Announcements

• Project Milestone 1 due **Tonight at 8pm**

• Quiz due **tomorrow (Thursday, March 2) at 8pm**

• HW 4 due **Wednesday, March 15**
 • Please start early!
Lecture 14: Neural Networks (Part 2)

CIS 4190/5190
Spring 2023
Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation
Recap: Neural Network Model Family

• Each layer is a parametric function $f_{W_j}: \mathbb{R}^k \rightarrow \mathbb{R}^h$ for some k, h

• Compose sequentially to form model family (a.k.a. architecture):

$$f_W = f_{W_m} \circ \cdots \circ f_{W_1}$$

• Examples:
 • Linear: $f_W(z) = Wz$
 • Activation function: $g(z) = \sigma(z)$
 • Softmax: $f(z) = \text{softmax}(z)$
Recap: Optimization & Backpropagation

• Based on gradient descent, with a few tweaks
 • **Note:** Loss is nonconvex, but gradient descent works well in practice

• **Key challenge:** How to compute the gradient?
 • **Previous strategy:** Work out gradient for every model family
 • **Backpropagation:** Algorithm for computing gradient of an arbitrary programmatic composition of layers
Recap: Backpropagation by Example

• Consider a function $f(x, W, \beta) = f_2(f_1(x, W), \beta)$, where
 • $f_1(z, W) = g(Wz)$
 • $f_2(z, \beta) = \beta^T z$

• Its derivatives are

$$D_\beta f(x, W, \beta) = D_\beta f_2(f_1(x, W), \beta)$$
$$= \partial_z f_2(f_1(x, W), \beta) D_\beta f_1(x, W) + \partial_\beta f_2(f_1(x, W), \beta)$$
$$= \partial_\beta f_2(f_1(x, W), \beta)$$
Recap: Backpropagation by Example

• Consider a function $f(x, W, \beta) = f_2(f_1(x, W), \beta)$, where
 • $f_1(z, W) = g(Wz)$
 • $f_2(z, \beta) = \beta^T z$

• Its derivatives are

$$D_W f(x, W, \beta) = D_W f_2(f_1(x, W), \beta)$$
$$= \partial_z f_2(f_1(x, W), \beta)D_W f_1(x, W) + \partial_W f_2(f_1(x, W), \beta)$$
$$= \partial_z f_2(f_1(x, W), \beta)\partial_W f_1(x, W)$$
Recap: Backpropagation

• **General case:** Consider a neural network

\[f_W(x) = f_{W_m} \circ f_{W_{m-1}} \circ \cdots \circ f_W(x) \]

• **Forward pass:**

\[z^{(j)} = f_{W_j} \circ \cdots \circ f_W(x) \]

• **Backward pass:**

\[D_{W_j}f_W(x) = \partial_z f_{W_m}(z^{(m-1)}) \cdots \partial_z f_{W_{j+1}}(z^{(j)}) \partial_{W_j}f_W(z^{(j-1)}) \]

\[\text{shared across terms} \]
Recap: Backpropagation

\[
\frac{\partial}{\partial z} f_W(z) \frac{\partial}{\partial z} = \begin{bmatrix}
\frac{\partial f_W^{m, 1}}{\partial z_1}(z) & \ldots & \frac{\partial f_W^{m, 1}}{\partial z_k}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_W^{m, h}}{\partial z_1}(z) & \ldots & \frac{\partial f_W^{m, h}}{\partial z_k}(z)
\end{bmatrix}
\]
Recap: Backpropagation

\[
\begin{align*}
\partial_z f_{W_m}(z) \partial_z f_{W_{m-1}}(z) \\
= & \left[\begin{array}{ccc}
\frac{\partial f_{W_{m,1}}(z)}{\partial z_1} & \cdots & \frac{\partial f_{W_{m,1}}(z)}{\partial z_k} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m,h}}(z)}{\partial z_1} & \cdots & \frac{\partial f_{W_{m,h}}(z)}{\partial z_k}
\end{array} \right] \left[\begin{array}{ccc}
\frac{\partial f_{W_{m-1,1}}(z)}{\partial z_1} & \cdots & \frac{\partial f_{W_{m-1,1}}(z)}{\partial z_\ell} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m-1,k}}(z)}{\partial z_1} & \cdots & \frac{\partial f_{W_{m-1,k}}(z)}{\partial z_\ell}
\end{array} \right]
\end{align*}
\]
Recap: Backpropagation

