to Ax$

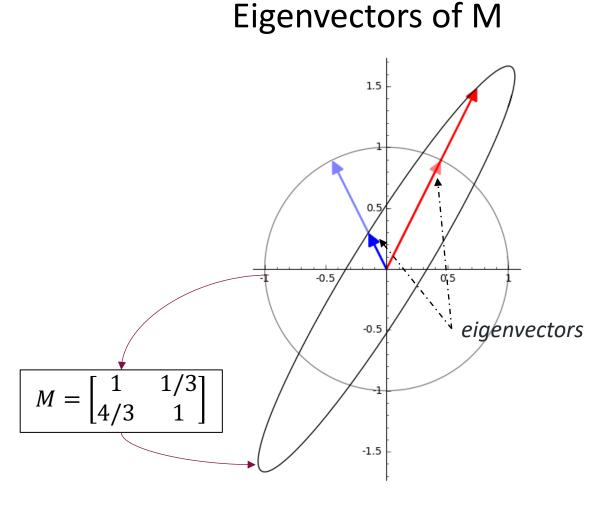
$$A\boldsymbol{u_i} = \lambda_i \boldsymbol{u_i}$$

 λ_i is the eigenvalue corresponding to u_i .



Youtube: 3blue1brown

Singular vectors: geometric intuition



Vectors that remain unchanged after the transformation

Singular value decomposition (SVD)

Any matrix *A* can be decomposed as:

$$A = U\widehat{\Lambda}V^T$$

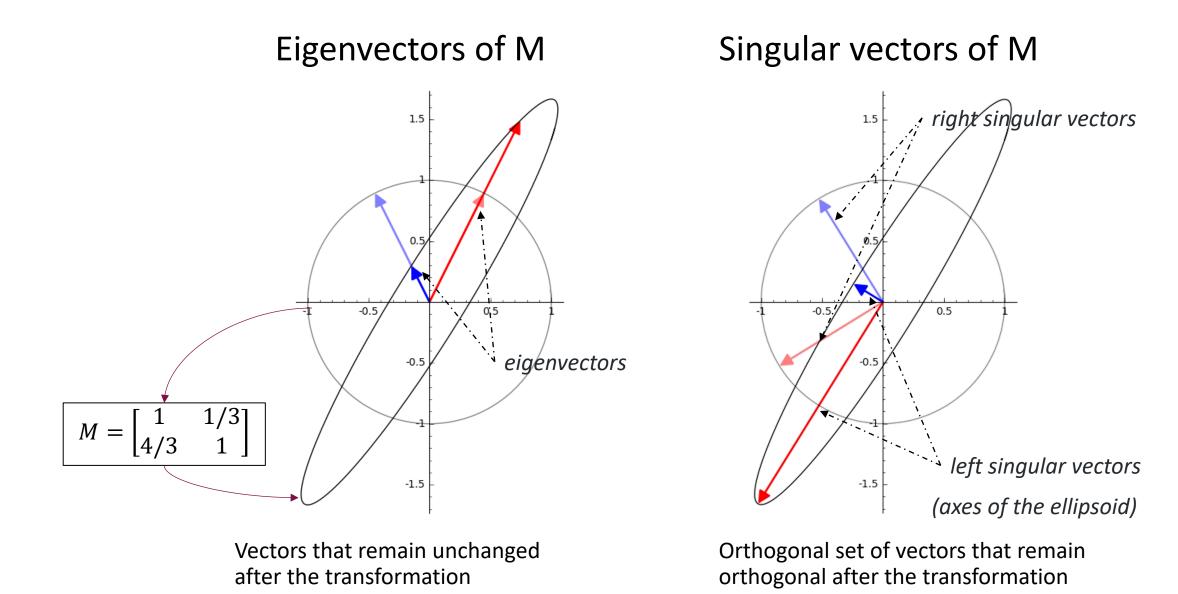
Note: $\widehat{\Lambda}$ is usually denoted as Σ , we are using non-standard notation to avoid clashing with covariance matrix Σ

 $\widehat{\Lambda}$ is a DxD diagonal matrix of "singular values" $diag(\widehat{\lambda}_1, ..., \widehat{\lambda}_D)$ usually sorted in descending order. Hence, "first singular value" means "largest" etc.

U, V are DxD orthogonal matrices $[u_1, u_2, ..., u_D]$ and $[v_1, v_2, ..., v_D]$, whose columns are called "left singular vectors" and "right singular vectors".

