
Announcements

• Project Milestone 1 due Tonight at 8pm

• Quiz due tomorrow (Thursday, March 2) at 8pm

• HW 4 due Wednesday, March 15
• Please start early!

Lecture 14: Neural Networks (Part 2)

CIS 4190/5190
Spring 2023

Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation

Recap: Neural Network Model Family

• Each layer is a parametric function 𝑓!!: ℝ
" → ℝ# for some 𝑘, ℎ

• Compose sequentially to form model family (a.k.a. architecture):

𝑓! = 𝑓!" ∘ ⋯ ∘ 𝑓!#

• Examples:
• Linear: 𝑓! 𝑧 = 𝑊𝑧
• Activation function: 𝑔 𝑧 = 𝜎 𝑧
• Softmax: 𝑓 𝑧 = softmax 𝑧

Recap: Optimization & Backpropagation

• Based on gradient descent, with a few tweaks
• Note: Loss is nonconvex, but gradient descent works well in practice

• Key challenge: How to compute the gradient?
• Previous strategy: Work out gradient for every model family
• Backpropagation: Algorithm for computing gradient of an arbitrary

programmatic composition of layers

Recap: Backpropagation by Example

• Consider a function 𝑓 𝑥,𝑊, 𝛽 = 𝑓$ 𝑓% 𝑥,𝑊 , 𝛽 , where
• 𝑓" 𝑧,𝑊 = 𝑔 𝑊𝑧
• 𝑓# 𝑧, 𝛽 = 𝛽$𝑧

• Its derivatives are

𝐷&𝑓 𝑥,𝑊, 𝛽 = 𝐷&𝑓$ 𝑓% 𝑥,𝑊 , 𝛽
𝐷&𝑓 𝑥,𝑊, 𝛽 = 𝜕'𝑓$ 𝑓% 𝑥,𝑊 , 𝛽 𝐷&𝑓% 𝑥,𝑊 + 𝜕&𝑓$ 𝑓% 𝑥,𝑊 , 𝛽
𝐷&𝑓 𝑥,𝑊, 𝛽 = 𝜕'𝑓$ 𝑓% 𝑥,𝑊 , 𝛽 𝐷&𝑓% 𝑥,𝑊 + 𝜕&𝑓$ 𝑓% 𝑥,𝑊 , 𝛽

Recap: Backpropagation by Example

• Consider a function 𝑓 𝑥,𝑊, 𝛽 = 𝑓$ 𝑓% 𝑥,𝑊 , 𝛽 , where
• 𝑓" 𝑧,𝑊 = 𝑔 𝑊𝑧
• 𝑓# 𝑧, 𝛽 = 𝛽$𝑧

• Its derivatives are

𝐷!𝑓 𝑥,𝑊, 𝛽 = 𝐷!𝑓$ 𝑓% 𝑥,𝑊 , 𝛽
𝐷!𝑓 𝑥,𝑊, 𝛽 = 𝜕'𝑓$ 𝑓% 𝑥,𝑊 , 𝛽 𝐷!𝑓% 𝑥,𝑊 + 𝜕!𝑓$ 𝑓% 𝑥,𝑊 , 𝛽
𝐷!𝑓 𝑥,𝑊, 𝛽 = 𝜕'𝑓$ 𝑓% 𝑥,𝑊 , 𝛽 𝜕!𝑓% 𝑥,𝑊

Recap: Backpropagation

• General case: Consider a neural network

𝑓! 𝑥 = 𝑓!! ∘ 𝑓!!"# ∘ ⋯ ∘ 𝑓!# 𝑥

• Forward pass:

𝑧 % = 𝑓!$ ∘ ⋯ ∘ 𝑓!# 𝑥

• Backward pass:

𝐷!$𝑓! 𝑥 = 𝜕&𝑓!! 𝑧 '(" …𝜕&𝑓!$%# 𝑧
% 𝜕!$𝑓!$ 𝑧

%("

shared across terms

Recap: Backpropagation

𝜕!𝑓"! 𝑧 𝜕!𝑓"!"# 𝑧 𝜕!𝑓"!"$ 𝑧 …

=

#$%!,#

#!#
𝑧 ⋯ #$%!,#

#!'
𝑧

⋮ ⋱ ⋮
#$%!,(
#!#

𝑧 ⋯ #$%!,(
#!'