\[
\partial_z f_{W_m}(z) \partial_z f_{W_{m-1}}(z) \partial_z f_{W_{m-2}}(z) = \\
\begin{bmatrix}
\frac{\partial f_{W_{m,1}}}{\partial z_1}(z) & ... & \frac{\partial f_{W_{m,1}}}{\partial z_k}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m,h}}}{\partial z_1}(z) & ... & \frac{\partial f_{W_{m,h}}}{\partial z_k}(z)
\end{bmatrix}
\begin{bmatrix}
\frac{\partial f_{W_{m-1,1}}}{\partial z_1}(z) & ... & \frac{\partial f_{W_{m-1,1}}}{\partial z_{\ell}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m-1,k}}}{\partial z_1}(z) & ... & \frac{\partial f_{W_{m-1,k}}}{\partial z_{\ell}}(z)
\end{bmatrix}
\begin{bmatrix}
\frac{\partial f_{W_{m-1,1}}}{\partial z_{m}}(z) \\
\vdots \\
\frac{\partial f_{W_{m-1,1}}}{\partial z_{m}}(z)
\end{bmatrix}
\]
Recap: Backpropagation

\[\partial_z f_{W_m}(z) \partial_z f_{W_{m-1}}(z) \partial_z f_{W_{m-2}}(z) \ldots \]

\[= \begin{bmatrix}
\frac{\partial f_{W_{m,1}}}{\partial z_1}(z) & \ldots & \frac{\partial f_{W_{m,1}}}{\partial z_k}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m,h}}}{\partial z_1}(z) & \ldots & \frac{\partial f_{W_{m,h}}}{\partial z_k}(z)
\end{bmatrix}
\begin{bmatrix}
\frac{\partial f_{W_{m-1,1}}}{\partial z_1}(z) & \ldots & \frac{\partial f_{W_{m-1,1}}}{\partial z_{\ell}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m-1,k}}}{\partial z_1}(z) & \ldots & \frac{\partial f_{W_{m-1,k}}}{\partial z_{\ell}}(z)
\end{bmatrix}
\begin{bmatrix}
\frac{\partial f_{W_{m-2,1}}}{\partial z_1}(z) & \ldots & \frac{\partial f_{W_{m-2,1}}}{\partial z_{\ell}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m-2,k}}}{\partial z_1}(z) & \ldots & \frac{\partial f_{W_{m-2,k}}}{\partial z_{\ell}}(z)
\end{bmatrix}
\ldots \]
Recap: Backpropagation

- **Forward pass:** Compute forwards from \(j = 0 \) to \(j = m \)

 - \(z^{(j)} = \begin{cases} x & \text{if } j = 0 \\ f_{W_j}(z^{(j-1)}) & \text{if } j > 0 \end{cases} \)

- **Backward pass:** Compute backwards from \(j = m \) to \(j = 1 \)

 - \(D^{(j)} = \begin{cases} 1 & \text{if } j = m \\ D^{(j+1)} \frac{\partial}{\partial z} f_{W_{j+1}}(z^{(j)}) & \text{if } j < m \end{cases} \)

 - \(D_{W_j} f_W(x) = D^{(j)} \frac{\partial}{\partial W_j} f_{W_j}(z^{(j-1)}) \)

- **Final output:** \(\nabla_{W_j} L(f_W(x), y)^\top = \nabla_y L(z^{(m)}, y)^\top D_{W_j} f_W(x) \) for each \(j \)
Recap: Backpropagation

Forward pass: Compute $z^{(j)} = f_{W_j}(z^{(j-1)})$

Backward pass: Compute $D^{(j)} = D^{(j+1)}_{z} f_{W_{j+1}}(z^{(j)})$ and $D_{W_j} f_W(x) = D^{(j)}_{w} f_{W_j}(z^{(j-1)})$

Final output: $\nabla_{\hat{y}} L(z^{(m)}, y)^{\top} D_{W_j} f_W(x)$
Gradient Descent

- $W_1 \leftarrow \text{Initialize()}$
- for $t \in \{1, 2, \ldots\}$ until convergence:

 $$W_{t+1,j} \leftarrow W_{t,j} - \frac{\alpha}{n} \sum_{i=1}^{n} \nabla_{W,j} L(f_{W_t}(x_i), y_i) \quad \text{(for each } j)$$

