Announcements

- Project Milestone 1 due Tonight at 8pm
- Quiz due tomorrow (Thursday, March 2) at 8pm
- HW 4 due Wednesday, March 15
- Please start early!

Lecture 14: Neural Networks (Part 2)

CIS 4190/5190

Spring 2023

Agenda

- Recap
- Neural network tips and tricks
- Hyperparameter tuning
- Implementation

Recap: Neural Network Model Family

- Each layer is a parametric function $f_{W_{j}}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{h}$ for some k, h
- Compose sequentially to form model family (a.k.a. architecture):

$$
f_{W}=f_{W_{m}} \circ \cdots \circ f_{W_{1}}
$$

- Examples:
- Linear: $f_{W}(z)=W z$
- Activation function: $g(z)=\sigma(z)$
- Softmax: $f(z)=\operatorname{softmax}(z)$

Recap: Optimization \& Backpropagation

- Based on gradient descent, with a few tweaks
- Note: Loss is nonconvex, but gradient descent works well in practice
- Key challenge: How to compute the gradient?
- Previous strategy: Work out gradient for every model family
- Backpropagation: Algorithm for computing gradient of an arbitrary programmatic composition of layers

Recap: Backpropagation by Example

- Consider a function $f(x, W, \beta)=f_{2}\left(f_{1}(x, W), \beta\right)$, where
- $f_{1}(z, W)=g(W z)$
- $f_{2}(z, \beta)=\beta^{\top} z$
- Its derivatives are

$$
\begin{aligned}
D_{\beta} f(x, W, \beta) & =D_{\beta} f_{2}\left(f_{1}(x, W), \beta\right) \\
& =\partial_{z} f_{2}\left(f_{1}(x, W), \beta\right) D_{\beta} f_{1}(x, W)+\partial_{\beta} f_{2}\left(f_{1}(x, W), \beta\right) \\
& =\quad \partial_{\beta} f_{2}\left(f_{1}(x, W), \beta\right)
\end{aligned}
$$

Recap: Backpropagation by Example

- Consider a function $f(x, W, \beta)=f_{2}\left(f_{1}(x, W), \beta\right)$, where
- $f_{1}(z, W)=g(W z)$
- $f_{2}(z, \beta)=\beta^{\top} z$
- Its derivatives are

$$
\begin{aligned}
D_{W} f(x, W, \beta) & =D_{W} f_{2}\left(f_{1}(x, W), \beta\right) \\
& =\partial_{Z} f_{2}\left(f_{1}(x, W), \beta\right) D_{W} f_{1}(x, W)+\partial_{W} f_{2}\left(f_{1}(x, W), \beta\right) \\
& =\partial_{z} f_{2}\left(f_{1}(x, W), \beta\right) \partial_{W} f_{1}(x, W)
\end{aligned}
$$

Recap: Backpropagation

- General case: Consider a neural network

$$
f_{W}(x)=f_{W_{m}} \circ f_{W_{m-1}} \circ \cdots \circ f_{W_{1}}(x)
$$

- Forward pass:

$$
z^{(j)}=f_{W_{j}} \circ \cdots \circ f_{W_{1}}(x)
$$

- Backward pass:

$$
D_{W_{j}} f_{W}(x)=\underbrace{\partial_{Z} f_{W_{m}}\left(Z^{(m-1)}\right) \ldots \partial_{Z} f_{W_{j+1}}\left(z^{(j)}\right)}_{\text {shared across terms }} \partial_{W_{j}} f_{W_{j}}\left(Z^{(j-1)}\right)
$$

Recap: Backpropagation

$$
\begin{aligned}
& \partial_{z} f_{W_{m}}(z) \partial_{z} \\
& =\left[\begin{array}{ccc}
\frac{\partial f_{W_{m}, 1}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m}, 1}}{\partial z_{k}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m}, h}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m}, h}}{\partial z_{k}}(z)
\end{array}\right]
\end{aligned}
$$