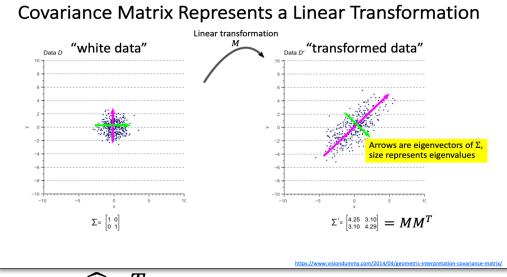
 $Orthogonal \Rightarrow U^T U = V^T V = I$

Singular vectors: geometric intuition



https://mathformachines.com/posts/eigenvalues-and-singular-values/

Note: Left Singular Vectors of M = Eigenvectors of MM^T



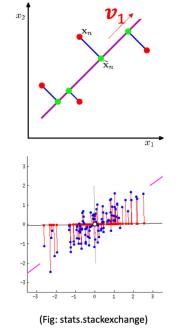
- Suppose the SVD of $M = U\widehat{\Lambda}V^T$
- Then $MM^T = U\widehat{\Lambda}V^T V\widehat{\Lambda}U^T = U\widehat{\Lambda}^2 U^T$ = eigendecomposition of MM^T
- In other words,
 - Eigenvectors U of $\Sigma = MM^T$ are the same as left singular vectors of M
 - Also implies that they are orthogonal!
 - Eigenvalues $\widehat{\Lambda}^2$ of $\Sigma = MM^T$ are the squares of the singular values of M

So, remember: eigenvectors of covariance matrix = left singular vectors of the corresponding linear transformation

Back to PCA

Objective Function: Maximizing Variance

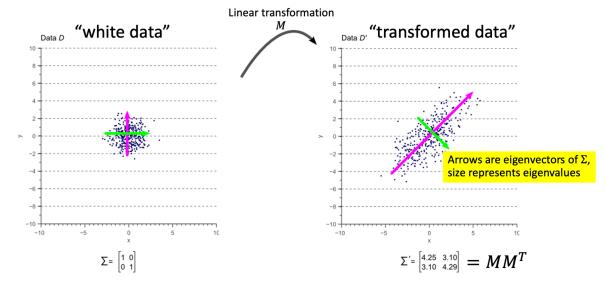
Find unit vector \boldsymbol{v}_1 (with $\|\boldsymbol{v}_1\|_2 = 1$), to optimize: Reconstruction MSE $\min_{\substack{\|\boldsymbol{v}_1\|_2=1}} \frac{1}{N} \sum_i \frac{\|(x_i, \boldsymbol{v}_1)\boldsymbol{v}_1 - \boldsymbol{x}_i\|_2^2}{|\text{Projection error}}$ Can show, exactly equal to: $\max_{\substack{\|\boldsymbol{v}_1\|_2=1}} \text{variance}(x_i, \boldsymbol{v}_1)$



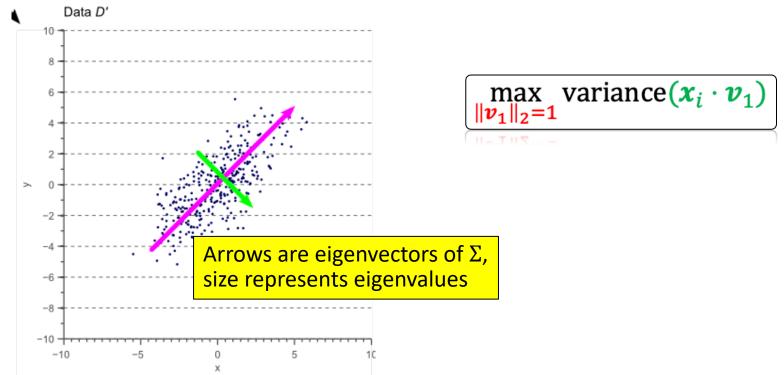
Intuitively, if the variance of the projection on v_1 was low, then v_1 would not be very informative about samples x_i .

Conversely, directions with high variance projections preserve the most information.

So, how to find this direction of maximum variance?



