Announcements

Upcoming deadlines

- Everyone should be in a project group by now!
- Project Milestone 1 due on Wednesday, March 1 at 8pm on GradeScope

Others

- New recommender system dataset
- Project dataset worksheets
- Vectorization

Lecture 13: Neural Networks

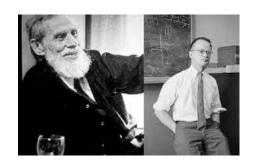
CIS 4190/5190

Spring 2023

Brief History of Neural Networks

- 1943: Perceptron model (McCulloch & Pitts)
 - Intended as theoretical model of biological neurons
 - Linear classifiers! (Specialized learning algorithm)

- Demonstrated capabilities of handwritten letter recognition
- 1969: Perceptrons cannot learn XOR (Minsky & Papert)
 - Highly controversial (may have helped cause "Al winter")



Brief History of Neural Networks

- 1985: Representation learning (Rumelhart, Hinton, & Williams)
 - Interpret intermediate computations of neural networks
- 1989: Convolutional neural networks (Lecun)
 - Convert handcrafted convolutional filters into learnable parameters
- 1995: Long short-term memory (Hochreiter & Schmidhuber)
 - Refinement of neural networks designed to predict sequences
 - Complex design demonstrates flexibility of neural networks

Brief History of Neural Networks

- 1998: Convolutional neural networks for MNIST (Lecun)
 - Human-level performance on handwritten digit recognition
- 2012: ImageNet breakthrough (Krizhevsky, Sutskever, & Hinton)
 - Reduced error on image classification by 50%
- 2017: Transformer architecture (Vaswani et al.)
- 2018: Turing award (Bengio, Hinton, & Lecun)

To be continued?

What Changed?

- More compute: GPUs
- More data: ImageNet, Wikipedia/Web, etc.
 - New applications
- Better optimization algorithms: Mini-batch SGD, acceleration, etc.
- Accumulation of "folk knowledge": Parameter initialization, etc.
 - Encoded in open source software packages
- Modern perspective: "Differentiable programming"
- Lots of investment from tech companies

Agenda

Model family

Custom model family rather than a single model family

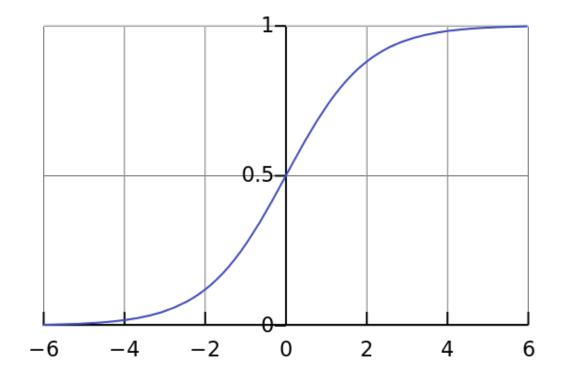
Optimization

Backpropagation algorithm for computing gradient

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$$

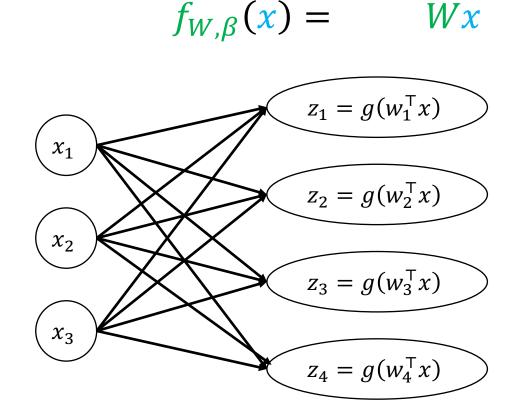
- Parameters: Matrix $W \in \mathbb{R}^{k \times d}$ and vector $\beta \in \mathbb{R}^k$
 - k is a hyperparameter called the **number of hidden neurons**
- Here, $g: \mathbb{R} \to \mathbb{R}$ is a given activation function
 - It is applied componentwise in $f_{W,\beta}$ (i.e., $g\left(\begin{bmatrix} z_1 \\ z_2 \end{bmatrix}\right) = \begin{bmatrix} g(z_1) \\ g(z_2) \end{bmatrix}$)
 - **Example:** $g(z) = \sigma(z)$ (where σ is the sigmoid function)

• Possible choice of activation function: $g(z) = \sigma(z)$

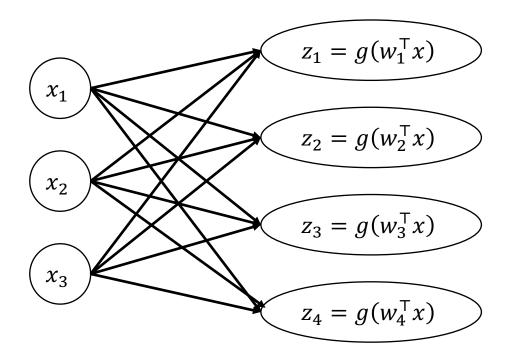


$$f_{W,\beta}(x) =$$

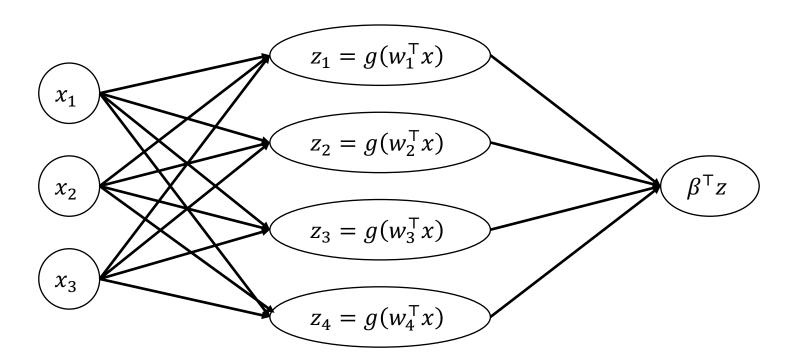
$$f_{W,\beta}(x) = x$$



$$f_{W,\beta}(x) = g(Wx)$$



$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$$



• Feedforward neural network model family (for regression):

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$$

What happens if g is linear?

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$$

- What happens if g is linear? Recovers linear functions!
 - Special case of identity:

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$$

- What happens if g is linear? Recovers linear functions!
 - Special case of identity:

$$f_{W,\beta}(x) = \beta^{\top} g(Wx)$$

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$$

- What happens if g is linear? Recovers linear functions!
 - Special case of identity:

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx) = \beta^{\mathsf{T}} Wx$$

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx)$$

- What happens if g is linear? Recovers linear functions!
 - Special case of identity:

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx) = \beta^{\mathsf{T}} Wx = \tilde{\beta}^{\mathsf{T}} x$$

$$f_{W,\beta}(x) = \beta^{\top} g(Wx)$$

- What happens if g is linear? Recovers linear functions!
 - Special case of identity:

$$f_{W,\beta}(x) = \beta^{\mathsf{T}} g(Wx) = \beta^{\mathsf{T}} Wx = \tilde{\beta}^{\mathsf{T}} x$$

- Using a nonlinearity is important!
 - In general: Linear regression over "features" g(Wx)

• Recall: For logistic regression, we choose the likelihood to be

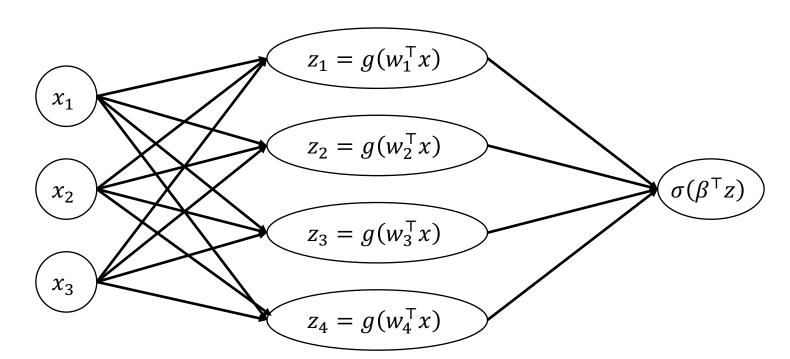
$$p_{\beta}(Y = 1 \mid x) = \frac{1}{1 + e^{-\beta^{T}x}}$$

• Recall: For logistic regression, we choose the likelihood to be

$$p_{\beta}(Y = 1 \mid x) = \sigma(\beta^{\mathsf{T}}x)$$

• For binary classification:

$$p_{W,\beta}(Y=1 \mid x) = \sigma(\beta^{\mathsf{T}}g(Wx))$$



For multi-class classification:

$$p_{W,U}(Y = y \mid x) = \operatorname{softmax}(Ug(Wx))_{y}$$

$$z_{1} = g(w_{1}^{\mathsf{T}}x) \qquad \operatorname{softmax}(Uz)_{1}$$

$$z_{2} = g(w_{2}^{\mathsf{T}}x) \qquad \operatorname{softmax}(Uz)_{2}$$

$$z_{3} = g(w_{3}^{\mathsf{T}}x) \qquad \operatorname{softmax}(Uz)_{2}$$

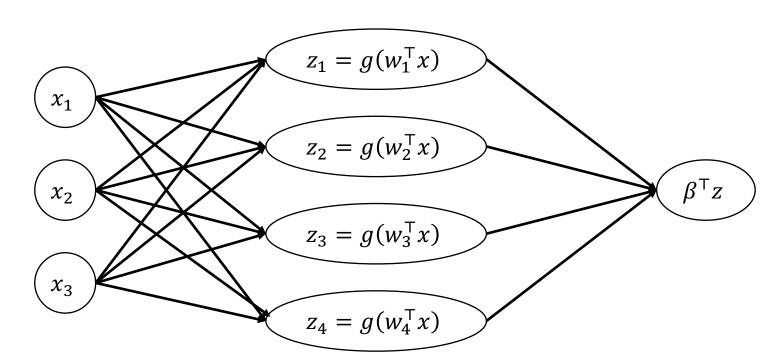
$$z_{4} = g(w_{4}^{\mathsf{T}}x)$$

Historical vs. Modern View

- Historical view: Specific model families
 - Feedforward neural networks, convolutional neural networks, etc.
 - Each new model family ("architecture") requires a custom implementation
- Modern view: Design model families by composing building blocks
 - Building blocks are "layers"
 - Layers can be programmatically composed together (by composing, concatenating, etc.) to form different model families