Recap: Backpropagation

$$
\begin{aligned}
& \partial_{Z} f_{W_{m}}(z) \partial_{Z} f_{W_{m-1}}(z) \\
& =\left[\begin{array}{ccc}
\frac{\partial f_{W_{m}, 1}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m}, 1}}{\partial z_{k}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m}, h}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m}, h}}{\partial z_{k}}(z)
\end{array}\right]\left[\begin{array}{cccc}
\frac{\partial f_{W_{m-1,1}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1,1}}}{\partial z_{\ell}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m-1, k}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1, k}}(z)}{\partial z_{\ell}}(z)
\end{array}\right]
\end{aligned}
$$

Recap: Backpropagation

$$
\begin{aligned}
& \partial_{z} f_{W_{m}}(z) \partial_{z} f_{W_{m-1}}(z) \partial_{z} f_{W_{m-2}}(z) \\
& =\left[\begin{array}{ccc}
\frac{\partial f_{W_{m}, 1}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m}, 1}}{\partial z_{k}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m}, h}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m}, h}}{\partial z_{k}}(z)
\end{array}\right]\left[\begin{array}{cccc}
\frac{\partial f_{W_{m-1,1}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1,1}}}{\partial z_{\ell}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m-1, k}}}{\partial z_{1}}(z) & \cdots & \left.\frac{\partial f_{W_{m-1, k}}^{\partial z_{\ell}}(z)}{\partial}\right)
\end{array}\right]\left[\begin{array}{cccc}
\frac{\partial f_{W_{m-1,1}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1,1}}}{\partial z_{m}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m-1, \ell}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1, \ell}}^{\partial z_{m}}(z)}{}
\end{array}\right]
\end{aligned}
$$

Recap: Backpropagation

$$
\begin{aligned}
& \partial_{z} f_{W_{m}}(z) \partial_{z} f_{W_{m-1}}(z) \partial_{z} f_{W_{m-2}}(z) \ldots \\
& =\left[\begin{array}{ccc}
\frac{\partial f_{W_{m, 1}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m, 1}}}{\partial z_{k}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m}, h}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m}, h}}{\partial z_{k}}(z)
\end{array}\right]\left[\begin{array}{ccc}
\frac{\partial f_{W_{m-1,1}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1,1}}}{\partial z_{\ell}}(z) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{W_{m-1, k}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1, k}}}{\partial z_{\ell}}(z)
\end{array}\right]\left[\begin{array}{ccc}
\frac{\partial f_{W_{m-1,1}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1,1}}}{\partial z_{m}}(z) \\
\frac{\partial f_{W_{m-1, t}}}{\partial z_{1}}(z) & \cdots & \frac{\partial f_{W_{m-1, t}}}{\partial z_{m}}(z)
\end{array}\right] \cdots
\end{aligned}
$$

Recap: Backpropagation

- Forward pass: Compute forwards from $j=0$ to $j=m$
- $Z^{(j)}=\left\{\begin{array}{cl}x & \text { if } j=0 \\ f_{W_{j}}\left(Z^{(j-1)}\right) & \text { if } j>0\end{array}\right.$
- Backward pass: Compute backwards from $j=m$ to $j=1$
- $D^{(j)}=\left\{\begin{array}{cl}1 & \text { if } j=m \\ D^{(j+1)} \partial_{Z} f_{W_{j+1}}\left(Z^{(j)}\right) & \text { if } j<m\end{array}\right.$
- $D_{W_{j}} f_{W}(x)=D^{(j)} \partial_{W_{j}} f_{W_{j}}\left(z^{(j-1)}\right)$
- Final output: $\nabla_{W_{j}} L\left(f_{W}(x), y\right)^{\top}=\nabla_{\hat{y}} L\left(z^{(m)}, y\right)^{\top} D_{W_{j}} f_{W}(x)$ for each j