The Largest Eigenvector of the Covariance Matrix



We can show:

To maximize variance $(x_i \cdot v_1)$, we can set $v_1 = e_1(\Sigma)$, the first unit eigenvector of Σ

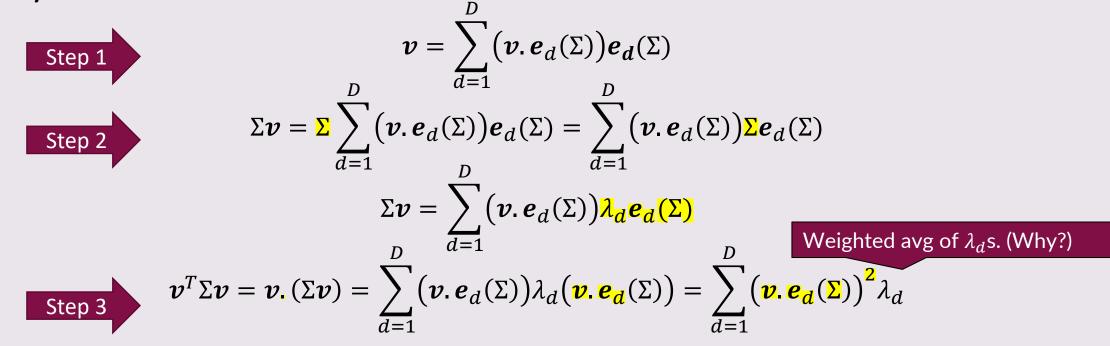
(proof sketch on the next slide)

Proof Sketch (For Your Curiosity)

First, easy to show: variance $(\boldsymbol{x}_i \cdot \boldsymbol{v}_1) = \boldsymbol{v}_1^T \Sigma \boldsymbol{v}_1$

Claim: To maximize $\boldsymbol{v}_1^T \Sigma \boldsymbol{v}_1$, we can set $\boldsymbol{v}_1 = \boldsymbol{e}_1(\Sigma)$, the first unit eigenvector of Σ

Unit eigenvectors $e_d(\Sigma)$ for symmetric matrices form an orthonormal basis, so any v can be written:



To maximize the weighted average, assign all your weight to the highest number! So, must set $v \cdot e_1(\Sigma) = 1 \implies v = e_1(\Sigma)$

Recap for D' = 1 case

- Subtract means, then compute covariance matrix as $\Sigma_1 = X^T X$
- Compute eigendecomposition of Σ_1 (e.g., using singular value decomposition)
- Set $\boldsymbol{v}_1 = \boldsymbol{e}_1(\boldsymbol{\Sigma}_1)$

Note: Right Singular Vectors (X) = Eigenvectors (Σ)

• Let data matrix $X = U\widehat{\Lambda}V^T$ (SVD)

• Then
$$\Sigma = \frac{1}{N} X^T X = \frac{1}{N} V \widehat{\Lambda} U^T U \widehat{\Lambda} V^T = \frac{1}{N} V \widehat{\Lambda}^2 V^T$$

 So eigenvectors of covariance matrix are also the *right* singular vectors of the data matrix!

More than 1 dimension?

Repeat for d = 1, ..., D'

- Subtract means of all dimensions of X
- Compute $\Sigma_d = X^T X$
- Set $\boldsymbol{v}_d = \boldsymbol{e}_1(\boldsymbol{\Sigma}_d)$
- Set $x_i = x_i (x_i \cdot v_d) v_d$ (i.e., subtract current reconstructions to compute residuals... a little bit like gradient boosting!)

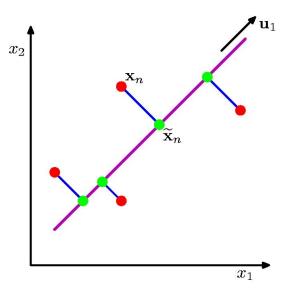
Equivalent to simply:

Repeat for d = 1, ..., D'

• Set $v_d = \boldsymbol{e}_d(\Sigma_1)$

We are looking for a new coordinate system $\boldsymbol{v}_1, \dots, \boldsymbol{v}_{D'}$ to approximate \boldsymbol{x}_i : $\boldsymbol{x}_i = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx (\boldsymbol{x}_i, \boldsymbol{v}_1) \boldsymbol{v}_1 + (\boldsymbol{x}_i, \boldsymbol{v}_2) \boldsymbol{v}_2 + \dots + (\boldsymbol{x}_i, \boldsymbol{v}_{D'}) \boldsymbol{v}_{D'}$