Historical View

$$f_{W,\beta}(x) = \beta^{\top} g(Wx)$$



$$f_{W,\beta}(x) = f_{\beta} \left(g(f_{W}(x)) \right) = f_{\beta} \circ g \circ f_{W}(x)$$

$$z_{1}^{(1)} = w_{1}^{\mathsf{T}}x \qquad z_{1}^{(2)} = g(z_{1}^{(1)})$$

$$z_{2}^{(1)} = w_{2}^{\mathsf{T}}x \qquad z_{2}^{(2)} = g(z_{2}^{(1)})$$

$$z_{3}^{(1)} = w_{3}^{\mathsf{T}}x \qquad z_{3}^{(2)} = g(z_{3}^{(1)})$$

$$z_{4}^{(1)} = w_{4}^{\mathsf{T}}x \qquad z_{4}^{(2)} = g(z_{4}^{(1)})$$

- Each **layer** is a parametric function $f_{W_j} \colon \mathbb{R}^k \to \mathbb{R}^h$ for some k, h
- Compose sequentially to form model family:

$$f_W(x) = f_{W_m}\left(\dots\left(f_{W_1}(x)\right)\dots\right)$$

We will use the following notation:

$$f_W = f_{W_m} \circ \cdots \circ f_{W_1}$$

• Each **layer** is a parametric function $f_{W_j} : \mathbb{R}^k \to \mathbb{R}^h$ for some k, h

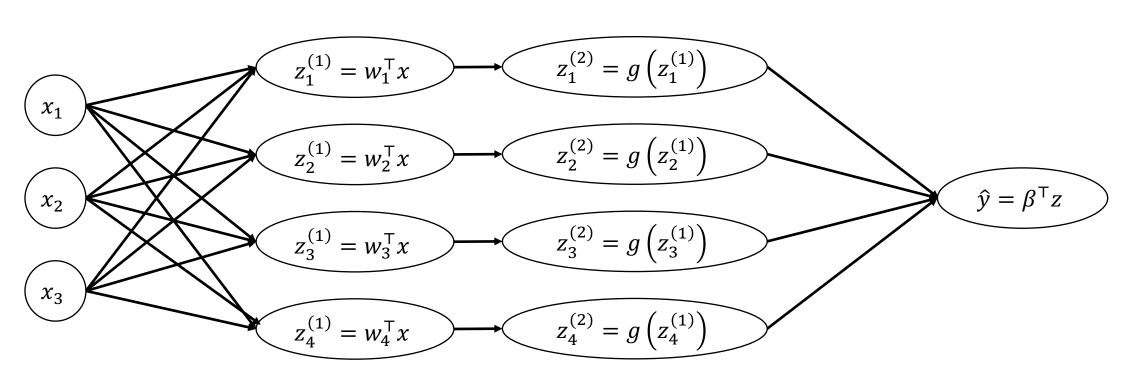
• Can compose layers in other ways, e.g., concatenation:

$$f_W(x) = f_{W_1}(x) \oplus f_{W_2}(x)$$

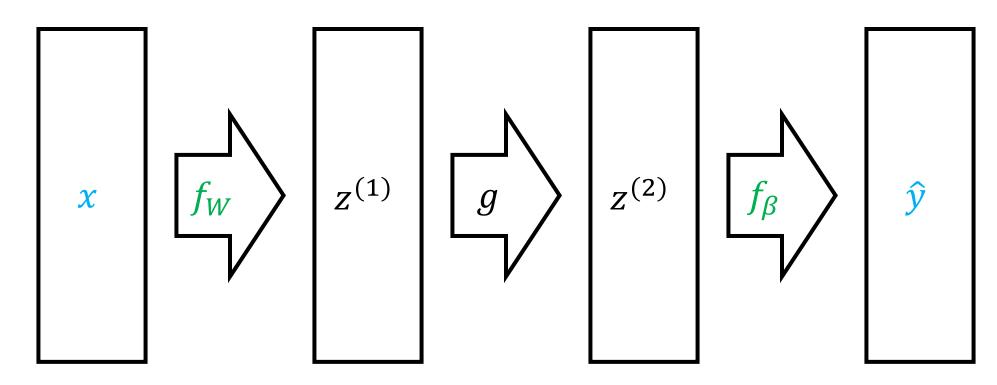
Here, we have defined

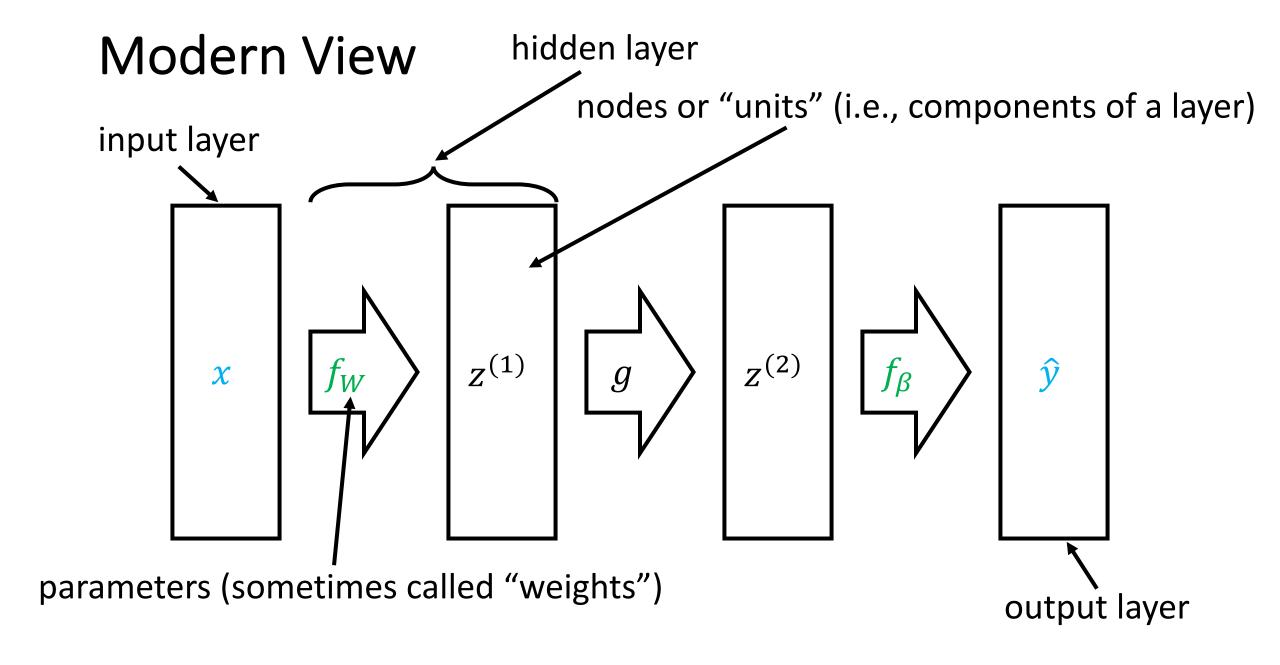
$$\begin{bmatrix} z_1 & \cdots & z_d \end{bmatrix}^{\mathsf{T}} \oplus \begin{bmatrix} z_1' & \cdots & z_{d'}' \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} z_1 & \cdots & z_d & z_1' & \cdots & z_{d'}' \end{bmatrix}^{\mathsf{T}}$$

$$f_{W,\beta}(x) = f_{\beta} \circ g \circ f_{W}(x)$$



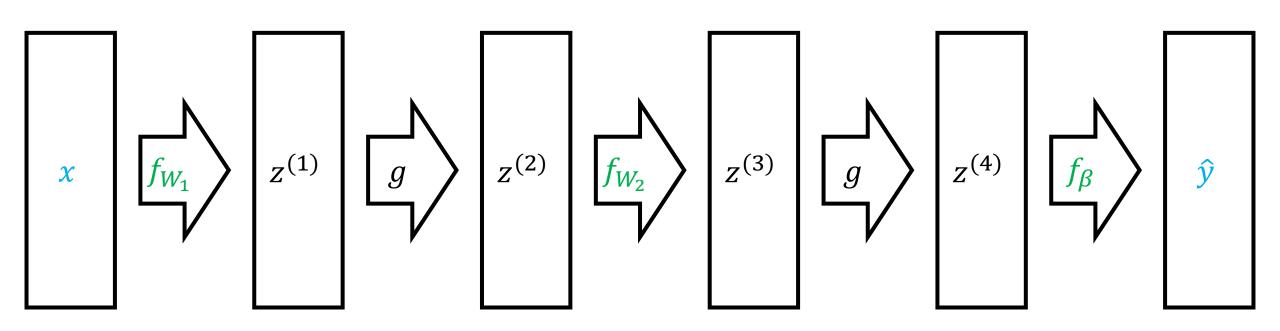
$$f_{W,\beta}(x) = f_{\beta} \circ g \circ f_{W}(x)$$





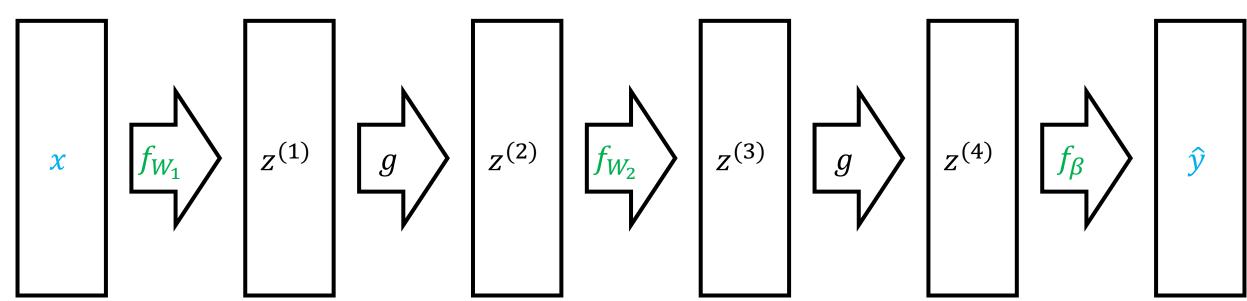
Neural network with two hidden linear layers:

$$f_{W_1,W_2,\beta}(x) = f_{\beta} \circ g \circ f_{W_2} \circ g \circ f_{W_1}(x)$$



Neural network with two hidden linear layers:

$$f_{W_1,W_2,\beta}(x) = f_{\beta} \left(g \left(f_{W_2} \left(g \left(f_{W_1}(x) \right) \right) \right) \right)$$