Recap: Backpropagation

Final output: $\nabla_{\hat{y}} L\left(z^{(m)}, y\right)^{\top} D_{W_{j}} f_{W}(x)$

Gradient Descent

- $W_{1} \leftarrow$ Initialize()
- for $t \in\{1,2, \ldots\}$ until convergence:

$$
W_{t+1, j} \leftarrow W_{t, j}-\frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{W_{j}} L\left(f_{W_{t}}\left(x_{i}\right), y_{i}\right) \quad \text { (for each } j \text {) }
$$

- return $f_{W_{t}}$

Gradient Descent

- $W_{1} \leftarrow$ Initialize()
- for $t \in\{1,2, \ldots\}$ until convergence:
- Compute gradients $\nabla_{W_{j}} L\left(f_{W_{t}}\left(x_{i}\right), y_{i}\right)$ using backpropagation
- Update parameters:

$$
W_{t+1, j} \leftarrow W_{t, j}-\frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{W_{j}} L\left(f_{W_{t}}\left(x_{i}\right), y_{i}\right) \quad(\text { for each } j)
$$

- return $f_{W_{t}}$

Agenda

- Recap
- Neural network tips and tricks
- Hyperparameter tuning
- Implementation

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Optimization Challenges

- Challenges

- Local minima, saddle points due to non-convex loss
- Exploding/vanishing gradients
- III-conditioning
- Have heuristics that work in common cases (but not always)

Gradient Descent

- $W \leftarrow$ Initialize ()
- for $t \in\{1,2, \ldots, T\}$:

$$
\beta \leftarrow \beta-\frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{\beta} L\left(f_{\beta}\left(x_{i}\right), y_{i}\right)
$$

- return f_{β}

Gradient Descent

- $W \leftarrow$ Initialize ()
- for $t \in\{1,2, \ldots, T\}$:

$$
\beta \leftarrow \beta-\frac{\alpha}{n} \cdot \sum_{i=1}^{n} \nabla_{\beta} L\left(f_{\beta}\left(x_{i}\right), y_{i}\right)
$$

- return f_{β}

Stochastic Gradient Descent

- $W \leftarrow$ Initialize () usually $T \in\{1, \ldots, 10\}$
- for $t \in\{1,2, \ldots, T\}$:
- for $i \in\{1,2, \ldots, n\}$:

$$
\beta \leftarrow \beta-\alpha \cdot \nabla_{\beta} L\left(f_{\beta}\left(x_{i}\right), y_{i}\right)
$$

- return f_{β}

Minibatch Stochastic Gradient Descent

- $W \leftarrow$ Initialize ()
- for $t \in\{1,2, \ldots, T\}$:
- for $i^{\prime} \in\left\{1,2, \ldots, \frac{n}{k}\right\}$:

$$
\beta \leftarrow \beta-\frac{\alpha}{k} \cdot \sum_{i=i^{\prime} k}^{i^{\prime}(k+1)-1} \nabla_{\beta} L\left(f_{\beta}\left(x_{i}\right), y_{i}\right) \quad \text { (for each } j \text {) }
$$

- return f_{β}

Accelerated Gradient Descent

- Vanilla gradient descent:

$$
\beta \leftarrow \beta-\alpha \cdot \nabla_{\beta} L\left(f_{\beta}(x), y\right)
$$

- Accelerated gradient descent:

$$
\begin{aligned}
& \rho \leftarrow \mu \cdot \rho-\alpha \cdot \nabla_{\beta} L\left(f_{\beta}(x), y\right) \\
& \beta \leftarrow \beta+\rho
\end{aligned}
$$

Accelerated Gradient Descent

- Vanilla gradient descent:

$$
\beta \leftarrow \beta-\alpha \cdot \nabla_{\beta} L\left(f_{\beta}(x), y\right)
$$