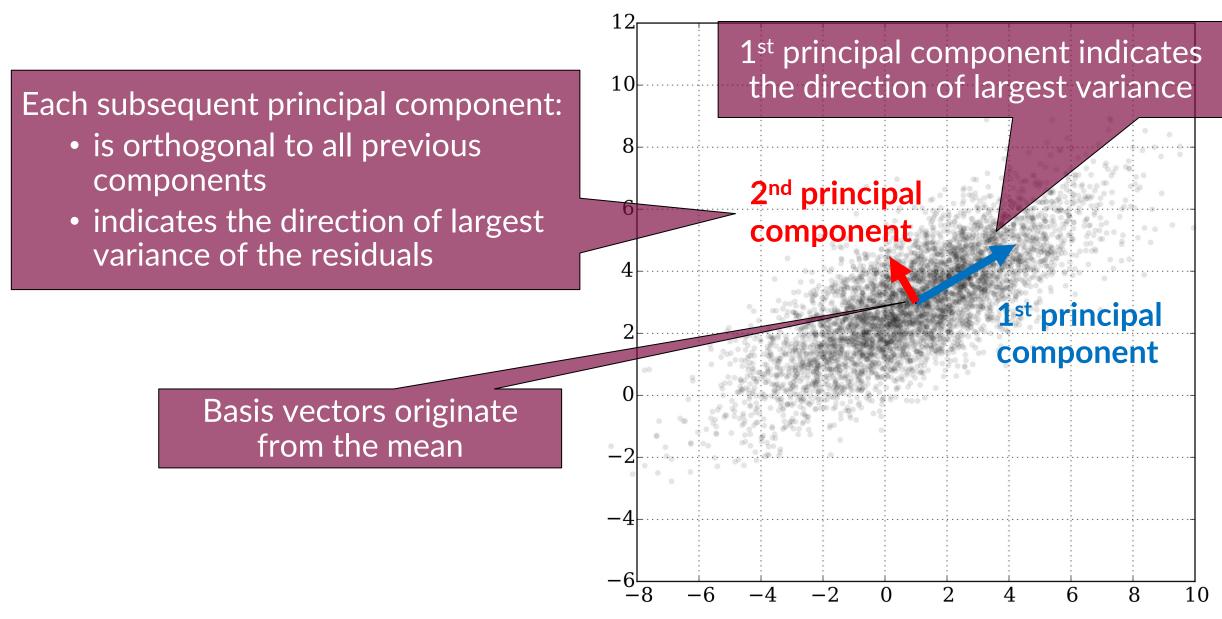
where the new axes \boldsymbol{v}_d 's are all *D*-dimensional unit norm, and $D' \ll D$



$$\boldsymbol{x}_{i} = \begin{bmatrix} x_{i1} \\ \vdots \\ x_{iD} \end{bmatrix} \approx \sum_{d=1}^{D'} (\boldsymbol{x}_{i}, \boldsymbol{v}_{d}) \boldsymbol{v}_{d}$$

So, the new low-dimensional representation is: $f(\mathbf{x}_i) = [\mathbf{x}_i \cdot \mathbf{v}_1, \mathbf{x}_i \cdot \mathbf{v}_2, \dots, \mathbf{x}_i \cdot \mathbf{v}_{D'}]$

PCA on a 2D Gaussian Dataset



By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=46871195

PCA Algorithm Summary So Far

Given data $\{x_1, ..., x_n\}$, compute covariance matrix Σ

- X is the $N \times D$ data matrix
- Compute data mean (average over all rows of X)
- Subtract mean from each row of X (centering the data)

• Compute covariance matrix
$$\Sigma = \frac{1}{N} X^T X$$
 (Σ is $D \times D$)

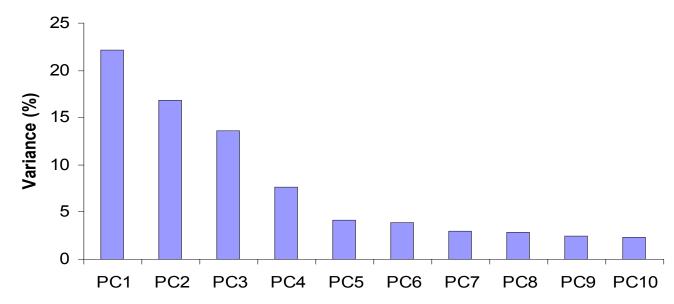
PCA basis vectors (new coordinate axes) are given by the eigenvectors of Σ