Learn successively more "high-level" representations

Computing AND

x_1	x_2	x_1 AND x_2	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

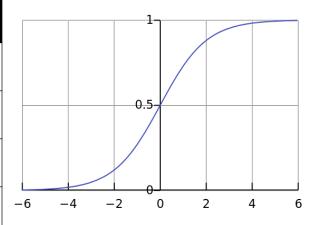
Computing AND

x_1	x_2	x_1 AND x_2	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

$$f_{\beta}(x) = \sigma(-30 + 20x_1 + 20x_2)$$

Computing AND

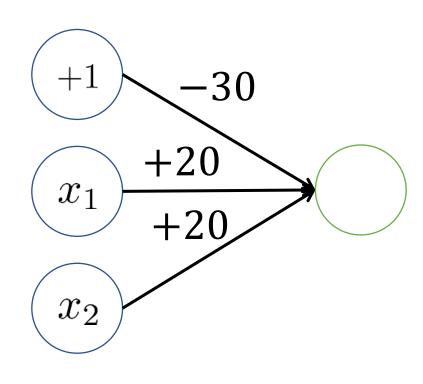
x_1	x_2	x_1 AND x_2	$f_{\beta}(x)$
0	0	0	$\sigma(-30) \approx 0$
0	1	0	$\sigma(-10) \approx 0$
1	0	0	$\sigma(-10) \approx 0$
1	1	1	$\sigma(10) \approx 1$



$$f_{\beta}(x) = \sigma(-30 + 20x_1 + 20x_2)$$

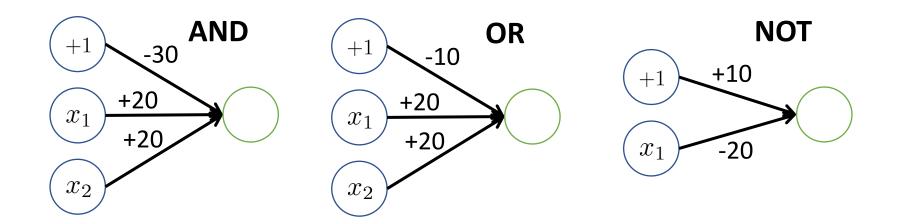
$$\sigma(x)$$

Computing AND

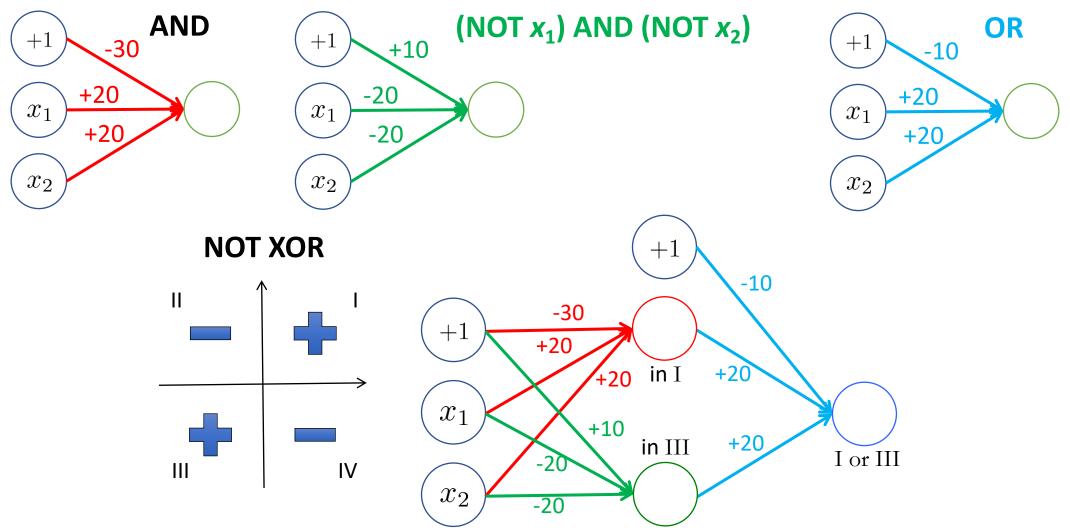


$$f_{\beta}(x) = \sigma(-30 + 20x_1 + 20x_2)$$

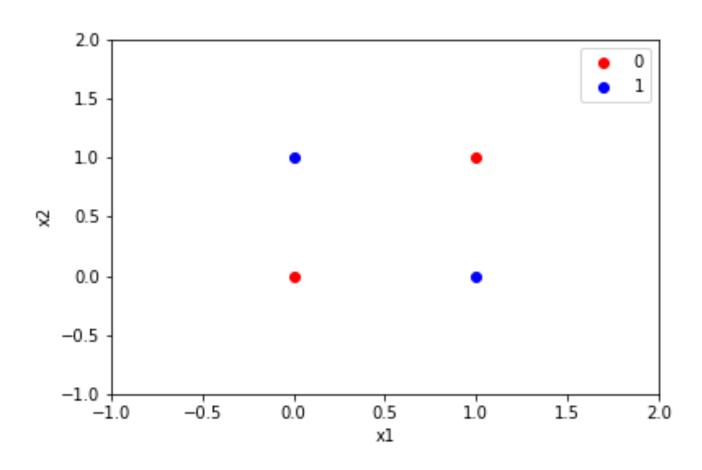
Computing Boolean Functions



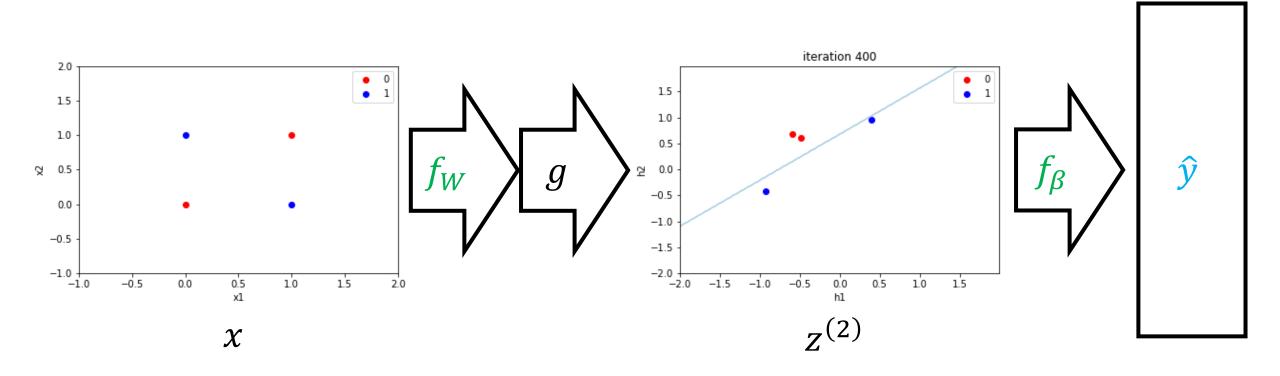
Computing Boolean Functions



Computing XOR



Computing XOR



Computing XOR

• Before:

- Linear regression + feature engineering
- Include quadratic features to compute XOR

Neural networks:

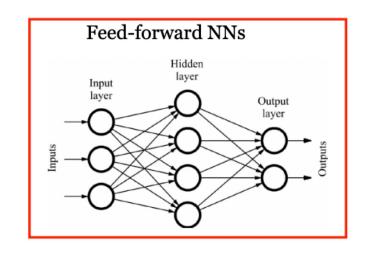
- Design architecture to capture function
- Automatically learn good "features" $z^{(2)} = g(f_W(x))$ perform linear regression on these features $f_{W,\beta}(x) = \beta^{\top} z^{(2)}$
- Called representation learning

Neural Networks

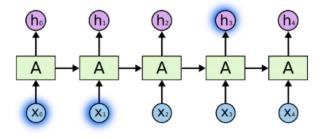
Pros

- "Meta" strategy: Enables users to design model family
- Design model families that capture **symmetries/structure** in the data (e.g., read a sentence forwards, translation invariance for images, etc.)

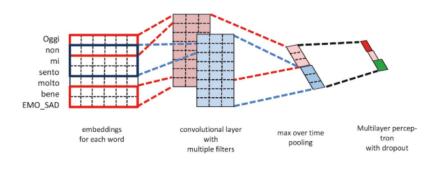
Common Layers



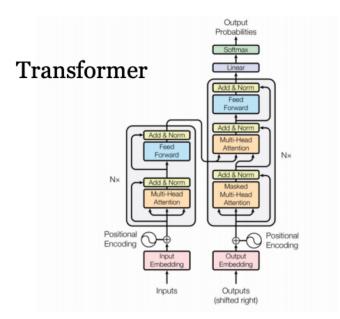
Recurrent NNs



Convolutional NNs



Always coupled with word embeddings...



Neural Networks

Pros

- "Meta" strategy: Enables users to design model family
- Design model families that capture **symmetries/structure** in the data (e.g., read a sentence forwards, translation invariance for images, etc.)
- "Representation learning" (automatically learn features for certain domains)
- More parameters!