- Accelerated gradient descent:

$$
\begin{aligned}
& \rho \leftarrow \mu \cdot \rho-\alpha \cdot \nabla_{\beta} L\left(f_{\beta}(x), y\right) \\
& \beta \leftarrow \beta+\rho
\end{aligned}
$$

Accelerated Gradient Descent

- Vanilla gradient descent:

$$
\beta \leftarrow \beta-\alpha \cdot \nabla_{\beta} L\left(f_{\beta}(x), y\right)
$$

- Accelerated gradient descent:

$$
\begin{aligned}
& \rho \leftarrow \mu \cdot \rho-\alpha \cdot \nabla_{\beta} L\left(f_{\beta}(x), y\right) \\
& \beta \leftarrow \beta+\rho
\end{aligned}
$$

Accelerated Gradient Descent

- Intuition: ρ holds the previous update $\alpha \cdot \nabla_{\beta} L\left(f_{\beta}(x), y\right)$, except it "remembers" where it was heading via momentum
- New hyperparameter μ (typically $\mu=0.9$ or $\mu=0.99$)

Nesterov Momentum

- Accelerated gradient descent:

$$
\begin{aligned}
& \rho \leftarrow \mu \cdot \rho-\alpha \cdot \nabla_{\beta} L\left(f_{\beta}(x), y\right) \\
& \beta \leftarrow \beta+\rho
\end{aligned}
$$

- Nesterov momentum:

$$
\begin{aligned}
& \rho \leftarrow \mu \cdot \rho-\alpha \cdot \nabla_{\beta} L\left(f_{\beta+\mu \cdot \rho}(x), y\right) \\
& \beta \leftarrow \beta+\rho
\end{aligned}
$$

Nesterov Momentum

vanilla momentum

Nesterov momentum
"Lookahead" helps avoid overshooting when close to the optimum

Adaptive Learning Rates

- AdaGrad: Letting $g=\nabla_{\beta} L\left(f_{\beta}(x), y\right)$, we have

$$
G \leftarrow G+g^{2} \quad \text { and } \quad \beta \leftarrow \beta-\frac{\alpha}{\sqrt{G}} \cdot \underbrace{g}_{\text {vector }}
$$

- RMSProp: Use exponential moving average instead:

$$
G \leftarrow \lambda \cdot G+(1-\lambda) g^{2} \quad \text { and } \quad \beta \leftarrow \beta-\frac{\alpha}{\sqrt{G}} \cdot g
$$

Adaptive Learning Rates

- Adam: Similar to RMSprop, but with both the first and second moments of the gradients

$$
\begin{aligned}
& G \leftarrow \lambda \cdot G+(1-\lambda) \cdot g^{2} \\
& g^{\prime} \leftarrow \lambda^{\prime} \cdot g^{\prime}+\left(1-\lambda^{\prime}\right) \cdot g \\
& \beta \leftarrow \beta-\frac{g^{\prime}}{\sqrt{G}}
\end{aligned}
$$

- Intuition: RMSProp with momentum
- Most commonly used optimizer

http://cs231n.github.io/neural-networks-3 (Alec Radford)

Learning Rate

- Most important hyperparameter; tune by looking at training loss

Learning Rate

- Learning rate vs. training error:

Learning Rate

- Schedules: Reducing the learning rate every time the validation loss stagnates can be very effective for training

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Historical Activation Functions

sigmoid

tanh

Vanishing Gradient Problem

- The gradient of the sigmoid function is often nearly zero
- Recall: In backpropagation, gradients

sigmoid

ReLU Activation

- Activation function

$$
g(z)=\max \{0, z\}
$$

- Gradient now positive on the entire region $z \geq 0$
- Significant performance gains for deep neural networks

ReLU Activation

PRReLU Activation

Activation Functions

- ReLU is a good standard choice
- Tradeoffs exist, and new activation functions are still being proposed

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Weight Initialization

- Zero initialization: Very bad choice!
- All neurons $z_{i}=g\left(w_{i}^{\top} x\right)$ in a given layer remain identical
- Intuition: They start out equal, so their gradients are equal!