- $U, \Lambda = \text{numpy.linalg.eig}(\Sigma)$
- $\{u_d, \lambda_d\}_{d=1,...,D}$ are the eigenvectors/eigenvalues of Σ $(\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_D)$

But there are D eigenvectors, so where is the dimensionality reduction? A: Larger eigenvalue \Rightarrow "more important" eigenvectors

Dimensionality Reduction

• Can *ignore* the components of lesser significance

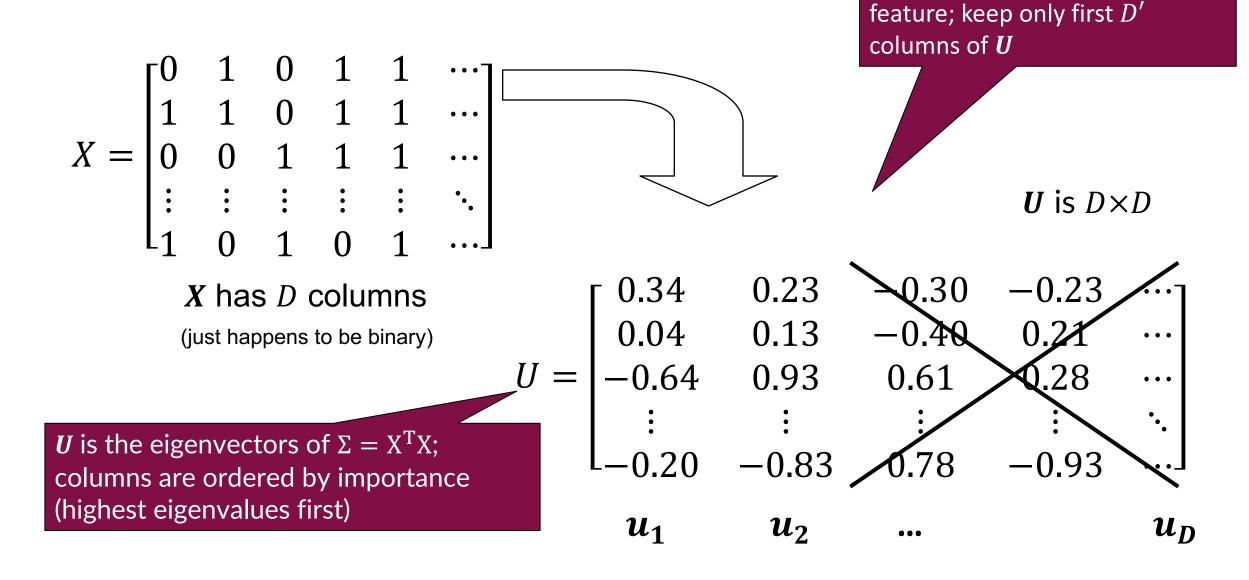


- You do lose some information, but if the eigenvalues are small, you don't lose much
 - choose only the first D' eigenvectors, based on their eigenvalues
 - -final data set has only D' dimensions

Recap

- Want to reconstruct data approximately in a new coordinate space
- Must find axes of this coordinate space, because the weights on those axes are just projections
- Objective: axes with lowest reconstruction error
 - Same as axes with high variance projections
- Solution straight from linear algebra. Axes are eigenvectors of covariance matrix

