Announcements

* Project Milestone 1 due Tonight at 8pm
* Quiz due tomorrow (Thursday, March 2) at 8pm

* HW 4 due Wednesday, March 15

* Please start early!

Lecture 14: Neural Networks (Part 2)

CIS 4190/5190
Spring 2023

Agenda

* Recap
* Neural network tips and tricks
* Hyperparameter tuning

* Implementation

Recap: Neural Network Model Family

* Each layer is a parametric function fyy R* — R" for some k, h

* Compose sequentially to form model family (a.k.a. architecture):
fw = me ©r 0 le

* Examples:
* Linear: fi,(z) = Wz
e Activation function: g(z) = o(2)
* Softmax: f(z) = softmax(z)

Recap: Optimization & Backpropagation

* Based on gradient descent, with a few tweaks
* Note: Loss is nonconvex, but gradient descent works well in practice

* Key challenge: How to compute the gradient?
* Previous strategy: Work out gradient for every model family

* Backpropagation: Algorithm for computing gradient of an arbitrary
programmatic composition of layers

Recap: Backpropagation by Example

* Consider a function f(x, W,) = f,(f1(x, W),), where
° fl(Z' W) — g(WZ)
° fZ(ZuB) — IBTZ

e |ts derivatives are

Dpf (e, W,B) = Dpfo(fi(x, W), B)
— aZfZ(fl(xl W)JIB)Dﬁfl(X; W) + 5ﬁf2(f1(x, W)':B)
- Opfo(fy(x, W), B)

Recap: Backpropagation by Example

* Consider a function f(x, W,) = f,(f1(x, W),), where
° fl(Z' W) — g(WZ)
° fZ(ZuB) — IBTZ

e |ts derivatives are

Dy, fC, W,B) = Dy fo(f1 (e, W), B)
= 0,f,(f1Cc, W), B)Dy, f1 (e, W) + 0y, fo(f1(xx, W), B)
— aZfZ (fl (X, W)r ﬁ)anl (X, W)

Recap: Backpropagation

 General case: Consider a neural network

fw(x) = me © me_1 000 le(X)
* Forward pass:

200 = fiy, oo fi, ()
* Backward pass:

Dy fir () = 0, fu,, (27") 0, fu,, (29) By fir, (27 1)

| J
h 4

shared across terms

Recap: Backpropagation

aZme (Z) aZ
0 w1 . Ofwpa 1
P C) 5 (2)
of Wm.,h af Wn;,h
L 074 (Z) 0z, (Z)_

Recap: Backpropagation

aszm (2) aszm_l (2)

0 W1
621

Of Won,h
L 621

(2)

(2)

. ame,l (Z)_

0z

Of W h
aZk

(]|

—ame_l,l (Z)

621

afwm_.l,k
o 2)

. Of W11 (Z)-

aZg

OfWo_1,k

aZg

()

Recap: Backpropagation

aszm (2) aszm_l (2) aszm_z (2)

0 W1 . Ofwpa 110/ w11 O w1 110/ wy—q1 . Ofwmaa]
P C) 0 D% @ e 9l el (@)
ame.,h ame.,h afwm_.l,k afwm_.l,k 3me_.1,€ 5fwm_.1,f
L 024 (Z) 0z, (Z)- 074 (Z) 07y (Z)_ 074 (Z) 0Zm (Z)_

Recap: Backpropagation

GZme(Z)GZme_l (Z)aszm_z (2) ...

0 W1 . Ofwpa 110/ w11 O w1 110/ wy—q1 . Ofwmaa]
P C) 0 D% @ e 9l el (@)
ame.,h ame.,h afwm_.l,k afwm_.l,k 3me_.1,€ 5fwm_.1,f
L 024 (Z) 0z, (Z)- 074 (Z) 07y (Z)_ 074 (Z) 0Zm (Z)_

Recap: Backpropagation

* Forward pass: Compute forwards fromj =0toj =m

- ifj=0
o () = _
z {fw (Z(])) ifj >0

* Backward pass: Compute backwards fromj =mtoj=1

. 1 1f =
« DU — J =

* DijW(X) = D(])awjfwj(z(] 1))

* Final output: VWjL(fW(x),y)T = VyL(Z(m),y)TDijw(X) for each j

Recap: Backpropagation

ey ;) ,3) ey

Forward pass: Compute z) = fw; (zU-1)

Backward pass: Compute DY) = D(f+1)6Zij+1(z(f)) and Dy fyy (x) = DU)aijWj (zU-V)