Weight Initialization

- Long history of initialization tricks for W_{j} based on "fan in" $d_{\text {in }}$
- Here, $d_{\text {in }}$ is the dimension of the input of layer W_{j}
- Intuition: Keep initial layer inputs $Z^{(j)}$ in the "linear" part of sigmoid
- Note: Initialize intercept term to 0
- Kaiming initialization (also called "He initialization")
- For ReLU activations, use $W_{j} \sim N\left(0, \frac{2}{d_{\text {in }}}\right)$
- Xavier initialization
- For tanh activations, use $W_{j} \sim N\left(0, \frac{1}{d_{\mathrm{in}}+d_{\mathrm{out}}}\right)$ ($d_{\text {out }}$ is output dimension)

Batch Normalization

- Problem

- During learning, the distribution of inputs to each layer are shifting (since the layers below are also updating)
- This "covariate shift" slows down learning
- Solution
- As with feature standardization, standardize inputs to each layer to $N(0, I)$
- Batch norm: Compute mean and standard deviation of current minibatch and use it to normalize the current layer $z^{(j)}$ (this is differentiable!)
- Note: Needs nontrivial mini-batches or will divide by zero
- Apply after every layer (before or after activation; after can work better)

Batch Normalization

Regularization

- Can use L_{1} and L_{2} regularization as before
- As before, do not regularize any of the intercept terms!
- L_{2} regularization more common
- Applied to "unrolled" weight matrices
- Equivalently, Frobenius norm $\left\|W_{j}\right\|_{F}=\sum_{i=1}^{k} \sum_{i^{\prime}=1}^{h} W_{i, i^{\prime}}^{2}$

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Dropout

- Idea: During training, randomly "drop" (i.e., zero out) a fraction p of the neurons $z_{i}^{(j)}$ (usually take $p=\frac{1}{2}$)
- Implemented as its own layer

$$
\operatorname{Dropout}(z)=\left\{\begin{array}{cc}
z & \text { with prob. } p \\
0 & \text { otherwise }
\end{array}\right.
$$

- Usually include it at a few layers just
 before the output layer

Dropout

Dropout

- Intuition: A form of regularization
- Encourages robustness to missing information from the previous layer
- Each neuron works with many different kinds of inputs
- Makes them more likely to be individually competent
- Connection to ensembles
- Each training iteration is training a slightly different network, selected at random out of $2^{\# n e u r o n s}$ networks!
- Since the networks share weights, training one network updates others

Dropout at Test Time

- Naïve strategy: Stop dropping neurons
- Problem: Not the distribution the layer was trained on (covariate shift)!
- Naïve strategy: Average across all possible predictions
- Problem: There are $2^{\# n e u r o n s}$ possible realizations of the randomness
- Solution: Turn off dropout but divide the outgoing weights by 2
- Good approximation of the geometric mean of all $2^{\# n e u r o n s}$ predictions
- Note: Can also leave dropout on, sample multiple realizations of the randomness, and report distribution to help quantify uncertainty

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Neural Network Tips \& Tricks

Optimization

Activation Functions

Managing Weights

Dropout

Managing Training

Early Stopping

- Stop when your validation loss starts increasing (alternatively, finish training and choose best model on validation set)
- Simple way to introduce regularization

Data Augmentation

- Data augmentation: Generate more data by modifying training inputs
- Often used when you know that your output is robust to some transformations of your data
- Image domain: Color shifts, add noise, rotations, translations, flips, crops
- NLP domain: Substitute synonyms, generate examples (doesn't work as well but ongoing research direction)
- Can combine primitive shifts
- Note: Labels are simply the label of original image

Data Augmentation

Agenda

- Recap
- Neural network tips and tricks
- Hyperparameter tuning
- Implementation