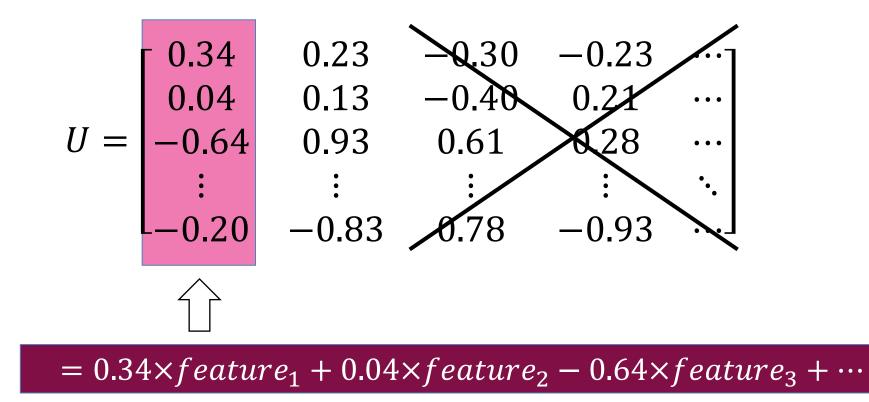
PCA Example



Each row of **U** corresponds to a

PCA

 Each column of U gives weights for a linear combination of the original features



Compute $x. e_d$ to get the new representation for each instance x

$$X = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & \cdots \\ 1 & 1 & 0 & 1 & 1 & \cdots \\ 0 & 0 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ 1 & 0 & 1 & 0 & 1 & \cdots \end{bmatrix} x_3 \qquad \widehat{U} = \begin{bmatrix} 0.34 & 0.23 & 0.13 \\ 0.04 & 0.13 \\ -0.64 & 0.93 \\ \vdots & \vdots \\ -0.20 & -0.83 \end{bmatrix}$$

The new 2D representation for x_3 is given by $[\widehat{x_{31}} = x_3. u_1, \widehat{x_{32}} = x_3. u_2]$: $\widehat{x_{31}} = 0.34(0) + 0.04(0) - 0.64(1) + \cdots$ $\widehat{x_{32}} = 0.23(0) + 0.13(0) + 0.93(1) + \cdots$

The re-projected data matrix can be conveniently computed as $\hat{X} = X\hat{U}$

What happens when you compute the principal components of face images?

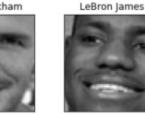
Queen Elizabeth II

Michael Jackson

Hillary Clinton

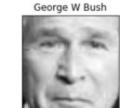


David Beckham

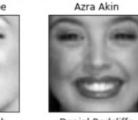


Dwayne Johnson

Oprah Winfrey



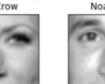
Michael Jordan





Richard Myers

Frank Taylor



Colin Powell

George W Bush

Mary Carey

Dean Barkley

Colin Powell

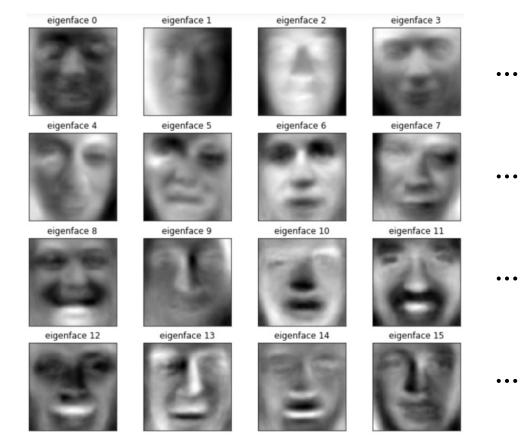
(1000 64×64 images)

56

What happens when you compute the principal components of face images?

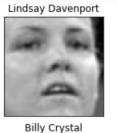
"Eigenfaces": main directions of deviation from the mean face

Figure #5: mean face



57

Let's try reconstructing these faces with the eigenfaces now!



Richard Myers

Frank Taylor

George W Bush

Colin Powell

Yasser Arafat

Rubens Barrichello

Sarah Price

Vin Diesel

Noah Wyle

Mary Carey

Dean Barkley

Colin Powell

(1000 64×64 images)

https://towardsdatascience.com/eigenfaces-recovering-humans-from-ghosts-17606c328184

