Announcements

* Upcoming deadlines
* Everyone should be in a project group by now!
* Project Milestone 1 due on Wednesday, March 1 at 8pm on GradeScope

* Others
* New recommender system dataset
* Project dataset worksheets
* Vectorization

Lecture 13: Neural Networks

CIS 4190/5190
Spring 2023

Brief History of Neural Networks

* 1943: Perceptron model (McCulloch & Pitts)
* Intended as theoretical model of biological neurons
* Linear classifiers! (Specialized learning algorithm)

* 1958: Implementation as Mark | Perceptron (Rosenblatt)
 Demonstrated capabilities of handwritten letter recognition

e 1969: Perceptrons cannot learn XOR (Minsky & Papert)

* Highly controversial (may have helped cause “Al winter”)

Brief History of Neural Networks

e 1985: Representation learning (Rumelhart, Hinton, & Williams)
* Interpret intermediate computations of neural networks

* 1989: Convolutional neural networks (Lecun)
* Convert handcrafted convolutional filters into learnable parameters

e 1995: Long short-term memory (Hochreiter & Schmidhuber)
* Refinement of neural networks designed to predict sequences
* Complex design demonstrates flexibility of neural networks

Brief History of Neural Networks

e 1998: Convolutional neural networks for MNIST (Lecun)
* Human-level performance on handwritten digit recognition

e 2012: ImageNet breakthrough (Krizhevsky, Sutskever, & Hinton)

* Reduced error on image classification by 50%
e 2017: Transformer architecture (Vaswani et al.)

e 2018: Turing award (Bengio, Hinton, & Lecun)

 To be continued?

What Changed?

* More compute: GPUs

* More data: ImageNet, Wikipedia/Web, etc.
* New applications

* Better optimization algorithms: Mini-batch SGD, acceleration, etc.

* Accumulation of “folk knowledge”: Parameter initialization, etc.
* Encoded in open source software packages

* Modern perspective: “Differentiable programming”
* Lots of investment from tech companies

Agenda

* Model family

* Custom model family rather than a single model family

* Optimization
* Backpropagation algorithm for computing gradient

A Simple Neural Network

* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* Parameters: Matrix I/ € R¥*% and vector f € R¥
e k is a hyperparameter called the number of hidden neurons

* Here, g: R — R is a given activation function

1 9(21)])
2 (22)

* Example: g(z) = d(z) (where o is the sigm0|d functlon)

* Itis applied componentwise in fy, 5 (i.e., g

A Simple Neural Network

* Possible choice of activation function: g(z) = 0(2)

1

A Simple Neural Network

* Feedforward neural network model family (for regression):

fw,ﬁ (x) =

A Simple Neural Network

* Feedforward neural network model family (for regression):

fw,ﬁ (x) = X

O ©®

A Simple Neural Network

* Feedforward neural network model family (for regression):

A Simple Neural Network

* Feedforward neural network model family (for regression):

A Simple Neural Network

* Feedforward neural network model family (for regression):

fw,p () =B g(Wx)

A Simple Neural Network

* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* What happens if g is linear?

A Simple Neural Network
* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* What happens if g is linear? Recovers linear functions!
* Special case of identity:

A Simple Neural Network

* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* What happens if g is linear? Recovers linear functions!
* Special case of identity:

fw,p () =B g(Wx)

A Simple Neural Network

* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* What happens if g is linear? Recovers linear functions!
* Special case of identity:

fwpC)=pF"gWx) =" Wx

A Simple Neural Network

* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* What happens if g is linear? Recovers linear functions!
* Special case of identity:

fwp@)=pgWx) =L "Wx = BT x

A Simple Neural Network

* Feedforward neural network model family (for regression):
fw,p () =B g(Wx)

* What happens if g is linear? Recovers linear functions!
* Special case of identity:

fwp@)=pgWx) =L "Wx = BT x

e Using a nonlinearity is important!
* In general: Linear regression over “features” g(I//x)

What About Classification?

* Recall: For logistic regression, we choose the likelihood to be

1
1+eF'x

pp(Y=11x)=

What About Classification?