Cons

- Very hard to train! (Non-convex loss functions)
- Lots of parameters → need lots of data!
- Lots of design decisions

Agenda

Model family

Custom model family rather than a single model family

Optimization

Backpropagation algorithm for computing gradient

Optimization Algorithm

- Based on gradient descent, with a few tweaks
 - Note: Loss is nonconvex, but gradient descent works well in practice
- **Key challenge:** How to compute the gradient?
 - Strategy so far: Work out gradient for every model family
 - **New strategy:** Algorithm for computing gradient of an arbitrary programmatic composition of layers
 - This algorithm is called backpropagation

Gradient Descent

- $W_1 \leftarrow \text{Initialize}()$
- for $t \in \{1,2,...\}$ until convergence:

$$W_{t+1,j} \leftarrow W_{t,j} - \frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{W_j} L(f_{W_t}(x_i), y_i) \quad \text{(for each } j)$$

• return f_{W_t}

Input

- Example-label pair (x, y)
- Arbitrary model $f_{W_m} \circ \cdots \circ f_{W_1}$
- Loss $L(\hat{y}, y)$ for predicted label \hat{y} and true label y
- Derivative $\nabla_{\hat{y}} L(\hat{y}, y)$ (as a function)
- Derivatives $D_{W_j} f_{W_j}(z)$ and $D_z f_{W_j}(z)$ (e.g., as a function)
- Output: $\nabla_{W_i} L(f_W(x), y)$

Recall: Multi-Dimensional Derivatives

• Given:

- Function $f_W(z)$ mapping parameters $W \in \mathbb{R}^d$ and input vector $z \in \mathbb{R}^k$ to a vector $f_W(z) \in \mathbb{R}^h$
- ullet Current parameters W and z
- The **derivative** of f_W at W and z with respect to z is a matrix

$$D_z f_W(z) \in \mathbb{R}^{h \times k}$$

Recall: Multi-Dimensional Derivatives

• Given:

- Function $f_W(z)$ mapping parameters $W \in \mathbb{R}^d$ and input vector $z \in \mathbb{R}^k$ to a vector $f_W(z) \in \mathbb{R}^h$
- ullet Current parameters W and z
- The **derivative** of f_W at W and z with respect to W is a matrix

$$D_W f_W(z) \in \mathbb{R}^{h \times d}$$

Recall: Multi-Dimensional Derivatives

Given:

- Function $f_W(z)$ mapping parameters $W \in \mathbb{R}^d$ and input vector $z \in \mathbb{R}^k$ to a vector $f_W(z) \in \mathbb{R}^h$
- Current parameters W and z
- Intuition: The linear function that best approximates f_W at W and z:

$$f_{W+dW}(z+dz) \approx f_W(z) + D_z f_W(z) dz + D_W f_W(z) dW$$

Backpropagation Example

Gradient of MSE loss (for regression):

$$\nabla_W L(W, \beta; Z) = \nabla_W \frac{1}{n} \sum_{i=1}^n (f_{W,\beta}(x_i) - y_i)^2$$
$$= \frac{2}{n} \sum_{i=1}^n (f_{W,\beta}(x_i) - y_i) D_W f_{W,\beta}(x_i)$$

$$\nabla_{\beta}L(W,\beta;Z) = \nabla_{\beta}\frac{1}{n}\sum_{i=1}^{n} (f_{W,\beta}(x_i) - y_i)^2$$
$$= \frac{2}{n}\sum_{i=1}^{n} (f_{W,\beta}(x_i) - y_i)D_{\beta}f_{W,\beta}(x_i)$$

Backpropagation Example

Derivative of neural network:

$$D_{\beta} f_{W,\beta}(x) = D_{\beta} (f_{\beta} \circ g \circ f_{W})(x)$$
$$= D_{\beta} f_{\beta} (g \circ f_{W}(x))$$

$$D_{W}f_{W,\beta}(x) = D_{W}(f_{\beta} \circ g \circ f_{W})(x)$$

$$= D_{z}f_{\beta}(g \circ f_{W}(x))D_{W}(g \circ f_{W})(x)$$

$$= D_{z}f_{\beta}(g \circ f_{W}(x))D_{z}g(f_{W}(x))D_{W}f_{W}(x)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_m} f_W(x)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_m} f_W(x) = D_{W_m} f_{W_m} \left(z^{(m-1)} \right)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_m} f_W(x) = D_{W_m} f_{W_m} \left(z^{(m-1)} \right)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-1}}f_W(x)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-1}}f_{W}(x) = D_{z}f_{W_{m}}(z^{(m-1)})D_{W_{m-1}}f_{W_{m-1}}(z^{(m-2)})$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-1}}f_{W}(x) = D_{z}f_{W_{m}}(z^{(m-1)})D_{W_{m-1}}f_{W_{m-1}}(z^{(m-2)})$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-1}} f_W(x) = D_z f_{W_m} \left(z^{(m-1)} \right) D_{W_{m-1}} f_{W_{m-1}} \left(z^{(m-2)} \right)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-2}}f_W(x)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-2}}f_W(x) = D_z f_{W_m}(z^{(m-1)}) D_z f_{W_{m-1}}(z^{(m-2)}) D_{W_{m-2}} f_{W_{m-2}}(z^{(m-3)})$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-2}}f_W(x) = D_z f_{W_m}(z^{(m-1)}) D_z f_{W_{m-1}}(z^{(m-2)}) D_{W_{m-2}} f_{W_{m-2}}(z^{(m-3)})$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-2}}f_W(x) = D_z f_{W_m}(z^{(m-1)}) D_z f_{W_{m-1}}(z^{(m-2)}) D_{W_{m-2}} f_{W_{m-2}}(z^{(m-3)})$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_{m-2}}f_W(x) = D_z f_{W_m}(z^{(m-1)}) D_z f_{W_{m-1}}(z^{(m-2)}) D_{W_{m-2}} f_{W_{m-2}}(z^{(m-3)})$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_j} f_W(x)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_j} f_W(x) = D_z f_{W_m} (z^{(m-1)}) \dots D_z f_{W_{j+1}} (z^{(j)}) D_{W_j} f_{W_j} (z^{(j-1)})$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_j} f_W(x) = D_z f_{W_m} \left(z^{(m-1)} \right) \dots D_z f_{W_{j+1}} \left(z^{(j)} \right) D_{W_j} f_{W_j} \left(z^{(j-1)} \right)$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_j} f_W(x) = D_z f_{W_m}(z^{(m-1)}) \dots D_z f_{W_{j+1}}(z^{(j)}) D_{W_j} f_{W_j}(z^{(j-1)})$$

• General case: Consider a neural network

$$f_{W}(x) = f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)$$

$$z^{(j)} = f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x) = \begin{cases} x & \text{if } j = 0 \\ f_{W_{j}}(z^{(j-1)}) & \text{if } j > 0 \end{cases}$$

$$D_{W_j} f_W(x) = D_z f_{W_m} \left(z^{(m-1)} \right) \dots D_z f_{W_{j+1}} \left(z^{(j)} \right) D_{W_j} f_{W_j} \left(z^{(j-1)} \right)$$

We have

$$D_{W_j} f_W(x) = D_z f_{W_m}(z^{(m-1)}) \dots D_z f_{W_{j+1}}(z^{(j)}) D_{W_j} f_{W_j}(z^{(j-1)})$$

Portions shared across terms Denote it by $D^{(j)}$

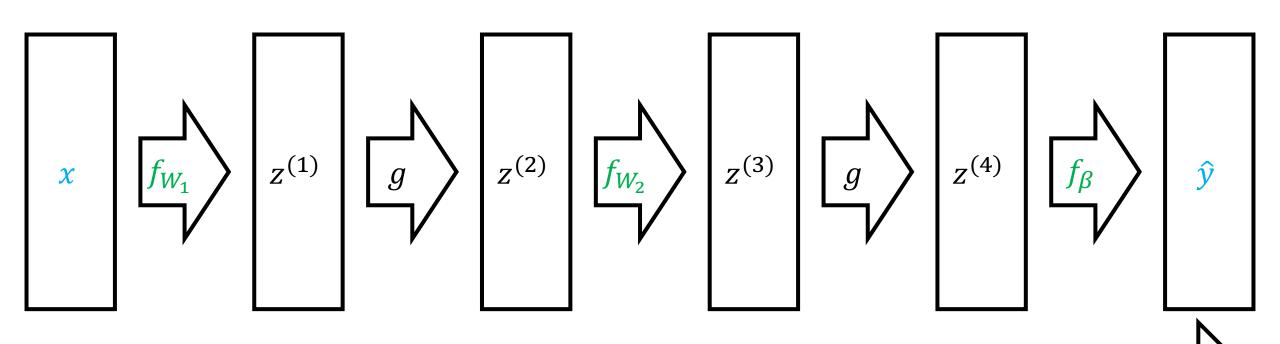
Backpropagation Algorithm

• Compute recursively starting from j = m to j = 1:

$$D^{(j)} = D_z f_{W_m}(\mathbf{z}^{(m-1)}) \dots D_z f_{W_{j+1}}(\mathbf{z}^{(j)})$$

$$= \begin{cases} 1 & \text{if } j = m \\ D^{(j+1)} D_z f_{W_{j+1}}(\mathbf{z}^{(j)}) & \text{if } j < m \end{cases}$$

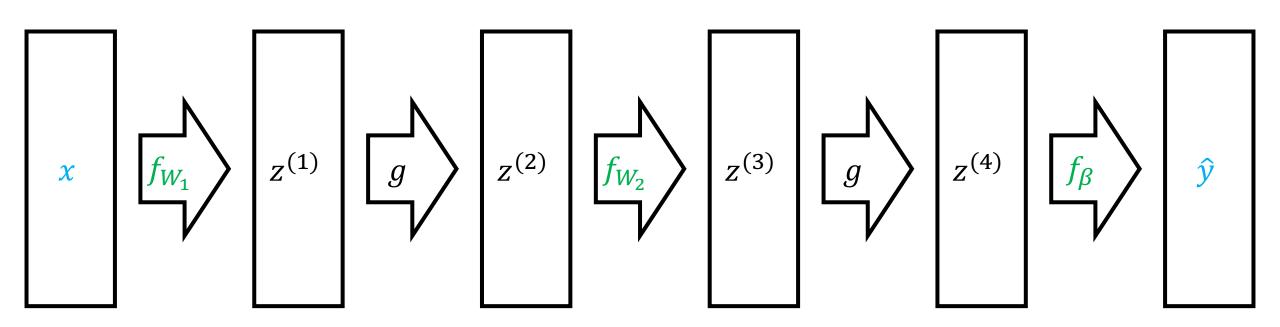
$$D_{W_j} f_W(x) = D^{(j)} D_{W_j} f_{W_j} (z^{(j-1)})$$