... with 1000 eigenvectors

Richard Myers

Frank Taylor

George W Bush

Colin Powell

Yasser Arafat

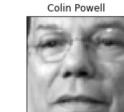
Sheryl Crow

Vin Diesel

Rubens Barrichello

Noah Wyle

Sarah Price



Surakait Sathirathai

Mary Carey

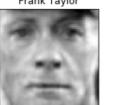
Dean Barkley

... with 250 eigenvectors

Billy Crystal

Richard Myers

Frank Taylor

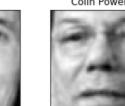


Colin Powell

Yasser Arafat

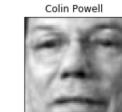
Sarah Price

Noah Wyle



Rubens Barrichello

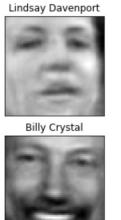
Vin Diesel



Dean Barkley

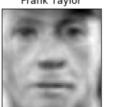
60

... with 100 eigenvectors

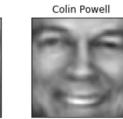


Richard Myers

Frank Taylor



George W Bush



Yasser Arafat

Vin Diesel

Sarah Price

Noah Wyle

Rubens Barrichello

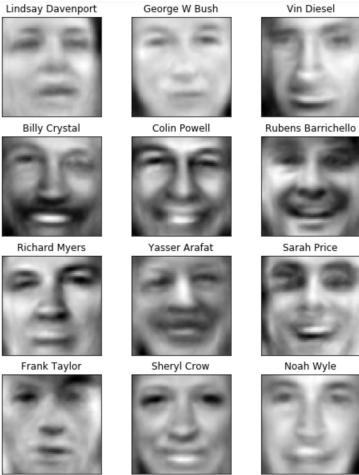


Surakait Sathirathai

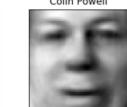
Dean Barkley

61

... with 50 eigenvectors



Surakait Sathirathai

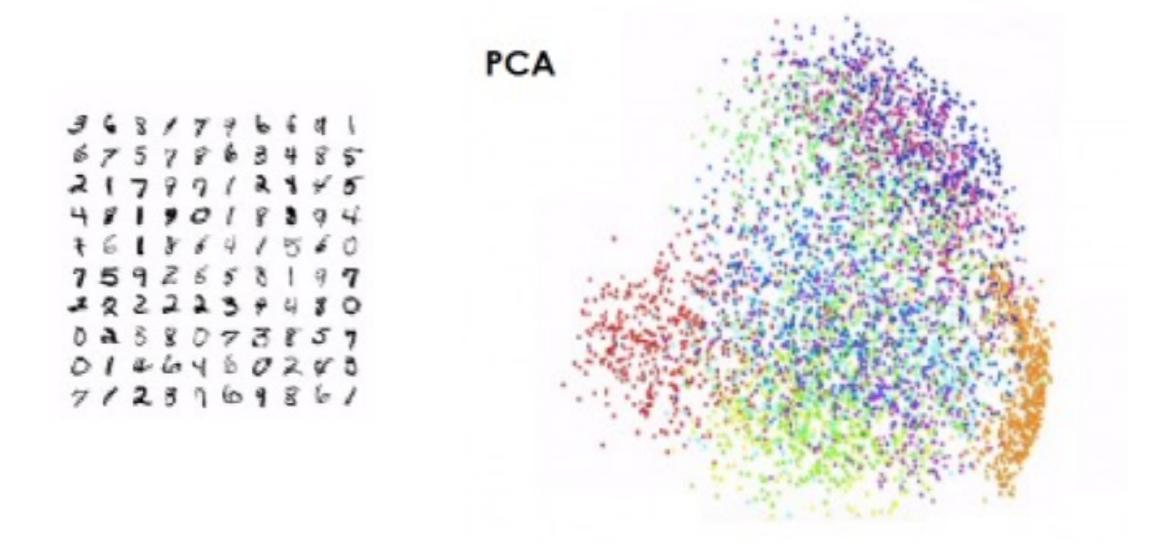


Dean Barkley



Colin Powell

PCA Visualization of Digits

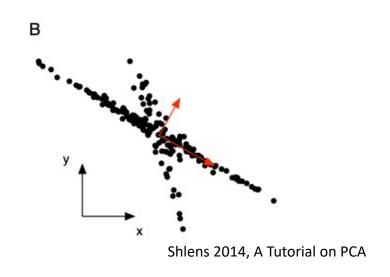


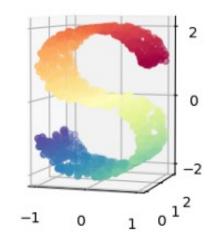
Utility of PCA

- PCA is often used as a preprocessing step for supervised learning
 - reduces dimensionality
 - eliminates redundant features (i.e. linearly dependent features)
- Can also be used to aid in visualization