Hyperparameteter Choices

- Architecture: Stick close to tried-and-tested architectures (esp. for images)
- SGD variant: Adam, second choice SGD + 0.9 momentum
- Learning rate: 3e-4 (Adam), 1e-4 (for SGD + momentum)
- Learning rate schedule: Divide by 10 every time training loss stagnates
- Weight initialization: "Kaiming" initialization (scaled Gaussian)
- Activation functions: ReLU
- Regularization: BatchNorm (\& cousins), L2 regularization + Dropout on some or all fully connected layers
- Hyperparameter Optimization: Random sampling (often uniform on log scale), coarse to fine

Hyperparameter Optimization

- Recall: Use cross-validation to tune hyperparameters!
- Typically use one held-out validation set for computational tractability
- E.g., 60/20/20 split
- Can use smaller validation/test sets if you have a very large dataset

Given data Z

Hyperparameter Optimization Tips

- Keep the number of hyperparameters as small as possible - Most important: Learning rate
- Strategy: Automatically search over grid of hyperparameters and choose the best one on the validation set
- Easy to parallelize across many machines
- Record hyperparameters of all runs carefully!
- Use the same random seeds for all runs

Hyperparameter Optimization Tips

- What about multiple hyperparameters?
- For 2 or 3 hyperparameters, do a systematic "grid search"

[Bergstra \& Bengio, JMLR 2012]

Hyperparameter Optimization Tips

- What about multiple hyperparameters?
- For >3 hyperparameters, do random search

Important parameter
[Bergstra \& Bengio, JMLR 2012]

Hyperparameter Optimization Tips

- Coarse-to-find search
- Iteratively search over a window of hyperparameters
- If the best results are near the boundary, center it on best hyperparameters
- Otherwise, set a smaller window centered on the best hyperparameters
- Bayesian optimization: ML-guided search across hyperparameter trials to find good choices

More Practical Tips

- Andrej Karpathy's blog post:

- http://karpathy.github.io/2019/04/25/recipe
- Fix random seed during debugging
- Overfit a tiny dataset first
- With everything (architecture, learning algorithm, data etc.), start simple and build complexity slowly over iterations
- Plot weight and gradient magnitudes to detect vanishing/exploding gradients
- Additional reading:
- Chapter 11 of the Deep Learning textbook: "Practical Methodology"
- https://www.deeplearningbook.org/contents/guidelines.html

Agenda

- Recap
- Neural network tips and tricks
- Hyperparameter tuning
- Implementation

Pytorch

- Open source packages have helped democratize deep learning

Pytorch

```
1 import torch
2 \text { import torch.nn as nn}
3 import torch.nn.functional as F
4 import torch.optim as optim
5 from torchvision import datasets, transforms
```

Common parent class: nn.Module
8 class Net(nn. Module):
Constructor: Defining layers of the network
9 def __init__(self, in_features=10, num_classes=2, hidden_features=20): super (Net, self).__init_()
self.fc1 = nn.Linear(in_features, hidden_features) self.fc2 = nn.Linear(hidden_features, num_classes)
def forward(self, x): Forward propagation
x1 = self.fc1(x)
x2 = F.relu(x1)
x3 = self.fc2(x2)
What about backward propagation?
log_prob = F.log_softmax (x3, dim=1)
19
20

Pytorch

- Open source packages have helped democratize deep learning
- Backpropagation implemented for all neural network architectures
- Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax
- Only need gradients of new layers
- Basic Idea: Provide model family as sequence of functions $\left[f_{1}, \ldots, f_{m}\right]$
- What about more general compositions?
- Solution: Composition of functions can be represented as trees (but typically called graphs)!