Final output: VyL(z(m), y)TDWj Jur ()

<

Gradient Descent

* W, « Initialize()
* fort € {1,2, ...} until convergence:

n
a "
Wersj e Wey == > Vi L(fir, (), y) (for each))
=1

* return f,

Gradient Descent
* W, « Initialize()
* fort € {1,2, ...} until convergence:

* Compute gradients VWjL(th (xi),yl-) using backpropagation
* Update parameters:

n
Q
Werj < Wej—— z VWjL(th(xi):yi) (for each j)
i=1

* return fy,

Agenda

* Recap
* Neural network tips and tricks
* Hyperparameter tuning

* Implementation

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

. -
e QLD
»‘1‘?"‘%‘%.‘%‘60

OO 8 8

Dropout

Managing Training

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

o o
O"X\'/“\ 8 8

Dropout

Managing Training

Optimization Challenges

* Challenges

* Local minima, saddle points due to
non-convex loss

* Exploding/vanishing gradients
* |ll-conditioning

* Have heuristics that work in
common cases (but not always)

Li et al. (2018)

Gradient Descent

W « Initialize()
e fort € {1,2,...,T}:

n

BB == VgL(f(x), 1)

n "

* return fg

Gradient Descent

W « Initialize()
e fort € {1,2,...,T}:

n

BeB——) VgL(fp(x), 1)

n "

* return fg

Stochastic Gradient Descent

usually T € {1, ..., 10}
W « In1t1allze() /

e fort € {1,2, ..
'forle{12 }

B« B —a- VgL(fz(x),v;)

* return fg

Minibatch Stochastic Gradient Descent

W « Initialize()
e fort € {1,2,...,T}:
.y E i
e fori € {1,2, ...,k}.

i"(k+1)-1

BB) VsL(f()y;) (foreach)

i=i'k

* return fg

Accelerated Gradient Descent

* Vanilla gradient descent:
B < B —a- VgL(fz(x),y)

* Accelerated gradient descent:

peu-p—a-VgL(fz(x),y)
Be<p+p

Accelerated Gradient Descent
 Vanilla gradient descent:
B« B —a- VgL(fz(x),y)

* Accelerated gradient descent:

p e p—a-VeL(fp(x),y)
Be<B+p

Accelerated Gradient Descent

* Vanilla gradient descent:
B < B —a- VgL(fz(x),y)

* Accelerated gradient descent:

peu-p—a-VgL(fz(x),y)
Be<p+p

Accelerated Gradient Descent

* Intuition: p holds the previous update « - V[;L(fﬁ (x),y), except it
“remembers” where it was heading via momentum

* New hyperparameter u (typically u = 0.9 or u = 0.99)

Nesterov Momentum

* Accelerated gradient descent:

pep-p—a- VpL(fp(x),y)
p<p+p

* Nesterov momentum:

pe—U-p—a- V,BL(f,Bﬂt'P(x)’y)
p<p+p

Nesterov Momentum

gradient
step
gradient
vanilla momentum Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum

Adaptive Learning Rates

» AdaGrad: Letting g = VﬁL(fB (x),y), we have

G—G+g* and B<B——"'g
\/E\vector

* RMSProp: Use exponential moving average instead:

a

G—A-G+(1—-1)g?* and 'B(_'B_\/E g

Adaptive Learning Rates

 Adam: Similar to RMSprop, but with both the first and second
moments of the gradients

G—A-G+(1—-1)-g*
gleﬂ’lgl_l_(l_ll)g
BB

* Intuition: RMSProp with momentum
* Most commonly used optimizer

NN -
Y = scD

| == Momentum
= NAG

- Adagrad
Adadelta
Rmsprop

AErrrITr

http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/

- SGD

- Momentum
- NAG

— Adagrad
-~ Adadelta
Rmsprop

RTTRT
RRIINS
XS
'o"'&"':"'&?'""/
Wl

q

0 .00
NI
0 Y
GAAL

5500007,

~ NS
Rl
- -
2 - : X/ V29V,
: - ¢ XX AN RSN
— , e S
——

1.0

-1.5
http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/

Learning Rate

* Most important hyperparameter; tune by looking at training loss

25

A
loss

20

low learning rate

high learning rate

good learning rate

0.0
0

20 40 . 60 80 100 epoch

Epoc

Learning Rate

* Learning rate vs. training error:

Training error

0 - N 2 N N 2 ; 2 | 2 N 2 " : N
10~ 2 10~ 1 109

Learning rate (logarithmic scale)