PCA Doesn't Always Work Well

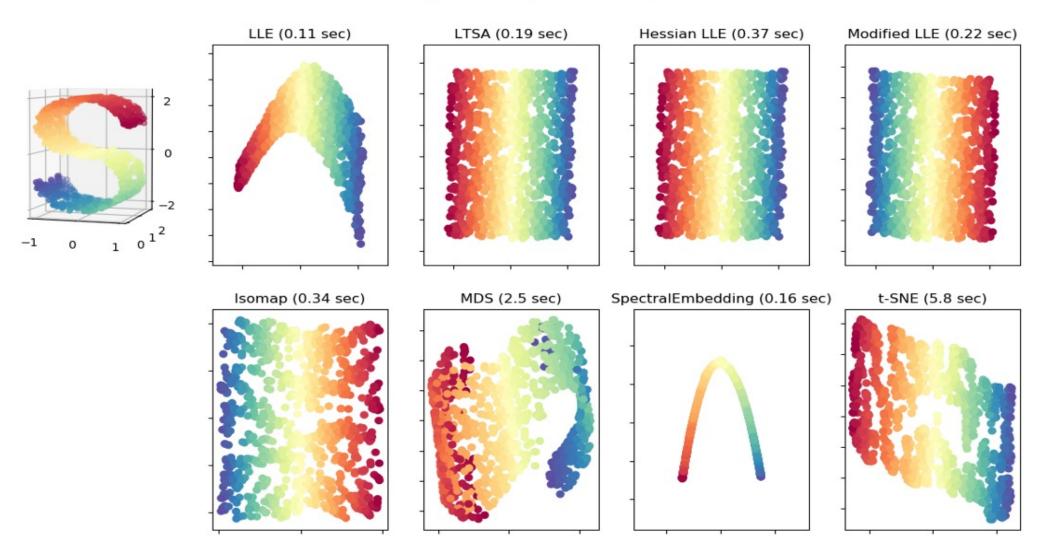
- Here, principal components in red don't capture the main directions in the data.
- In general, PCA is not guaranteed to recover semantically aligned features from the data.
- The true data "shape" might not be captured by a simple linear projection of the original data.





Beyond PCA: Non-linear dimensionality reduction

Manifold Learning with 1000 points, 10 neighbors



Beyond PCA: Non-linear dimensionality reduction

•

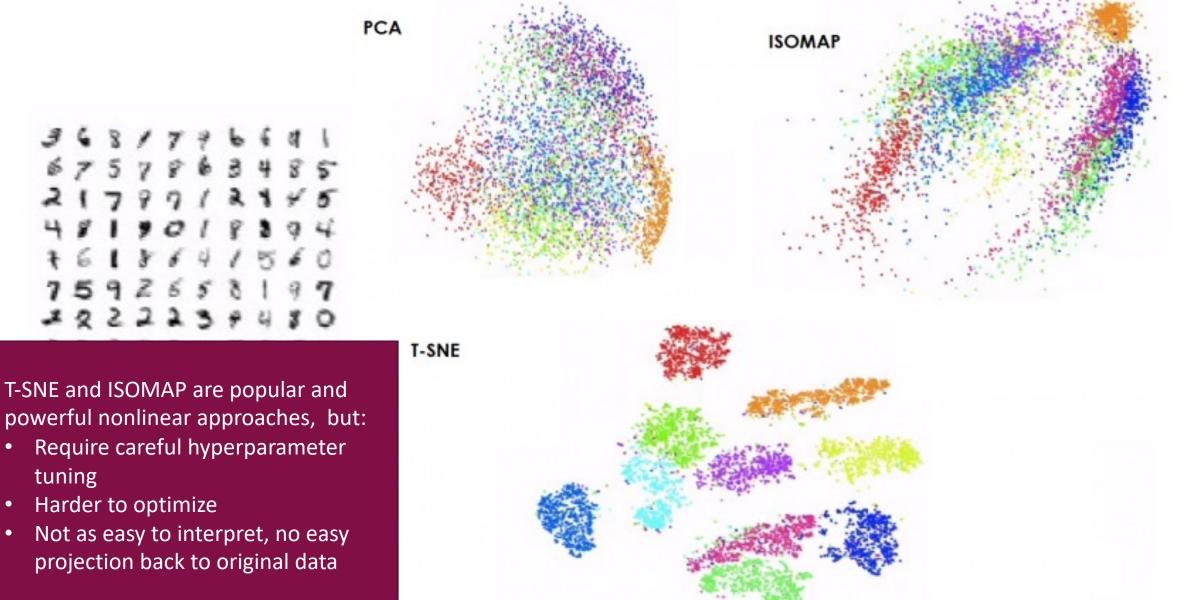


Fig: Laurens van der Maaten

Recap: Unsupervised Learning

Basic idea: reduce feature space to a much lower set of dimensions

- Clustering: find structural similarity, return one k-valued higher-level feature
- PCA: find orthonormal dimensions in order of most to least variance
- Can be useful for human inspection (visualization) as well as supervised ML