Computation Graphs

- The tensor datatype represents a computation graph
- Not just a numpy array!
- Instead, performing the computation produces a numpy array
- Example:
- Suppose x is tensor that evaluates to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
- Suppose y is a tensor evaluates to $\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
- Then, $x+y$ is a tensor that evaluates to $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$

Toy Implementation of Computation Graphs

```
class Constant(tensor):
def _init__(self, val):
    self.val = val
def backpropagate(self):
```

```
x = Constant(np.array([[1, 0], [0, 1]])
y = Constant(np.array([[1, 1], [1, 0]])
z = x + y # z has type Add
```

class Add(tensor):
def
\qquad init (self, t1, t2):
self.t1 = t1
self.t2 $=$ t2
self.val $=$ self.t1.val + self.t2.val
def backpropagate(self):

Toy Implementation of Computation Graphs

```
class Constant(tensor):
def __init__(self, val):
    self.val = val
def backpropagate(self):
```

```
x = Constant(np.array([[1, 0], [0, 1]])
y = Constant(np.array([[1, 1], [1, 0]])
z = x + x + y # Z has type Add
```

class Add(tensor):
def
\qquad init (self, t1, t2):
self.t1 = t1
self.t2 $=$ t2
self.val $=$ self.t1.val + self.t2.val
def backpropagate(self):

Computation Graphs

- Layers are implemented as tensors
- Examples: addition, multiplication, ReLU, sigmoid, softmax, matrix multiplication/linear layers, MSE, logistic NLL, concatenation, etc.
- You can also implement your own by providing forward pass and derivatives
- Tensors can be composed together to form neural networks

Computation Graphs

- Forward propagation: Values are evaluated as they are constructed
- Backpropagation: Automatically compute derivative of scalar with respect to all parameters based on derivatives of layers
- x.backwards()
- Does not perform any gradient updates!

Computation Graphs

fc1(nn.Linear)

fc2(nn.Linear)

parameter(tensor)
tensor log_prob

```
def forward(self, x):
    x1 = self.fc1(x)
    x2 = F.relu(x1)
    x3 = self.fc2(x2)
    log_prob = F.log_softmax(x3, dim=1)
    return log_prob
```


Pytorch Training Loop

```
```

def train(args, model, device, train_loader, optimi>or

```
```

def train(args, model, device, train_loader, optimi>or
model.train()
model.train()
Looping over mini-batches

```
Looping over mini-batches
```

```
    for batch_idx, (data, target) in enumerate(train_loader):
```

 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.t(Nowicol tancot to(env-ice)
 data, target = data.t(Nowicol tancot to(env-ice)
 optimizer.zero_grad() Zero out all old gradients
 optimizer.zero_grad() Zero out all old gradients
 output = model(data) Runs forward pass model.forward(data)
 output = model(data) Runs forward pass model.forward(data)
 loss = F.nll_losc(nutnut tarast) Loss computation
 loss = F.nll_losc(nutnut tarast) Loss computation
 loss.backward() Backpropagation
 loss.backward() Backpropagation
 optimizer.step() Gradient step
 optimizer.step() Gradient step
 if batch_idx % args.log_interval == 0:
 if batch_idx % args.log_interval == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))
    ```
            100. * batch_idx / len(train_loader), loss.item()))
```


Pytorch Training Loop

```
def main():
    torch.manual_seed(1)
    device = torch.device("cuda")
    train_loader = torch.utils.data.DataLoader( Load dataset
        datasets.MNIST('../data', train=True, download=True,
        transform=transforms.Compose([
                        transforms.ToTensor(),
                        transforms.Normalize((0.1307,), (0.3081,))
                                ])),
    batch_size=64, shuffle=True)
    model = Net().to(device)
    optimizer = ontim Adam(model narameters(), lr=1e-4)
    scl Loop over epochs (full passes over data) e=1, gamma=0.9)
    for epoch in range(1, 15): Minibatch SGD for one epoch
        train(model, device, tram!loave!, optl##zer, epoch)
        scheduler.step() Update base learning rate
```


Pytorch Model

- To use your model (once it has been trained):
label = model(input)