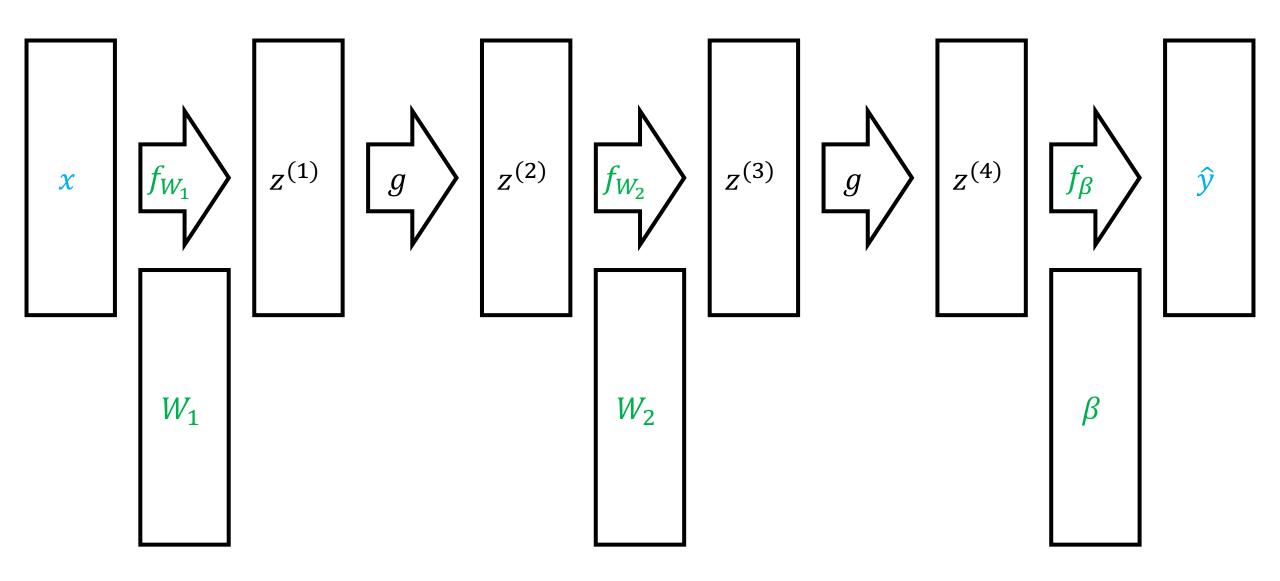


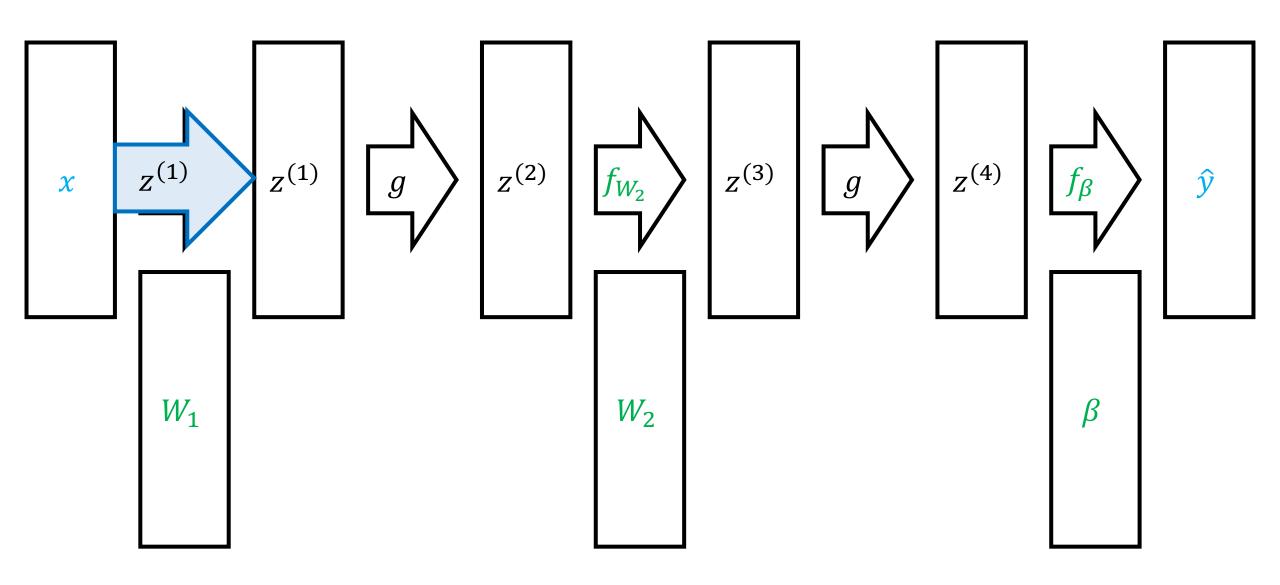
Forward pass: Compute $z^{(j)} = f_{W_j}(z^{(j-1)})$

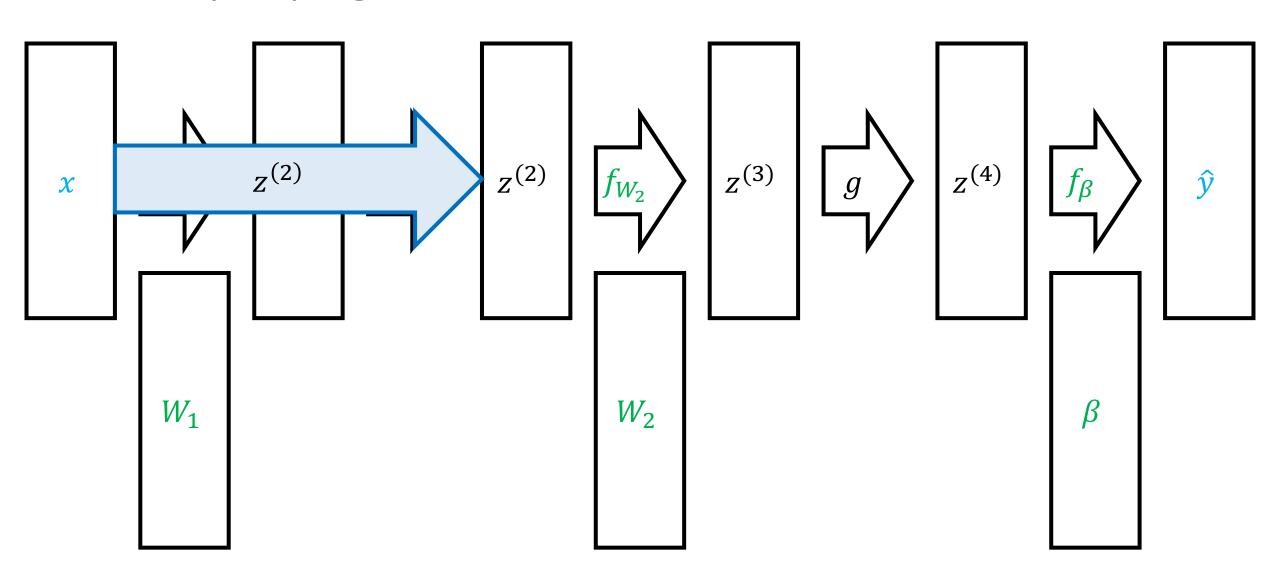
Backward pass: Compute $D^{(j)} = D^{(j+1)}D_z f_{W_{j+1}}(z^{(j)})$ and $D_{W_j} f_W(x) = D^{(j)}D_{W_j} f_{W_j}(z^{(j-1)})$

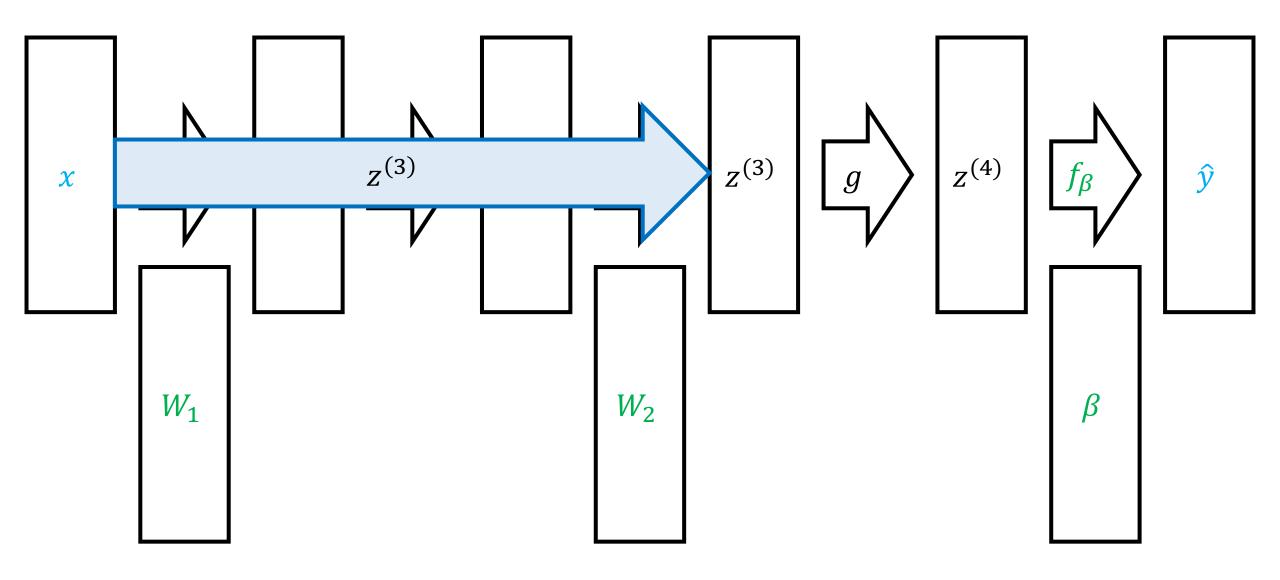
Final output: $\nabla_{\hat{y}} L(z^{(m)}, y)^{\mathsf{T}} D_{W_i} f_W(x)$