* Recall: For logistic regression, we choose the likelihood to be

pp(Y=11x)=0(f"x)

What About Classification?

* For binary classification:

pw Y =11x)=0a(Bf g(Wx))

What About Classification?

* For multi-class classification:

pwuY =ylx)= softmax(Ug(Wx))y

Historical vs. Modern View

* Historical view: Specific model families
e Feedforward neural networks, convolutional neural networks, etc.
* Each new model family (“architecture”) requires a custom implementation

* Modern view: Design model families by composing building blocks
* Building blocks are “layers”

e Layers can be programmatically composed together (by composing,
concatenating, etc.) to form different model families

Historical View

* Feedforward neural network model family (for regression):

fw,p () =B g(Wx)

Modern View

* Feedforward neural network model family (for regression):

fW,,B(x) = fﬁ (g(fw(x))) = fﬁ o g o fy(x)

Modern View
* Each layer is a parametric function fyy R* — R" for some k, h
* Compose sequentially to form model family:

fw(x) = fw,, ((fwl(x)))

* We will use the following notation:

fw = me 000 le

Modern View
* Each layer is a parametric function fyy R* — R" for some k, h

* Can compose layers in other ways, e.g., concatenation:
fwx) = fwl(x) D fW2 (x)

* Here, we have defined

Modern View

* Feedforward neural network model family (for regression):

fwp()=fgege f(x)

Modern View

* Feedforward neural network model family (for regression):

fwp()=fgege f(x)

<

Modern Vlew hidden layer

nodes or “units” (i.e., components of a layer)
input layer

\ '8 —"~ Y
X fw z(M) g z(?) fp y
| \
parameters (sometimes called “weights”)

output layer

Modern View

* Neural network with two hidden linear layers:

fWLWz;ﬁ(x) = f,B °d OfWZ °g Ofwl(x)

zM 7@ 73

<

Modern View

* Neural network with two hidden linear layers:

le,WZ,,B (x) = fﬁ (9 (fW2 (g (le (x)))))

ey

ie)

,3)

ey

Learn successively more “high-level” representations

<

Computing AND

==

_ O | =] O
_ O | O

Based on slide and example by Andrew Ng

Computing AND

Xy x1 AND x,
0 0 0
0 1 0
1 0 0
1 1 1

fp(x) =0(=30 + 20x; + 20x,)

Based on slide and example by Andrew Ng

Computing AND

fp(x) :
0 5(—30) =~ 0 ﬁ
a(—10) = 0 >
o(—10) = 0 | /

0_(10) ~ 1 -6 -4 -2 0 ; lll fIS
fp(x) =0(=30 + 20x; + 20x,) o(x)

==

_ O | =] O
_ O | O

Based on slide and example by Andrew Ng

Computing AND

fe(x) =0(=30 + 20x; + 20x,)

Based on slide and example by Andrew Ng

Computing Boolean Functions

NOT
+10

Based on slide and example by Andrew Ng

Computing Boolean Functions

(NOT x,) AND (NOT x,)

+10

Torlll

Based on slide and example by Andrew Ng

Computing XOR

x2

20

15 A

10 A

0.5 A

0.0 A

= O

-1.0
-1.0

-05

0.0

0.5
x1

10

15

20

x2

20

15

10

0.5 1

Computing XOR

0.5
x1

15

10 1

0.5 1

-1.0 4

-1.5 4

-2.0

iteration 400

hl

;@)

<

Computing XOR

* Before:
* Linear regression + feature engineering
* Include quadratic features to compute XOR

* Neural networks:
* Design architecture to capture function
« Automatically learn good “features” z'2) = g(fW(x)) perform linear
regression on these features [}, s(x) = APAS
* Called representation learning

Neural Networks

* Pros
* “Meta” strategy: Enables users to design model family

* Design model families that capture symmetries/structure in the data (e.g.,
read a sentence forwards, translation invariance for images, etc.)

Common Layers

Feed-forward NNs

Hidden
layer

Input
layer

Output
layer

Inputs
Outputs

Convolutional NNs

\
/

- -
=g 17 e
Oggi ’ .~ S
- F=F N s ——
non ~
y L ~
mi - ~
sento - e e
- o -
molto - N -
bene s’ s
-, -
EMO_SAD -
embeddings convolutional layer T — Multilayer percep-
for each word with tron

pooling

multiple filters with dropout

Always coupled with word embeddings...