- return f_{W_t}
Gradient Descent

• $W_1 \leftarrow \text{Initialize}()$

• for $t \in \{1, 2, \ldots\}$ until convergence:
 • Compute gradients $\nabla_{W_j} L(f_{W_t}(x_i), y_i)$ using backpropagation
 • Update parameters:

 $$W_{t+1,j} \leftarrow W_{t,j} - \frac{\alpha}{n} \sum_{i=1}^{n} \nabla_{W_j} L(f_{W_t}(x_i), y_i) \quad (\text{for each } j)$$

• return f_{W_t}
Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Optimization Challenges

• **Challenges**
 • Local minima, saddle points due to non-convex loss
 • Exploding/vanishing gradients
 • Ill-conditioning

• Have heuristics that work in common cases (but not always)

Li et al. (2018)
Gradient Descent

• $W \leftarrow \text{Initialize}()$
• $\textbf{for } t \in \{1, 2, \ldots, T\}$:

$$\beta \leftarrow \beta - \frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{\beta} L(f_{\beta}(x_i), y_i)$$

• $\textbf{return } f_{\beta}$
Gradient Descent

• $W \leftarrow \text{Initialize()}$
• \textbf{for} $t \in \{1,2,...,T\}$:

\[\beta \leftarrow \beta - \frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{\beta} L(f_{\beta}(x_i), y_i) \]

• \textbf{return} f_{β}
Stochastic Gradient Descent

• \(W \leftarrow \) Initialize()
• \(\text{for} \ t \in \{1,2,...,T\}:\)
 • \(\text{for} \ i \in \{1,2,...,n\}: \)
 \[
 \beta \leftarrow \beta - \alpha \cdot \nabla_{\beta} L(f_{\beta}(x_i), y_i)
 \]
• \(\text{return} \ f_{\beta} \)

usually \(T \in \{1, ..., 10\} \)
Minibatch Stochastic Gradient Descent

\[W \leftarrow \text{Initialize()} \]
\[\text{for } t \in \{1, 2, \ldots, T\}: \]
\[\quad \text{for } i' \in \left\{1, 2, \ldots, \frac{n}{k}\right\}: \]
\[\quad \beta \leftarrow \beta - \frac{\alpha}{k} \cdot \sum_{i=i'k}^{i'(k+1)-1} \nabla_{\beta} L(f_{\beta}(x_i), y_i) \quad \text{(for each } j) \]
\[\text{return } f_{\beta} \]
Accelerated Gradient Descent

• Vanilla gradient descent:

\[\beta \leftarrow \beta - \alpha \cdot \nabla_\beta L(f_\beta(x), y) \]

• Accelerated gradient descent:

\[\rho \leftarrow \mu \cdot \rho - \alpha \cdot \nabla_\beta L(f_\beta(x), y) \]
\[\beta \leftarrow \beta + \rho \]
Accelerated Gradient Descent

• Vanilla gradient descent:
 \[
 \beta \leftarrow \beta - \alpha \cdot \nabla_\beta L(f_\beta(x), y)
 \]

• Accelerated gradient descent:
 \[
 \rho \leftarrow \mu \cdot \rho - \alpha \cdot \nabla_\beta L(f_\beta(x), y)
 \]
 \[
 \beta \leftarrow \beta + \rho
 \]
Accelerated Gradient Descent

• Vanilla gradient descent:

\[\beta \leftarrow \beta - \alpha \cdot \nabla_{\beta} L(f_{\beta}(x), y) \]

• Accelerated gradient descent:

\[\rho \leftarrow \mu \cdot \rho - \alpha \cdot \nabla_{\beta} L(f_{\beta}(x), y) \]

\[\beta \leftarrow \beta + \rho \]
Accelerated Gradient Descent

- **Intuition:** ρ holds the previous update $\alpha \cdot \nabla_{\beta} L(f_{\beta}(x), y)$, except it “remembers” where it was heading via momentum.