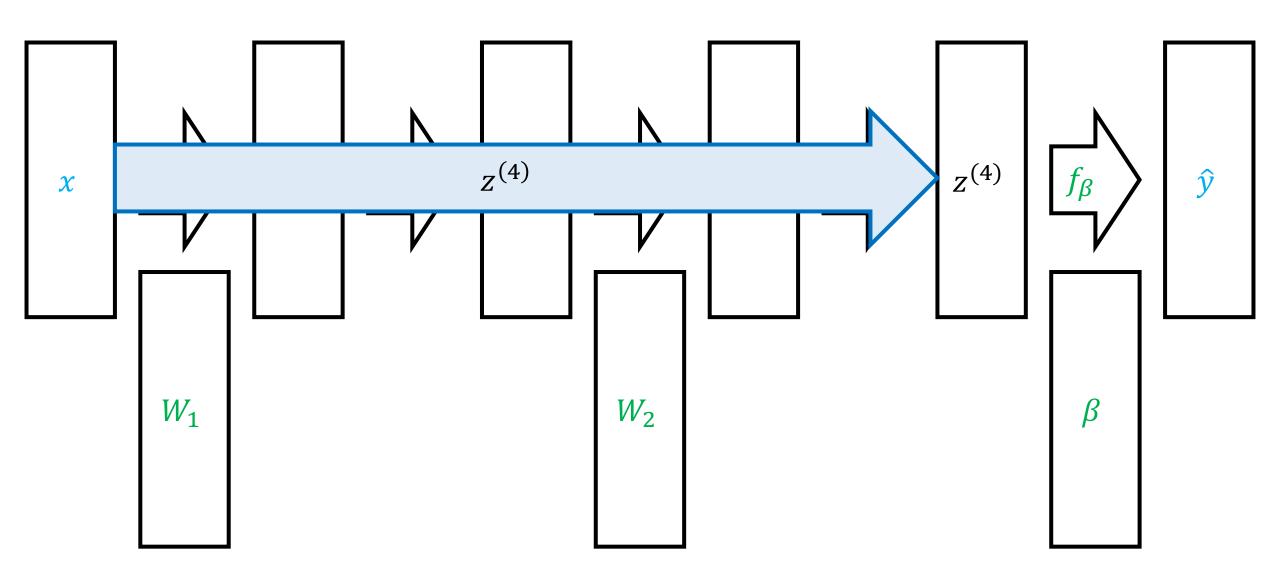


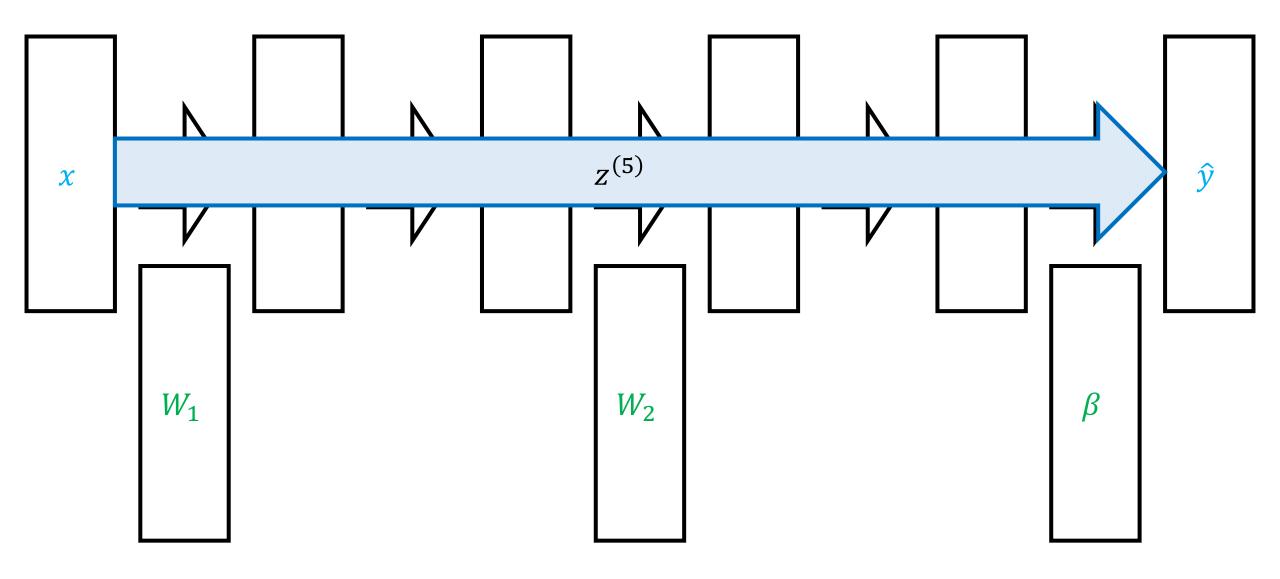


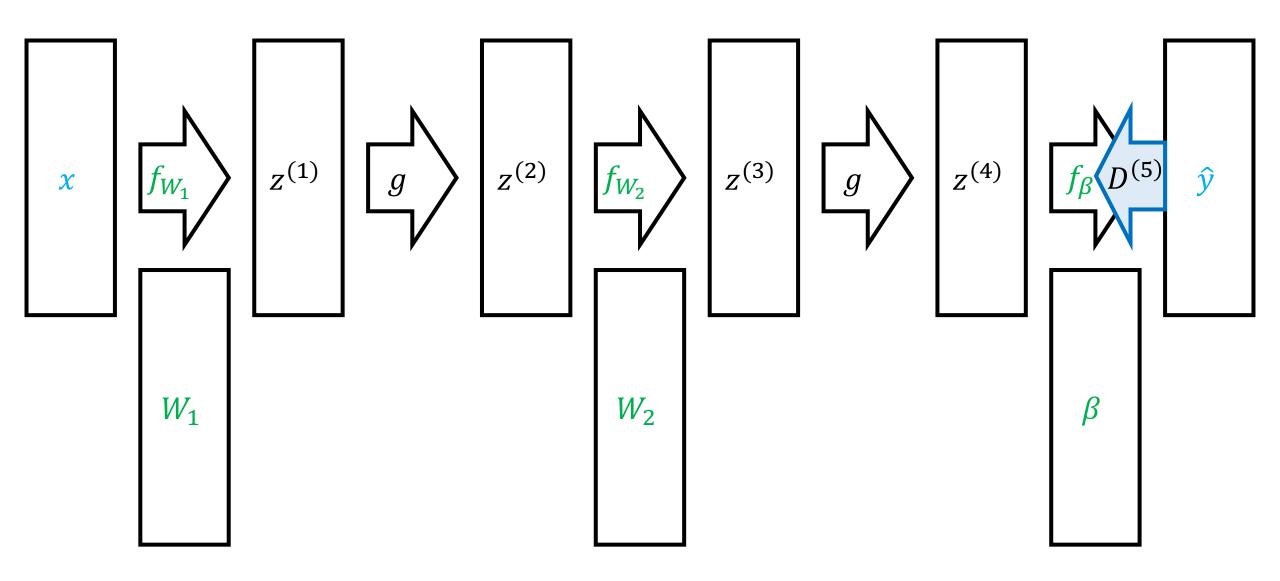


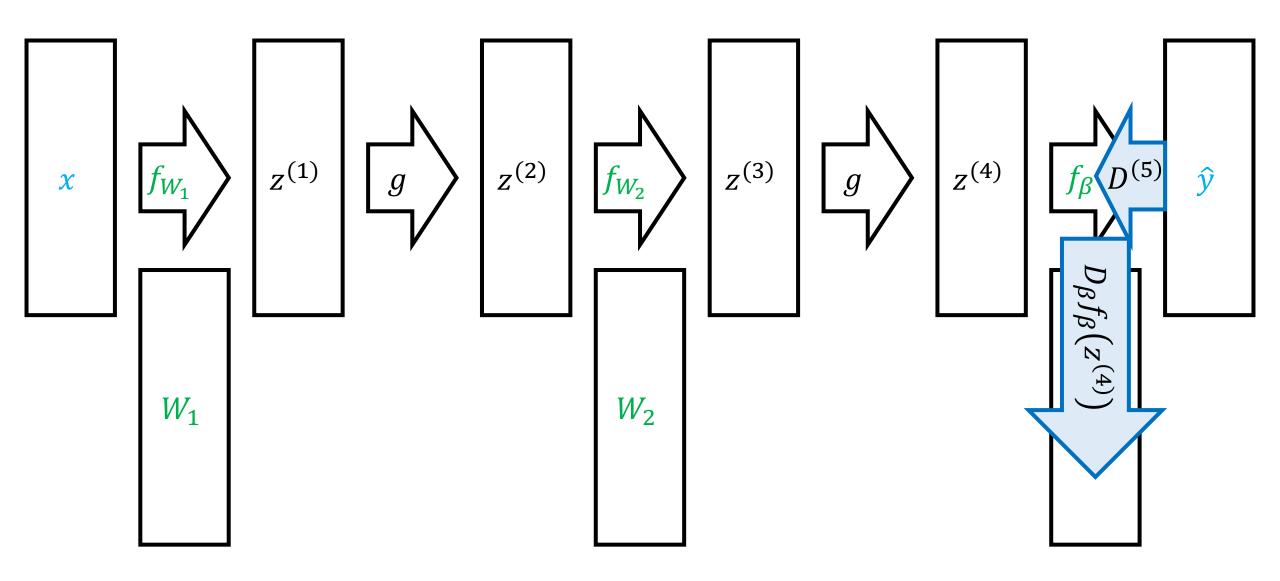


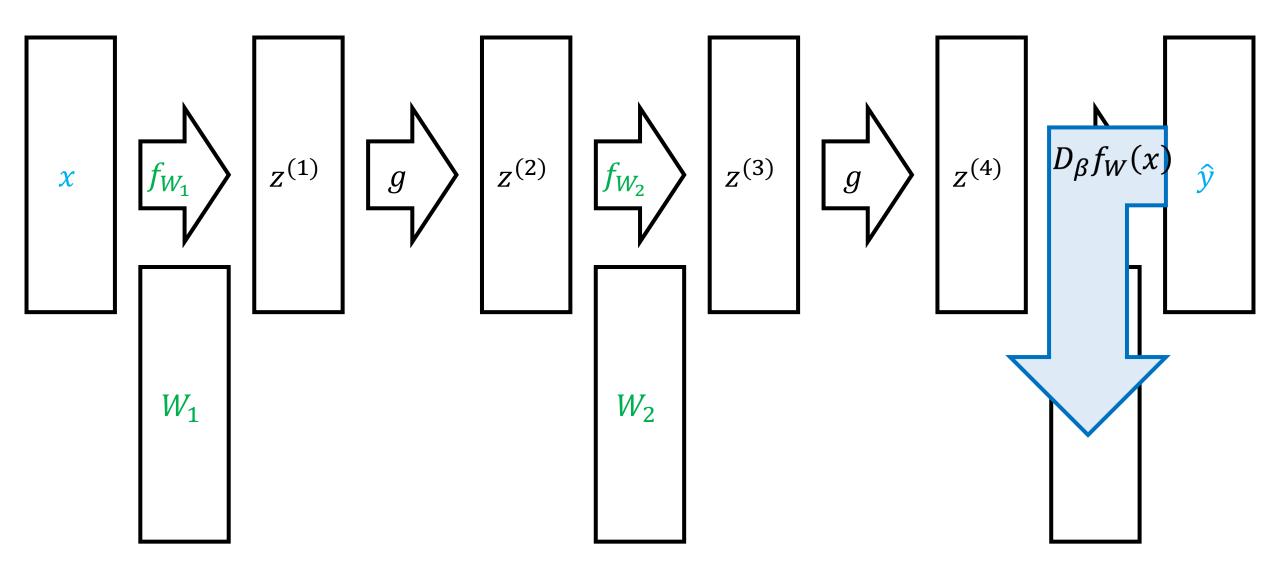


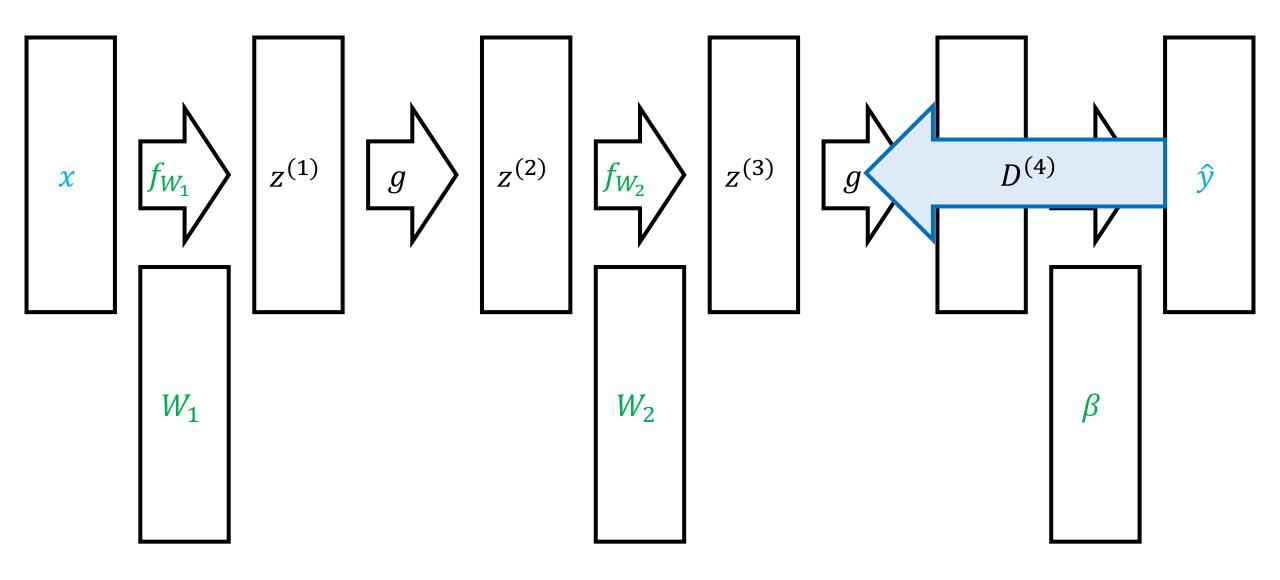


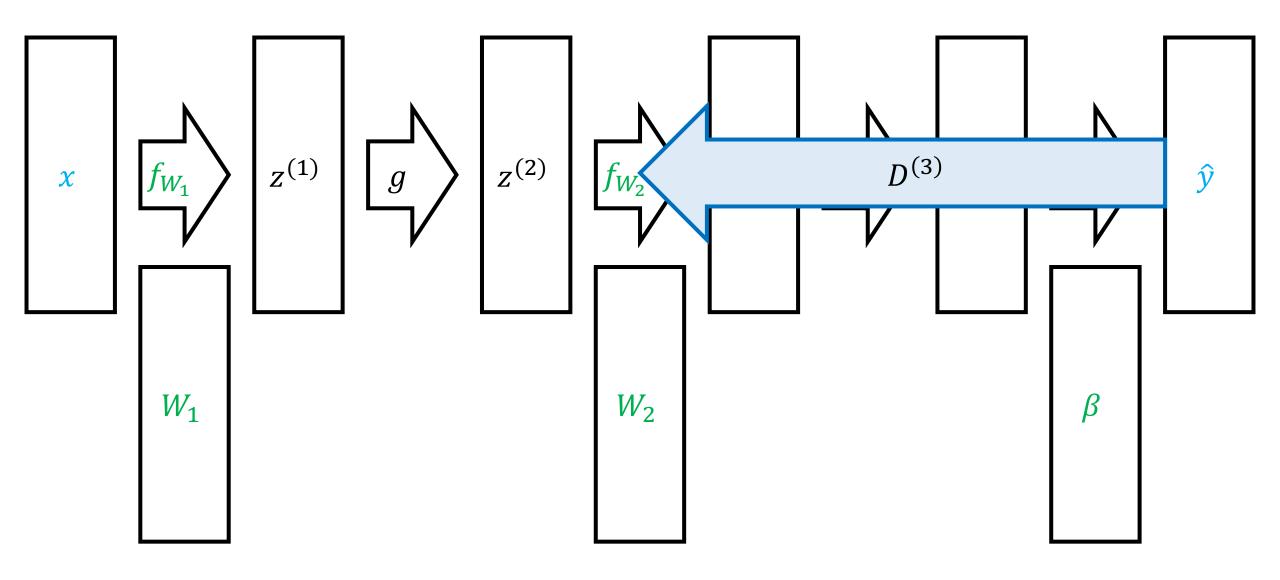


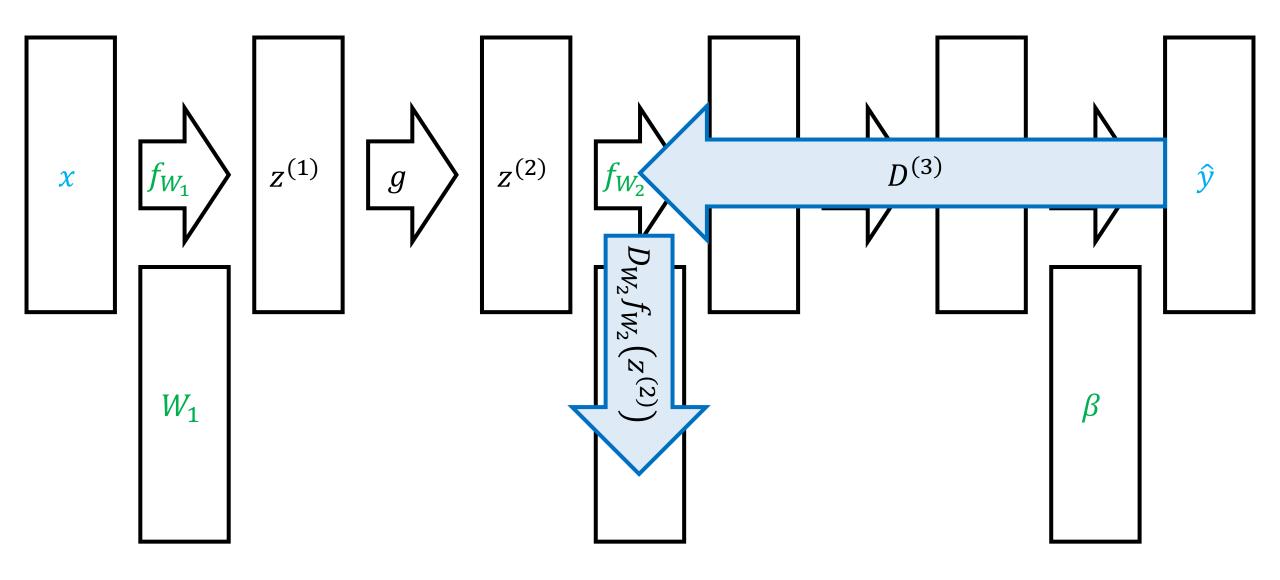


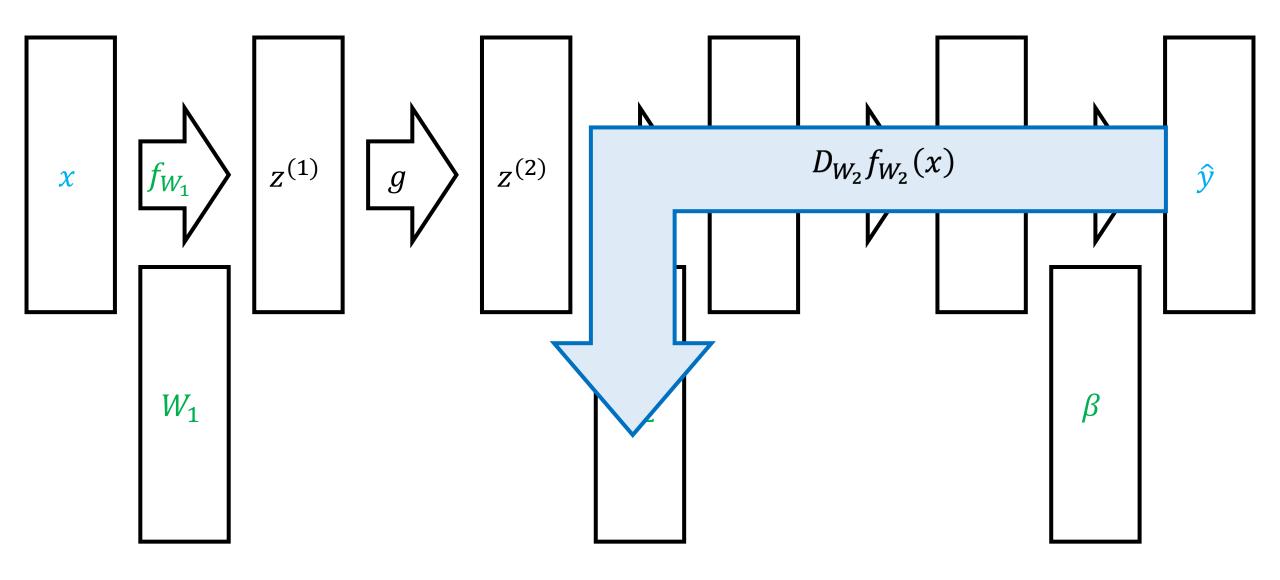


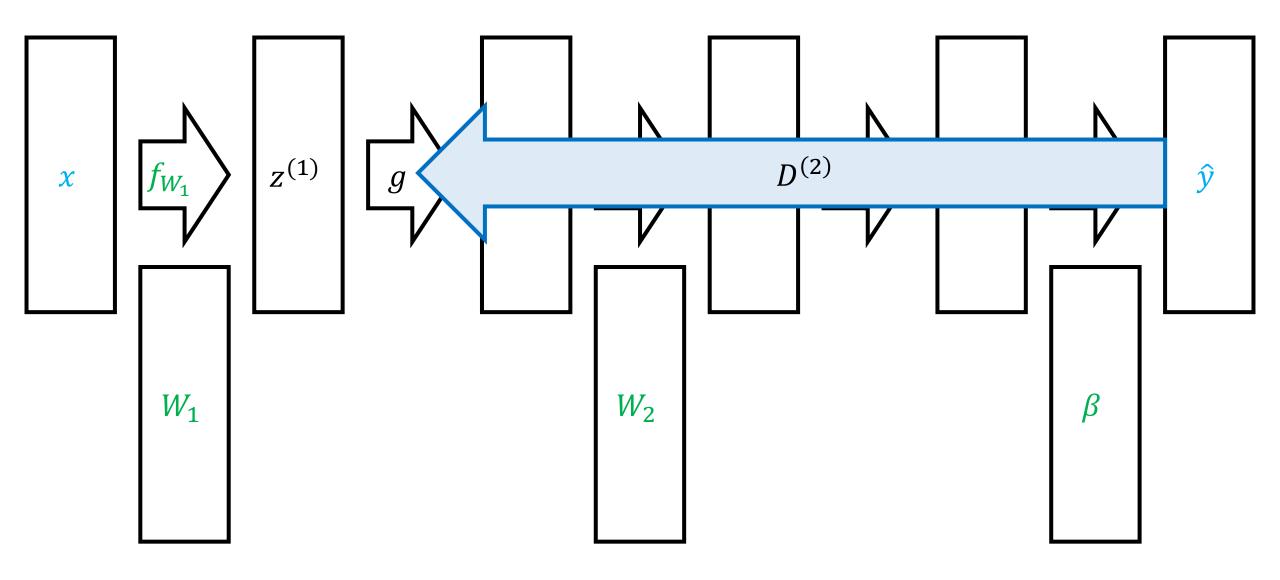


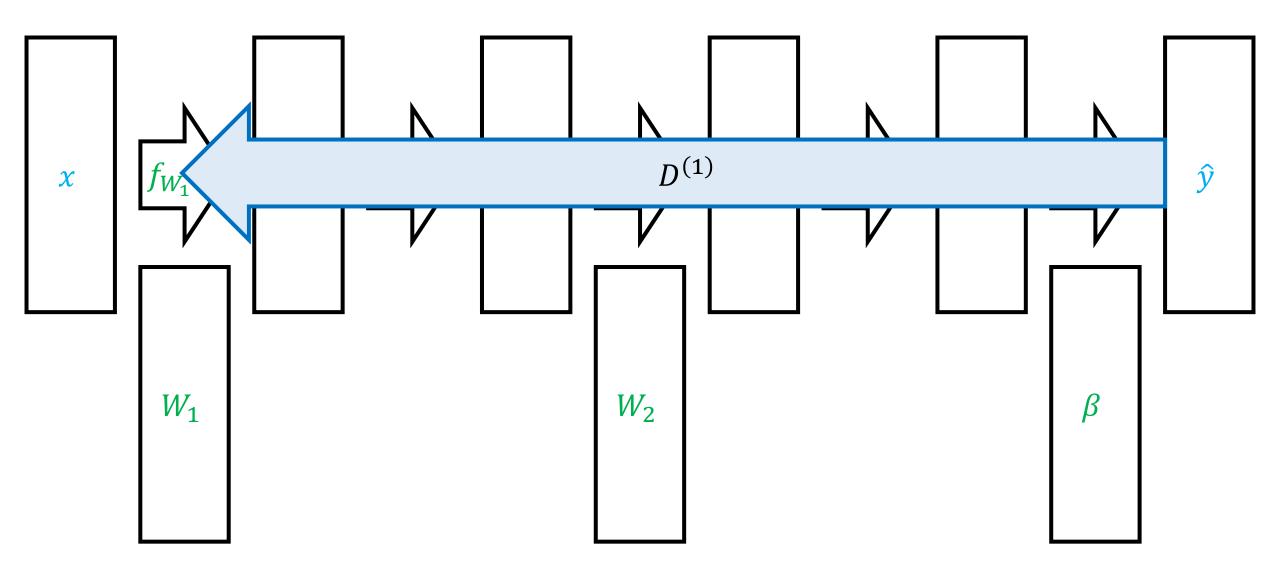


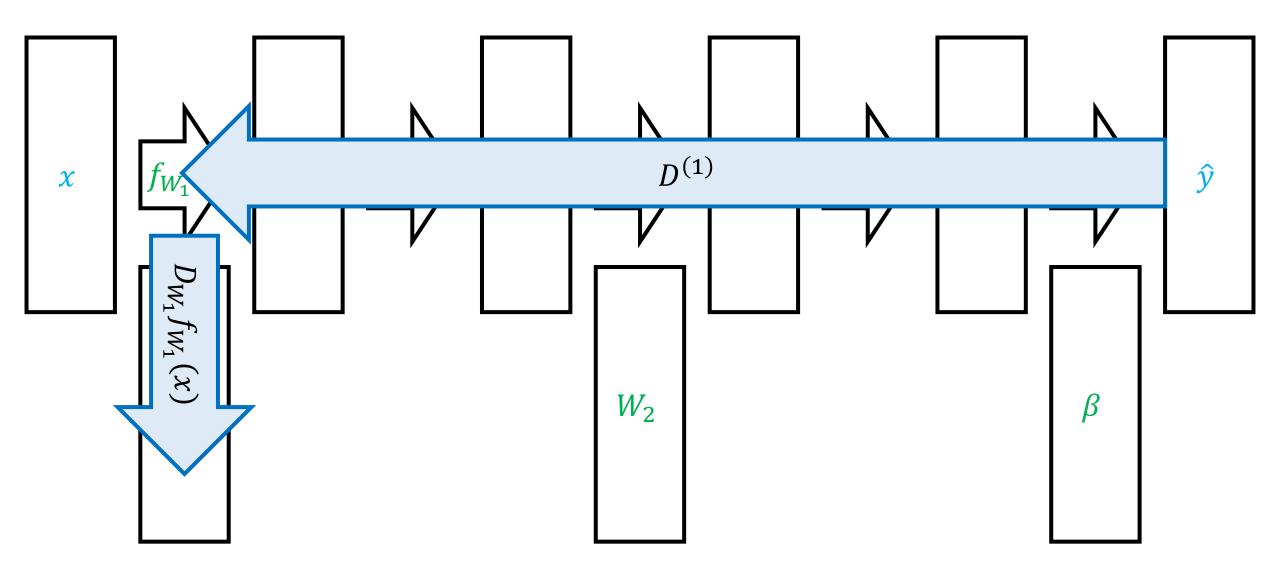


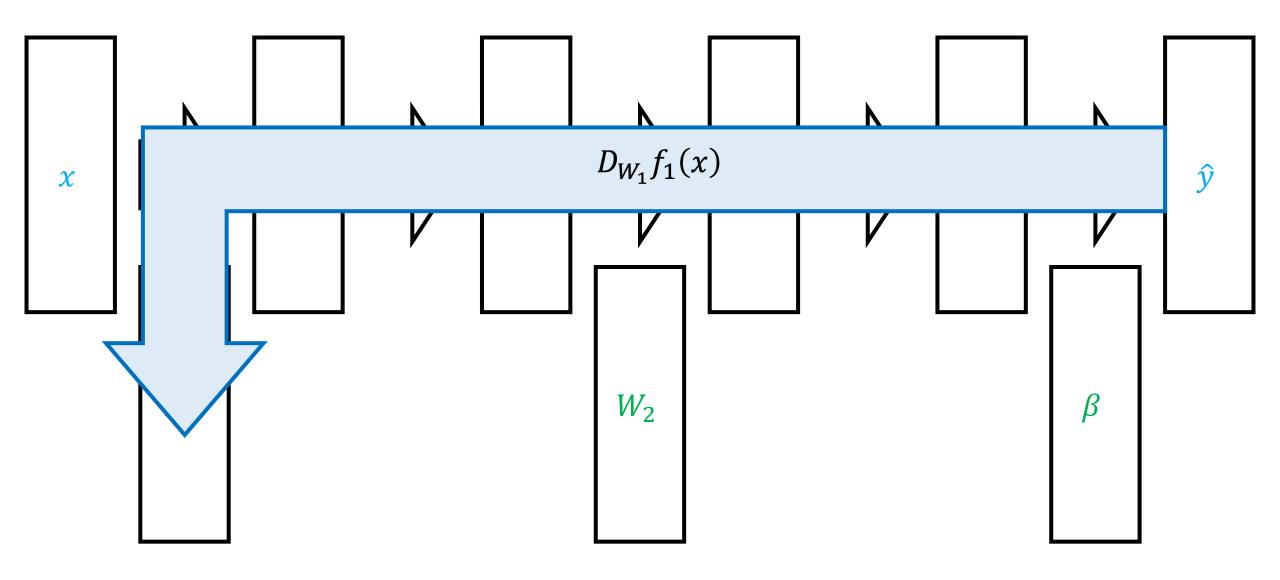












Backpropagation Algorithm