𝑧

#$%!"#,#

#!#
𝑧 ⋯ #$%!"#,#

#!ℓ
𝑧

⋮ ⋱ ⋮
#$%!"#,'

#!#
𝑧 ⋯

#$%!"#,'

#!ℓ
𝑧

#$%!"#,#

#!#
𝑧 ⋯ #$%!"#,#

#!!
𝑧

⋮ ⋱ ⋮
#$%!"#,ℓ

#!#
𝑧 ⋯

#$%!"#,ℓ

#!!
𝑧

…

Recap: Backpropagation

𝜕!𝑓"! 𝑧 𝜕!𝑓"!"# 𝑧 𝜕!𝑓"!"$ 𝑧 …

=

#$%!,#

#!#
𝑧 ⋯ #$%!,#

#!'
𝑧

⋮ ⋱ ⋮
#$%!,(
#!#

𝑧 ⋯ #$%!,(
#!'

𝑧

#$%!"#,#

#!#
𝑧 ⋯ #$%!"#,#

#!ℓ
𝑧

⋮ ⋱ ⋮
#$%!"#,'

#!#
𝑧 ⋯

#$%!"#,'

#!ℓ
𝑧

#$%!"#,#

#!#
𝑧 ⋯ #$%!"#,#

#!!
𝑧

⋮ ⋱ ⋮
#$%!"#,ℓ

#!#
𝑧 ⋯

#$%!"#,ℓ

#!!
𝑧

…

Recap: Backpropagation

𝜕!𝑓"! 𝑧 𝜕!𝑓"!"# 𝑧 𝜕!𝑓"!"$ 𝑧 …

=

#$%!,#

#!#
𝑧 ⋯ #$%!,#

#!'
𝑧

⋮ ⋱ ⋮
#$%!,(
#!#

𝑧 ⋯ #$%!,(
#!'

𝑧

#$%!"#,#

#!#
𝑧 ⋯ #$%!"#,#

#!ℓ
𝑧

⋮ ⋱ ⋮
#$%!"#,'

#!#
𝑧 ⋯

#$%!"#,'

#!ℓ
𝑧

#$%!"#,#

#!#
𝑧 ⋯ #$%!"#,#

#!!
𝑧

⋮ ⋱ ⋮
#$%!"#,ℓ

#!#
𝑧 ⋯

#$%!"#,ℓ

#!!
𝑧

…

Recap: Backpropagation

𝜕!𝑓"! 𝑧 𝜕!𝑓"!"# 𝑧 𝜕!𝑓"!"$ 𝑧 …

=

#$%!,#

#!#
𝑧 ⋯ #$%!,#

#!'
𝑧

⋮ ⋱ ⋮
#$%!,(
#!#

𝑧 ⋯ #$%!,(
#!'

𝑧

#$%!"#,#

#!#
𝑧 ⋯ #$%!"#,#

#!ℓ
𝑧

⋮ ⋱ ⋮
#$%!"#,'

#!#
𝑧 ⋯

#$%!"#,'

#!ℓ
𝑧

#$%!"#,#

#!#
𝑧 ⋯ #$%!"#,#

#!!
𝑧

⋮ ⋱ ⋮
#$%!"#,ℓ

#!#
𝑧 ⋯

#$%!"#,ℓ

#!!
𝑧

…

Recap: Backpropagation

• Forward pass: Compute forwards from 𝑗 = 0 to 𝑗 = 𝑚

• 𝑧 % = 6
𝑥

𝑓!$ 𝑧
%("

if 𝑗 = 0
if 𝑗 > 0

• Backward pass: Compute backwards from 𝑗 = 𝑚 to 𝑗 = 1

• 𝐷 % = ;
1

𝐷 %1" 𝜕&𝑓!$%# 𝑧
%

if 𝑗 = 𝑚
if 𝑗 < 𝑚

• 𝐷!$𝑓! 𝑥 = 𝐷 % 𝜕!$𝑓!$ 𝑧
%("

• Final output: ∇!!𝐿 𝑓! 𝑥 , 𝑦 (= ∇)*𝐿 𝑧 + , 𝑦
(
𝐷!!𝑓! 𝑥 for each 𝑗

Recap: Backpropagation

𝑥 𝑧(")𝑓!# 𝑔 𝑧(#) 𝑓4 ?𝑦𝑧(5)𝑓!& 𝑔 𝑧(6)

Forward pass: Compute 𝑧 ! = 𝑓"! 𝑧
!#$

Backward pass: Compute 𝐷 ! = 𝐷 !%$ 𝜕&𝑓"!"# 𝑧
! and 𝐷"!𝑓" 𝑥 = 𝐷 ! 𝜕"!𝑓"! 𝑧

!#$

Final output: ∇ '(𝐿 𝑧) , 𝑦
*
𝐷"!𝑓" 𝑥

Gradient Descent

• 𝑊% ← Initialize
• for 𝑡 ∈ 1,2, … until convergence:

𝑊67%,8 ← 𝑊6,8 −
𝛼
𝑛
⋅J
9:%

;

∇!!𝐿 𝑓!$ 𝑥9 , 𝑦9 for each 𝑗

• return 𝑓!$

Gradient Descent

• 𝑊% ← Initialize
• for 𝑡 ∈ 1,2, … until convergence:
• Compute gradients ∇!$𝐿 𝑓!' 𝑥7 , 𝑦7 using backpropagation
• Update parameters:

𝑊67%,8 ← 𝑊6,8 −
𝛼
𝑛
⋅J
9:%

;

∇!!𝐿 𝑓!$ 𝑥9 , 𝑦9 for each 𝑗

• return 𝑓!$

Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Optimization Challenges

• Challenges
• Local minima, saddle points due to

non-convex loss
• Exploding/vanishing gradients
• Ill-conditioning

• Have heuristics that work in
common cases (but not always)

Li et al. (2018)

Gradient Descent

• 𝑊 ← Initialize
• for 𝑡 ∈ 1,2, … , 𝑇 :

𝛽 ← 𝛽 −
𝛼
𝑛
⋅J
9:%

;

∇&𝐿 𝑓& 𝑥9 , 𝑦9

• return 𝑓&

Gradient Descent

• 𝑊 ← Initialize
• for 𝑡 ∈ 1,2, … , 𝑇 :

𝛽 ← 𝛽 −
𝛼
𝑛
⋅J
9:%

;

∇&𝐿 𝑓& 𝑥9 , 𝑦9

• return 𝑓&

Stochastic Gradient Descent

• 𝑊 ← Initialize
• for 𝑡 ∈ 1,2, … , 𝑇 :
• for 𝑖 ∈ 1,2, … , 𝑛 :

𝛽 ← 𝛽 − 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥9 , 𝑦9

• return 𝑓&

usually 𝑇 ∈ 1,… , 10

Minibatch Stochastic Gradient Descent

• 𝑊 ← Initialize
• for 𝑡 ∈ 1,2, … , 𝑇 :
• for 𝑖< ∈ 1,2, … , ;

"
:

𝛽 ← 𝛽 −
𝛼
𝑘
⋅ J

9:9%"

9% "7% =%

∇&𝐿 𝑓& 𝑥9 , 𝑦9 for each 𝑗

• return 𝑓&

Accelerated Gradient Descent

• Vanilla gradient descent:

𝛽 ← 𝛽 − 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥 , 𝑦

• Accelerated gradient descent:

𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥 , 𝑦
𝛽 ← 𝛽 + 𝜌

Accelerated Gradient Descent

• Vanilla gradient descent:

𝛽 ← 𝛽 − 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥 , 𝑦

• Accelerated gradient descent:

𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥 , 𝑦
𝛽 ← 𝛽 + 𝜌

Accelerated Gradient Descent

• Vanilla gradient descent:

𝛽 ← 𝛽 − 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥 , 𝑦

• Accelerated gradient descent:

𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥 , 𝑦
𝛽 ← 𝛽 + 𝜌

Accelerated Gradient Descent

• Intuition: 𝜌 holds the previous update 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥 , 𝑦 , except it
“remembers” where it was heading via momentum

• New hyperparameter 𝜇 (typically 𝜇 = 0.9 or 𝜇 = 0.99)

Nesterov Momentum

• Accelerated gradient descent:

𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇&𝐿 𝑓& 𝑥 , 𝑦
𝛽 ← 𝛽 + 𝜌

• Nesterov momentum:

𝜌 ← 𝜇 ⋅ 𝜌 − 𝛼 ⋅ ∇&𝐿 𝑓&7>⋅@ 𝑥 , 𝑦
𝛽 ← 𝛽 + 𝜌

Nesterov Momentum

momentum
step

gradient

momentum

step

gradient

vanilla momentum Nesterov momentum

“Lookahead” helps avoid overshooting when close to the optimum

Adaptive Learning Rates

• AdaGrad: Letting 𝑔 = ∇&𝐿 𝑓& 𝑥 , 𝑦 , we have

𝐺 ← 𝐺 + 𝑔$ and 𝛽 ← 𝛽 −
𝛼
𝐺
⋅ 𝑔

• RMSProp: Use exponential moving average instead:

𝐺 ← 𝜆 ⋅ 𝐺 + 1 − 𝜆 𝑔$ and 𝛽 ← 𝛽 −
𝛼
𝐺
⋅ 𝑔

vector

Adaptive Learning Rates

• Adam: Similar to RMSprop, but with both the first and second
moments of the gradients