- New hyperparameter μ (typically $\mu = 0.9$ or $\mu = 0.99$)
Nesterov Momentum

• Accelerated gradient descent:

\[\rho \leftarrow \mu \cdot \rho - \alpha \cdot \nabla_{\beta} L(f_{\beta}(x), y) \]
\[\beta \leftarrow \beta + \rho \]

• Nesterov momentum:

\[\rho \leftarrow \mu \cdot \rho - \alpha \cdot \nabla_{\beta} L(f_{\beta + \mu \cdot \rho}(x), y) \]
\[\beta \leftarrow \beta + \rho \]
Nesterov Momentum

vanilla momentum

Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum
Adaptive Learning Rates

- **AdaGrad**: Letting $g = \nabla_{\beta} L(f_{\beta}(x), y)$, we have

 $$G \leftarrow G + g^2 \quad \text{and} \quad \beta \leftarrow \beta - \frac{\alpha}{\sqrt{G}} \cdot g$$

- **RMSProp**: Use exponential moving average instead:

 $$G \leftarrow \lambda \cdot G + (1 - \lambda)g^2 \quad \text{and} \quad \beta \leftarrow \beta - \frac{\alpha}{\sqrt{G}} \cdot g$$
Adaptive Learning Rates

- **Adam**: Similar to RMSprop, but with both the first and second moments of the gradients

\[
G \leftarrow \lambda \cdot G + (1 - \lambda) \cdot g^2
\]
\[
g' \leftarrow \lambda' \cdot g' + (1 - \lambda') \cdot g
\]
\[
\beta \leftarrow \beta - \frac{g'}{\sqrt{G}}
\]

- **Intuition**: RMSProp with momentum
- **Most commonly used optimizer**
Learning Rate

- Most important hyperparameter; tune by looking at training loss
Learning Rate

- Learning rate vs. training error:
Learning Rate

• **Schedules:** Reducing the learning rate every time the validation loss stagnates can be very effective for training.

He et al, Residual Networks, 2015
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Neural Network Tips & Tricks

- **Optimization**
- **Activation Functions**
- **Managing Weights**
- **Dropout**
- **Managing Training**
Historical Activation Functions

sigmoid

tanh
Vanishing Gradient Problem

• The gradient of the sigmoid function is often nearly zero

• **Recall:** In backpropagation, gradients are products of $\partial_z g(z^{(j)})$

• **Quickly multiply to zero!**
 • Early layers update very slowly
ReLU Activation

• Activation function

\[g(z) = \max\{0, z\} \]

• Gradient now positive on the entire region \(z \geq 0 \)

• Significant performance gains for deep neural networks
ReLU Activation
PRReLU Activation

\[f(y) = \begin{cases}
0 & \text{if } y < 0 \\
ay & \text{if } y \geq 0
\end{cases} \]
Activation Functions

• ReLU is a good standard choice

• Tradeoffs exist, and new activation functions are still being proposed
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Weight Initialization

- **Zero initialization**: Very bad choice!
 - All neurons $z_i = g(w_i^T x)$ in a given layer remain identical
 - **Intuition**: They start out equal, so their gradients are equal!
Weight Initialization

• Long history of initialization tricks for W_j based on “fan in” d_{in}
 • Here, d_{in} is the dimension of the input of layer W_j
 • **Intuition:** Keep initial layer inputs $z^{(j)}$ in the “linear” part of sigmoid
 • **Note:** Initialize intercept term to 0

• **Kaiming initialization (also called “He initialization”)**
 • For ReLU activations, use $W_j \sim N \left(0, \frac{2}{d_{in}}\right)$

• **Xavier initialization**
 • For tanh activations, use $W_j \sim N \left(0, \frac{1}{d_{in} + d_{out}}\right)$ (d_{out} is output dimension)
Batch Normalization

• **Problem**
 - During learning, the distribution of inputs to each layer are shifting (since the layers below are also updating)
 - This “covariate shift” slows down learning

• **Solution**
 - As with feature standardization, standardize inputs to each layer to $N(0, I)$
 - **Batch norm**: Compute mean and standard deviation of current minibatch and use it to normalize the current layer $z^{(j)}$ (this is differentiable!)
 - **Note**: Needs nontrivial mini-batches or will divide by zero
 - Apply after every layer (before or after activation; after can work better)
Batch Normalization

![Graph showing the effect of Batch Normalization on validation accuracy over the number of training steps. The graph compares different models, including Inception, BN-Baseline, BN-x5, BN-x30, and BN-x5-Sigmoid, showing how Batch Normalization improves performance and reduces the number of steps required to match Inception's accuracy.](image)
Regularization

• Can use L_1 and L_2 regularization as before
 • As before, do not regularize any of the intercept terms!
 • L_2 regularization more common