Recurrent NNs

>)

\J

\J

v

v

128
® ©

()

Qutput
Probabilities

Transformer

!
;

—
Pasitional b Positional
Encoding & Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Neural Networks

* Pros
* “Meta” strategy: Enables users to design model family

* Design model families that capture symmetries/structure in the data (e.g.,
read a sentence forwards, translation invariance for images, etc.)

» “Representation learning” (automatically learn features for certain domains)
* More parameters!

* Cons
e Very hard to train! (Non-convex loss functions)
* Lots of parameters = need lots of data!
* Lots of design decisions

Agenda

* Model family

* Custom model family rather than a single model family

* Optimization
* Backpropagation algorithm for computing gradient

Optimization Algorithm

* Based on gradient descent, with a few tweaks
* Note: Loss is nonconvex, but gradient descent works well in practice

* Key challenge: How to compute the gradient?
 Strategy so far: Work out gradient for every model family

* New strategy: Algorithm for computing gradient of an arbitrary programmatic
composition of layers

* This algorithm is called backpropagation

Gradient Descent

* W, « Initialize()
* fort € {1,2, ...} until convergence:

n
a "
Wersj e Wey == > Vi L(fir, (), y) (for each))
=1

* return f,

Backpropagation

* Input
* Example-label pair (x,y)
* Arbitrary model fy, oo fy,
* Loss L(y,y) for predicted label ¥ and true label y
* Derivative V;L(J,y) (as a function)
* Derivatives DijWj (z) and DZij (z) (e.g., as a function)

* Output: VW].L(fW (x),y)

Recall: Multi-Dimensional Derivatives

e Given:

* Function f;,(z) mapping parameters W € R% and input vector z € R* to a
vector fiy(z) € R?

e Current parameters W and z

* The derivative of f;, at W and z with respect to z is a matrix

szW (Z) €]Rth

Recall: Multi-Dimensional Derivatives

e Given:

* Function f;,(z) mapping parameters W € R% and input vector z € R* to a
vector fiy(z) € R?

e Current parameters W and z

* The derivative of f;, at W and z with respect to W is a matrix

Dy, fiw(z) € R4

Recall: Multi-Dimensional Derivatives

e Given:

* Function f;,(z) mapping parameters W € R% and input vector z € R* to a
vector fiy(z) € R?

e Current parameters W and z

* Intuition: The linear function that best approximates f;, at W and z:

fwiaw(z +dz) = fy(z) + D, fy, (z)dz + Dy, fy, (z)dW

Backpropagation Example

* Gradient of MSE loss (for regression):

Vi L(W,B;72) = VW%Z?:l(fW,ﬁ(xi) - yi)z

=2 Z?=1(fw,ﬁ (x;) — yi)DWfW,B ()

n

VeL(W,B;7Z) = Vg %2?:1(fw,,8(xi) -)’i)z

=230 (Fur s) = v)Dg fr 5 ()

n

Backpropagation Example
* Derivative of neural network:

Dpfw,p(x) = Dg(fp o g o fur) ()
= Dpf3(g ° (%))

DWfW,,B(x) = DW(fB °g° fW)(X)
= szﬁ(g ° fW(x))DW(g o fur)(x)
= szﬁ(g ° fW(X))ng(fW(X))DWfW(X)

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWme(X)

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWme(X) =

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

Dy, fw(x) =Dy fu. (Z(m_l))

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWm_lfW(x)

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWm_lfW(x) =

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

Dy, fw(x) =D,fy, (Z(m_l))

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
zY) = fy 0o fy, (x) = fw, (Z(])) 1f] > 0

* We have

Dy, fw() = Dyfu, (2" YDy, fu, (2"%)

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWm_sz(x)

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DWm_sz(x) =

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

Dy, fw(x) =D,fy, (Z(m_l))

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
() _ B ifj=0
zY) = fy 0o fy, (x) = fw, (Z(] D) ifj > 0