• Forward pass: Compute forwards from j=0 to j=m

•
$$\mathbf{z}^{(j)} = \begin{cases} \mathbf{x} & \text{if } j = 0\\ f_{W_j}(\mathbf{z}^{(j-1)}) & \text{if } j > 0 \end{cases}$$

• Backward pass: Compute backwards from j=m to j=1

•
$$D^{(j)} = \begin{cases} 1 & \text{if } j = m \\ D^{(j+1)} D_z f_{W_{j+1}}(z^{(j)}) & \text{if } j < m \end{cases}$$

• $D_{W_j} f_W(x) = D^{(j)} D_{W_j} f_{W_j}(z^{(j-1)})$

•
$$D_{W_j} f_W(x) = D^{(j)} D_{W_j} f_{W_j} (z^{(j-1)})$$

• Final output: $\nabla_{W_i} L(f_W(x), y)^{\top} = \nabla_{\hat{y}} L(z^{(m)}, y)^{\top} D_{W_i} f_W(x)$ for each j

Gradient Descent

- $W_1 \leftarrow \text{Initialize}()$
- for $t \in \{1,2,...\}$ until convergence:

$$W_{t+1,j} \leftarrow W_{t,j} - \frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{W_j} L(f_{W_t}(x_i), y_i) \quad \text{(for each } j)$$

• return f_{W_t}

Gradient Descent

- $W_1 \leftarrow \text{Initialize}()$
- for $t \in \{1,2,...\}$ until convergence:
 - Compute gradients $\nabla_{W_i} L(f_{W_t}(x_i), y_i)$ using backpropagation
 - Update parameters:

$$W_{t+1,j} \leftarrow W_{t,j} - \frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{W_j} L(f_{W_t}(x_i), y_i) \quad \text{(for each } j)$$

• return f_{W_t}