• Applied to “unrolled” weight matrices
 • Equivalently, Frobenius norm $\|W_j\|_F = \sum_{i=1}^{k} \sum_{i'=1}^{h} W_{i,i'}^2$
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Dropout

- **Idea:** During training, randomly “drop” (i.e., zero out) a fraction p of the neurons $z_i^{(j)}$ (usually take $p = \frac{1}{2}$)

- Implemented as its own layer

\[
\text{Dropout}(z) = \begin{cases}
 z & \text{with prob. } p \\
 0 & \text{otherwise}
\end{cases}
\]

- Usually include it at a few layers just before the output layer
Dropout
Dropout

• **Intuition:** A form of regularization
 • Encourages robustness to missing information from the previous layer
 • Each neuron works with many different kinds of inputs
 • Makes them more likely to be individually competent

• **Connection to ensembles**
 • Each training iteration is training a slightly different network, selected at random out of $2^{\text{#neurons}}$ networks!
 • Since the networks share weights, training one network updates others
Dropout at Test Time

• **Naïve strategy:** Stop dropping neurons
 • **Problem:** Not the distribution the layer was trained on (covariate shift)!

• **Naïve strategy:** Average across all possible predictions
 • **Problem:** There are $2^{\#\text{neurons}}$ possible realizations of the randomness

• **Solution:** Turn off dropout but divide the outgoing weights by 2
 • Good approximation of the geometric mean of all $2^{\#\text{neurons}}$ predictions

• **Note:** Can also leave dropout on, sample multiple realizations of the randomness, and report distribution to help quantify uncertainty
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Neural Network Tips & Tricks

- Optimization
- Activation Functions
- Managing Weights
- Dropout
- Managing Training
Early Stopping

• Stop when your validation loss starts increasing (alternatively, finish training and choose best model on validation set)
 • Simple way to introduce regularization
Data Augmentation

• **Data augmentation**: Generate more data by modifying training inputs

• Often used when you know that your output is robust to some transformations of your data
 • **Image domain**: Color shifts, add noise, rotations, translations, flips, crops
 • **NLP domain**: Substitute synonyms, generate examples (doesn’t work as well but ongoing research direction)
 • Can combine primitive shifts

• **Note**: Labels are simply the label of original image
Data Augmentation
Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation
Hyperparameter Choices

- **Architecture**: Stick close to tried-and-tested architectures (esp. for images)
- **SGD variant**: Adam, second choice SGD + 0.9 momentum
- **Learning rate**: 3×10^{-4} (Adam), 1×10^{-4} (for SGD + momentum)
- **Learning rate schedule**: Divide by 10 every time training loss stagnates
- **Weight initialization**: “Kaiming” initialization (scaled Gaussian)
- **Activation functions**: ReLU
- **Regularization**: BatchNorm (& cousins), L2 regularization + Dropout on some or all fully connected layers
- **Hyperparameter Optimization**: Random sampling (often uniform on log scale), coarse to fine
Hyperparameter Optimization

• **Recall:** Use cross-validation to tune hyperparameters!
 • Typically use one held-out validation set for computational tractability
 • E.g., 60/20/20 split
 • Can use smaller validation/test sets if you have a very large dataset

Given data Z

- Training data Z_{train}
- Val data Z_{val}
- Test data Z_{test}
Hyperparameter Optimization Tips

• Keep the number of hyperparameters as small as possible
 • **Most important:** Learning rate

• **Strategy:** Automatically search over grid of hyperparameters and choose the best one on the validation set
 • Easy to parallelize across many machines
 • Record hyperparameters of all runs carefully!
 • Use the same random seeds for all runs
Hyperparameter Optimization Tips

• What about multiple hyperparameters?
 • For 2 or 3 hyperparameters, do a systematic “grid search”

[Grid Layout]

[Bergstra & Bengio, JMLR 2012]
Hyperparameter Optimization Tips

• What about multiple hyperparameters?
 • For >3 hyperparameters, do random search

[Random Layout]

[Unimportant parameter]
[Important parameter]

[Bergstra & Bengio, JMLR 2012]
Hyperparameter Optimization Tips

• **Coarse-to-find search**
 • Iteratively search over a window of hyperparameters
 • If the best results are near the boundary, center it on best hyperparameters
 • Otherwise, set a smaller window centered on the best hyperparameters