* We have

Dy, fw(x) =D,fy, (Z(ﬁm_l))szWm_1 (z (m—Z))

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
zY) = fy 0o fy, (x) = fw, (Z(])) 1f] > 0

* We have

Dy, fw () = Dy fy, (2")D, f, (27 2)Dys fi,, (277%)

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DijW(x)

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 le(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

DijW(x) =

Backpropagation

 General case: Consider a neural network

fuw(x) = me © me_1 ©r 0 fwl(x)
20 = fiy o ofwl(x)—{fw (-U-1) ig;g

* We have

Dy, fw(x) = Dzfw,, (zm=)

Backpropagation

 General case: Consider a neural network

fuw(x) = me °me_1 o °fW1(x)
() _ B ifj=0
207 = fwy oo fur () = fw; (Z(]) if j > 0

* We have

Dijw(x) — szWm(Z(m_l)) "'DZij+1(Z(j))

Backpropagation

 General case: Consider a neural network

fuw(x) = me °me_1 o °fW1(x)
() _ B ifj=0
207 = fwy oo fur () = fw; (Z(]) if j > 0

* We have

DijW(x) = szWm(Z(m_l)) "'DZij+1(Z(j))DijWj(Z(j_l))

Backpropagation
* We have

Dy, fw(x) = Dy fw, (27 V) ---szwj+1(ZU))DijWj(Z(j_l))
\ _J
Y
Portions shared across terms
Denote it by pU)

Backpropagation Algorithm
* Compute recursively starting fromj =mtoj = 1:

DO = D, fy, (27D) Dy fiy, (2)

o1 _ ifj=m
—10U*D,fy (7)) ifj <m

Dy, fw(x) = D(j)DijWj (zV=Y)

Backpropagation

ey ;) ,3) ey

Forward pass: Compute z/) = f;, (zU~")

Backward pass: Compute DU) = D(j+1)DZij+1(z(j)) and Dy, fiy(x) = D(f)DijWj (zU-1)

Final output: VyL(z(m), y)TDWj Jur ()

<

Backpropagation

5)

ey

)

;)

,3)

ey

<

Backpropagation

D

ey

)

;)

,3)

ey

<

Backpropagation

O

ey

)

;)

,3)

ey

<

Backpropagation

vV

,3)

ey

<

Backpropagation

vV

ey

<

Backpropagation

vV

vV

;@)

<

Backpropagation

vV
vV

<

Backpropagation

D

ey

)

;)

,3)

ey

D(S)

<

Backpropagation

ey

;)

,3)

ey

D)

Jo b

<

<((v)z)gfgé

Backpropagation

D

ey

)

;)

,3)

ey

DﬁfW(X:

<

Backpropagation

D

ey

)

;)

,3)

<

Backpropagation

D

ey

)

;)

D)

S b

<

Backpropagation

ey

)

;)

<

Backpropagation

D

ey

)

;)

<

N N
Dy, f w, (x)
y o
p

Backpropagation

D

ey

D)

S b

<

Backpropagation

\ \
p@
4 4 4

S b

<

Backpropagation

S b

<

Backpropagation

f

b

<

Backpropagation Algorithm

* Forward pass: Compute forwards fromj =0toj =m

- ifj=0
o () = _
z {fW (Z(])) ifj >0

* Backward pass: Compute backwards fromj =mtoj=1

. 1 ifj =
e DD = J =
b {DUH)D fw, +1(Z(J)) ifj<m
* DijW(X) = D(])ijfwj(z(] 1))

* Final output: VWjL(fW(x),y)T = VyL(Z(m),y)TDijw(X) for each j

Gradient Descent

* W, « Initialize()
* fort € {1,2, ...} until convergence:

n
a "
Wersj e Wey == > Vi L(fir, (), y) (for each))
=1

* return f,

Gradient Descent
* W, « Initialize()
* fort € {1,2, ...} until convergence:

* Compute gradients VWJ.L(th (xl-),yi) using backpropagation
* Update parameters:

n
Q
Werj < Wej—— z VW,-L(th(xi),)’i) (for each j)
i=1

* return fy,