Goodfellow et al, Deep Learning Book, 2019

Learning Rate

* Schedules: Reducing the learning rate every time the validation loss
stagnates can be very effective for training

0 10 20 30 40 50
iter. (1e4)

He et al, Residual Networks, 2015

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

. -
e QLD
»‘1‘?"‘%‘%.‘%‘60

OO 8 8

Dropout

Managing Training

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

o 0
O"X\'/“\ 8 8

Dropout

Managing Training

Historical Activation Functions

1.0 1 1.0 1
08 0.5 A
x _—
§ 0.6 A x
o) < 0.0

C
€04 I
T

0.2 —0.5 A

0.0 —1.0 -

-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6

X X

sigmoid tanh

Vanishing Gradient Problem

)
o
1

* The gradient of the sigmoid function 08
is often nearly zero

o
o

©
IS

sigmoid(x)

o
[N

* Recall: In backpropagation, gradients o
are products of 9,g(z"")

-8 -6 -4 -2 0 2 4 6 8
X

sigmoid

* Quickly multiply to zero! 3 020-
* Early layers update very slowly

-8 -6 -4 -2 0 2 4 6 8
X

sigmoid gradient

RelLU Activation

e Activation function
g(z) = max{0, z}

* Gradient now positive on the
entire region z = 0

e Significant performance gains for
deep neural networks

relu(x)

grad of relu

RelLU Activation

Training error rate

0.75

0.5+

0.25+

tanh
S~ —
S -~
RelLU
5 10 15 20 25 30 35

Epochs

40

PRReLU Activation

f)=0 y

fo)=ay

Activation Functions

* ReLU is a good standard choice

* Tradeoffs exist, and new activation functions are still being proposed

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

. -
e QLD
»‘1‘?"‘%‘%.‘%‘60

OO 8 8

Dropout

Managing Training

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

o 0
O"X\'/“\ 8 8

Dropout

Managing Training

Weight Initialization

 Zero initialization: Very bad choice!

* All neurons z; = g(WiTx) in a given layer remain identical
* Intuition: They start out equal, so their gradients are equal!

Weight Initialization

* Long history of initialization tricks for W; based on “fan in” d;,
* Here, djy, is the dimension of the input of layer W
* Intuition: Keep initial layer inputs zU) in the “linear” part of sigmoid
* Note: Initialize intercept term to O

e Kaiming initialization (also called “He initialization”)
* For RelLU activations, use W] ~N (O, di)

e Xavier initialization
1

* For tanh activations, use W; ~ N (O, -) (doyt is output dimension)

in+dout

Batch Normalization

* Problem

e During learning, the distribution of inputs to each layer are shifting (since the
layers below are also updating)

* This “covariate shift”’ slows down learning

 Solution
 As with feature standardization, standardize inputs to each layer to N(0, 1)

* Batch norm: Compute mean and standard deviation of current minibatch and
use it to normalize the current layer z) (this is differentiable!)

* Note: Needs nontrivial mini-batches or will divide by zero
* Apply after every layer (before or after activation; after can work better)

Batch Normalization

08r

(=
~
‘\\
\
\
)
\
\

\

\
\

- = = |nception
- = BN-Baseline
-+ BN=x5
BN-x30
+ BN-x5-Sigmoid
4 Steps to match Inception

e
0

validation accuracy
o
(=]

0.4 : .
10M 15M 20M 25M 30M

Number of training steps

Regularization

* Can use Ly and L, regularization as before
* As before, do not regularize any of the intercept terms!
* L, regularization more common

* Applied to “unrolled” weight matrices
 Equivalently, Frobenius norm ||W || = Z 1Zh_1 W2

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

. -
e QLD
»‘1‘?"‘%‘%.‘%‘60

OO 8 8

Dropout

Managing Training

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

o 0
O"X\'/“\ 8 8

Dropout

Managing Training

Dropout

* ldea: During training, randomly “drop”
(i.e., zero out) a fraction p of the

neurons Zl-(j) (usually take p = %)

* Implemented as its own layer

Z with prob.
Dropout(z) = {0 otherl)‘wisep

e Usually include it at a few layers just
before the output layer

036 S
o6

=
o 9@6
@“%e

®
®

Oloe®

o O oo

oOlg ©

ColR e

Ensemble of s

ubnetworks

Dropout

hidden fc layer dropout layer

o

output layer

A/

o=
e ®

Training time

Dropout

* Intuition: A form of regularization
* Encourages robustness to missing information from the previous layer
* Each neuron works with many different kinds of inputs
* Makes them more likely to be individually competent

e Connection to ensembles

* Each training iteration is training a slightly different network, selected at
random out of 2#MeUroNS pat\wyorks!