• **Bayesian optimization**: ML-guided search across hyperparameter trials to find good choices

[Diagram of hyperparameter optimization with coarse to fine search and epsilon]

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/
More Practical Tips

• Andrej Karpathy’s blog post:
 • Fix random seed during debugging
 • Overfit a tiny dataset first
 • With everything (architecture, learning algorithm, data etc.), start simple and build complexity slowly over iterations
 • Plot weight and gradient magnitudes to detect vanishing/exploding gradients

• Additional reading:
 • Chapter 11 of the Deep Learning textbook: “Practical Methodology”
 • https://www.deeplearningbook.org/contents/guidelines.html
Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation
Pytorch

- Open source packages have helped democratize deep learning
Pytorch

```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

class Net(nn.Module):
    def __init__(self, in_features=10, num_classes=2, hidden_features=20):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.fc2 = nn.Linear(hidden_features, num_classes)

    def forward(self, x):
        x1 = self.fc1(x)
        x2 = F.relu(x1)
        x3 = self.fc2(x2)
        log_prob = F.log_softmax(x3, dim=1)
        return log_prob
```

Common parent class: nn.Module

Constructor: Defining layers of the network

Forward propagation

What about backward propagation?
Pytorch

• Open source packages have helped democratize deep learning

• Backpropagation implemented for all neural network architectures
 • Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax
 • Only need gradients of new layers

• Basic Idea: Provide model family as sequence of functions $[f_1, \ldots, f_m]$
 • What about more general compositions?
 • Solution: Composition of functions can be represented as trees (but typically called graphs)!
Computation Graphs

- The **tensor** datatype represents a **computation graph**
 - Not just a **numpy** array!
 - Instead, performing the computation produces a numpy array

Example:
- Suppose x is tensor that evaluates to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Suppose y is a tensor evaluates to $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
- Then, $x + y$ is a tensor that evaluates to $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$
Toy Implementation of Computation Graphs

class Constant(tensor):
 def __init__(self, val):
 self.val = val
 def backpropagate(self):
 ...

class Add(tensor):
 def __init__(self, t1, t2):
 self.t1 = t1
 self.t2 = t2
 self.val = self.t1.val + self.t2.val
 def backpropagate(self):
 ...

x = Constant(np.array([[1, 0], [0, 1]]))
y = Constant(np.array([[1, 1], [1, 0]]))
z = x + y # z has type Add
Toy Implementation of Computation Graphs

class Constant(tensor):
 def __init__(self, val):
 self.val = val
 def backpropagate(self):
 ...

class Add(tensor):
 def __init__(self, t1, t2):
 self.t1 = t1
 self.t2 = t2
 self.val = self.t1.val + self.t2.val
 def backpropagate(self):
 ...

x = Constant(np.array([[[1, 0], [0, 1]]]))
y = Constant(np.array([[[1, 1], [1, 0]]]))
z = x + x + y # Z has type Add

x
+
y

Diagram: A computation graph with nodes labeled x and y, connected by a plus sign.
Computation Graphs

• Layers are implemented as tensors
 • **Examples:** addition, multiplication, ReLU, sigmoid, softmax, matrix multiplication/linear layers, MSE, logistic NLL, concatenation, etc.
 • You can also implement your own by providing forward pass and derivatives

• Tensors can be composed together to form neural networks
Computation Graphs

• **Forward propagation:** Values are evaluated as they are constructed

• **Backpropagation:** Automatically compute derivative of scalar with respect to all parameters based on derivatives of layers
 - `x.backwards()`
 - Does not perform any gradient updates!
def forward(self, x):
 x1 = self.fc1(x)
 x2 = F.relu(x1)
 x3 = self.fc2(x2)
 log_prob = F.log_softmax(x3, dim=1)
 return log_prob
Pytorch Training Loop

```python
def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]
                  Loss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
```
Pytorch Training Loop

```python
def main():
    torch.manual_seed(1)
    device = torch.device("cuda")
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('..\data', train=True, download=True, 
        transform=transforms.Compose([ 
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=64, shuffle=True)

    model = Net().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9)
    for epoch in range(1, 15):
        train(model, device, train_loader, optimizer, epoch)
        scheduler.step()
```
Pytorch Model

• To use your model (once it has been trained):

\[\text{label} = \text{model}(\text{input})\]