* Since the networks share weights, training one network updates others

Dropout at Test Time

* Naive strategy: Stop dropping neurons
* Problem: Not the distribution the layer was trained on (covariate shift)!

* Naive strategy: Average across all possible predictions
* Problem: There are 2#1€Urons naqsiple realizations of the randomness

 Solution: Turn off dropout but divide the outgoing weights by 2
* Good approximation of the geometric mean of all 2#1€Urons nradjctions

* Note: Can also leave dropout on, sample multiple realizations of the
randomness, and report distribution to help quantify uncertainty

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

. -
e QLD
»‘1‘?"‘%‘%.‘%‘60

OO 8 8

Dropout

Managing Training

Neural Network Tips & Tricks

@ i

Optimization Activation Functions Managing Weights

o 0
O"X\'/“\ 8 8

Dropout

Managing Training

Early Stopping

e Stop when your validation loss starts increasing (alternatively, finish
training and choose best model on validation set)

* Simple way to introduce regularization

e—e Training set loss

0.15 -~ Validation set loss |

Loss (negative log-likelihood)

0.00
0 50 100 150 200 250

Time (epochs)

Data Augmentation

* Data augmentation: Generate more data by modifying training inputs

e Often used when you know that your output is robust to some
transformations of your data
* Image domain: Color shifts, add noise, rotations, translations, flips, crops

* NLP domain: Substitute synonyms, generate examples (doesn’t work as well
but ongoing research direction)

e Can combine primitive shifts

* Note: Labels are simply the label of original image

Data Augmentation

Agenda

* Recap
* Neural network tips and tricks
* Hyperparameter tuning

* Implementation

Hyperparameteter Choices

* Architecture: Stick close to tried-and-tested architectures (esp. for images)
e SGD variant: Adam, second choice SGD + 0.9 momentum

* Learning rate: 3e-4 (Adam), 1le-4 (for SGD + momentum)

* Learning rate schedule: Divide by 10 every time training loss stagnates

* Weight initialization: “Kaiming” initialization (scaled Gaussian)
 Activation functions: RelLU

* Regularization: BatchNorm (& cousins), L2 regularization + Dropout on
some or all fully connected layers

 Hyperparameter Optimization: Random sampling (often uniform on log
scale), coarse to fine

Hyperparameter Optimization

* Recall: Use cross-validation to tune hyperparameters!
* Typically use one held-out validation set for computational tractability

e E.g., 60/20/20 split

* Can use smaller validation/test sets if you have a very large dataset

Given data Z

>

Training data Ziy,in

Val data Z,,,;

Test data Ziagt

Hyperparameter Optimization Tips

* Keep the number of hyperparameters as small as possible
* Most important: Learning rate

 Strategy: Automatically search over grid of hyperparameters and
choose the best one on the validation set
e Easy to parallelize across many machines
* Record hyperparameters of all runs carefully!
* Use the same random seeds for all runs

Hyperparameter Optimization Tips

 What about multiple hyperparameters?
* For 2 or 3 hyperparameters, do a systematic “grid search”

Grid Layout

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

 What about multiple hyperparameters?
* For >3 hyperparameters, do random search

Random Layout

Unimportant parameter

Important parameter

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

. coarse to fine
* Coarse-to-find search

epsilon
* Iteratively search over a window of Hyperparameter 2
hyperparameters
* If the best results are near the boundary, = @ O %)
center it on best hyperparameters E @ ®
e Otherwise, set a smaller window QE) @ o o
centered on the best hyperparameters T & ®
o ™
T 3 ©
. L. . & @ 0o ®
* Bayesian optimization: ML-guided O @ g
. S ‘0
search across hyperparameter trials to f ° ®° ° @
find good choices

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

More Practical Tips

* Andrej Karpathy’s blog post:
e http://karpathy.github.io/2019/04/25/recipe
* Fix random seed during debugging
e Overfit a tiny dataset first

* With everything (architecture, learning algorithm, data etc.), start simple and
build complexity slowly over iterations

* Plot weight and gradient magnitudes to detect vanishing/exploding gradients

* Additional reading:

* Chapter 11 of the Deep Learning textbook: “Practical Methodology”
e https://www.deeplearningbook.org/contents/guidelines.html

http://karpathy.github.io/2019/04/25/recipe/
https://www.deeplearningbook.org/contents/guidelines.html

Agenda

* Recap
* Neural network tips and tricks
* Hyperparameter tuning

* Implementation

Pytorch

* Open source packages have helped democratize deep learning

Pytorch

import torch
import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

Common parent class: nn.Module | —
class Net(nn.Module): Constructor: Defining layers of the network

def init__ (self, in_features=10, num _classes=2, hidden_features=20):
super (Net, self). 1init_ ()
self.fcl = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, num _classes)

forward(self, x): Q=cYaVVE1se propagation
x1 self.fcl(x)

LTI \\/hat about backward propagation?
X3 self.fc2(x2)

log prob = F.log softmax(x3, dim=1)

return log_prob

Pytorch

* Open source packages have helped democratize deep learning

* Backpropagation implemented for all neural network architectures
 Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax

* Only need gradients of new layers

* Basic Idea: Provide model family as sequence of functions [f1, ..., fin]

 What about more general compositions?
 Solution: Composition of functions can be represented as trees (but typically
called graphs)!

Computation Graphs

* The tensor datatype represents a computation graph
* Not just a numpy array!
* Instead, performing the computation produces a numpy array

* Example:
| 1 0
* Suppose x is tensor that evaluates to [O 1]
* Suppose y is a tensor evaluates to [1 0
* Then, x + y is a tensor that evaluates to i ﬂ Q 0

Toy Implementation of Computation Graphs

class Constant (tensor) :

X

Constant (np.array ([[1, 0],
Constant (np.array ([[1, 1], [1, O0]1])
x + vy # z has type Add

N

def init (self, wval):

N
|

self.val = val

def backpropagate (self):

class Add (tensor) :

def init (self, tl, t2):

self.tl = t1l
self.t?2 = t2

self.val = self.tl.val + self.t2.val Q 0

def backpropagate (self):

Toy Implementation of Computation Graphs

class Constant (tensor) :

X

Constant (np.array ([[1, 0], [0, 111)
Constant (np.array ([[1, 1], [1, O0]1])
z = X + x + vy # Z has type Add

N

def init (self, val):

self.val = val

def backpropagate (self):

class Add (tensor) :

def init (self, tl, t2):

self.tl = t1l
self.t?2 = t2

self.val = self.tl.val + self.t2.val G 0

def backpropagate (self):

Computation Graphs

* Layers are implemented as tensors

* Examples: addition, multiplication, RelLU, sigmoid, softmax, matrix
multiplication/linear layers, MSE, logistic NLL, concatenation, etc.

* You can also implement your own by providing forward pass and derivatives

e Tensors can be composed together to form neural networks

Computation Graphs

* Forward propagation: Values are evaluated as they are constructed

* Backpropagation: Automatically compute derivative of scalar with
respect to all parameters based on derivatives of layers
* x.backwards ()
* Does not perform any gradient updates!

Computation Graphs

fcl (nn.Linear) fc2 (nn.Linear)< >
O @ =

def forward(self, x):
X1 self.fcl(x)
X2 F.relu(xl)

& self.fc2(x2)
log prob = F.log _softmax(x3, dim=1)

return log_prob

Pytorch Training Loop

def train(args, model, device, train_loader, optimigg i ——
model.train() Looping over mini-batches

for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.tg i iiintais
AL AP A @1 Zero out all old gradients
IR W ANGERED] Runs forward pass model.forward(data
loss = F.nll_logalautn T59) Loss computation

IR EIA IR 8] Backpropagation

AR LFAIIRRLTIO) Gradient step
if batch_idx % args.log interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch _1idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))

jce)

Pytorch Training Loop

def main():
torch.manual_seed(1l)
device = torch.device("cuda")
train_loader = torch.utils.data.DatalLoader ([JXeEleReEICH
datasets.MNIST('../data', train=True, download=True,

transform=transforms.Compose ([
transforms.ToTensor (),

transforms.Normalize((0.1307,), (0.3081,))
1)),
batch size=64, shuffle=True)

model Net() to(dev1ce)

- etors (), lr=le-4)
3« Loop over epochs (fuII passes over data) =1, gamma=0.9)

for epoch 1n range(l, 15): Minibatch SGD for one epoch
train(model, device, tr :

~-epoch)
scheduler.step() Update base learning rate

Pytorch Model

* To use your model (once it has been trained):

label = model (1input)