𝐺 ← 𝜆 ⋅ 𝐺 + 1 − 𝜆 ⋅ 𝑔$

𝑔< ← 𝜆< ⋅ 𝑔< + 1 − 𝜆< ⋅ 𝑔
𝛽 ← 𝛽 − A<

B

• Intuition: RMSProp with momentum
• Most commonly used optimizer

http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/

http://cs231n.github.io/neural-networks-3 (Alec Radford)

http://cs231n.github.io/neural-networks-3/

Learning Rate

• Most important hyperparameter; tune by looking at training loss

Learning Rate

• Learning rate vs. training error:

Goodfellow et al, Deep Learning Book, 2019

Learning Rate

• Schedules: Reducing the learning rate every time the validation loss
stagnates can be very effective for training

He et al, Residual Networks, 2015

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Historical Activation Functions

sigmoid tanh

Vanishing Gradient Problem

• The gradient of the sigmoid function
is often nearly zero

• Recall: In backpropagation, gradients
are products of 𝜕'𝑔 𝑧 8

• Quickly multiply to zero!
• Early layers update very slowly

sigmoid

sigmoid gradient

ReLU Activation

• Activation function

𝑔 𝑧 = max 0, 𝑧

• Gradient now positive on the
entire region 𝑧 ≥ 0

• Significant performance gains for
deep neural networks

ReLU Activation

tanh

ReLU

PRReLU Activation

Activation Functions

• ReLU is a good standard choice

• Tradeoffs exist, and new activation functions are still being proposed

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Weight Initialization

• Zero initialization: Very bad choice!
• All neurons 𝑧7 = 𝑔 𝑤7$𝑥 in a given layer remain identical
• Intuition: They start out equal, so their gradients are equal!

𝑥%

𝑥&

𝑥'

𝑧% = 𝑔 𝑤%(𝑥

𝑧& = 𝑔 𝑤&(𝑥

𝑧' = 𝑔 𝑤'(𝑥

𝑧) = 𝑔 𝑤)(𝑥

𝛽(𝑧

Weight Initialization

• Long history of initialization tricks for 𝑊8 based on “fan in” 𝑑CD
• Here, 𝑑<= is the dimension of the input of layer 𝑊%
• Intuition: Keep initial layer inputs 𝑧 % in the “linear” part of sigmoid
• Note: Initialize intercept term to 0

• Kaiming initialization (also called “He initialization”)
• For ReLU activations, use 𝑊% ∼ 𝑁 0, #>()

• Xavier initialization
• For tanh activations, use 𝑊% ∼ 𝑁 0, "

>()1>*+,
(𝑑?@A is output dimension)

Batch Normalization

• Problem
• During learning, the distribution of inputs to each layer are shifting (since the

layers below are also updating)
• This “covariate shift’’ slows down learning

• Solution
• As with feature standardization, standardize inputs to each layer to 𝑁 0, 𝐼
• Batch norm: Compute mean and standard deviation of current minibatch and

use it to normalize the current layer 𝑧 % (this is differentiable!)
• Note: Needs nontrivial mini-batches or will divide by zero
• Apply after every layer (before or after activation; after can work better)

Batch Normalization

Number of training steps

va
lid

at
io

n
ac

cu
ra

cy

Regularization

• Can use 𝐿% and 𝐿$ regularization as before
• As before, do not regularize any of the intercept terms!
• 𝐿# regularization more common

• Applied to “unrolled” weight matrices
• Equivalently, Frobenius norm 𝑊% B = ∑7C"D ∑7-C"

E 𝑊7,7-
#

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Dropout

• Idea: During training, randomly “drop”
(i.e., zero out) a fraction 𝑝 of the
neurons 𝑧9

8 (usually take 𝑝 = %
$
)

• Implemented as its own layer

Dropout 𝑧 = b𝑧0
with prob. 𝑝
otherwise

• Usually include it at a few layers just
before the output layer

Dropout

Dropout

• Intuition: A form of regularization
• Encourages robustness to missing information from the previous layer
• Each neuron works with many different kinds of inputs
• Makes them more likely to be individually competent

• Connection to ensembles
• Each training iteration is training a slightly different network, selected at

random out of 2#=H@I?=J networks!
• Since the networks share weights, training one network updates others

Dropout at Test Time

• Naïve strategy: Stop dropping neurons
• Problem: Not the distribution the layer was trained on (covariate shift)!

• Naïve strategy: Average across all possible predictions
• Problem: There are 2#=H@I?=J possible realizations of the randomness

• Solution: Turn off dropout but divide the outgoing weights by 2
• Good approximation of the geometric mean of all 2#=H@I?=J predictions

• Note: Can also leave dropout on, sample multiple realizations of the
randomness, and report distribution to help quantify uncertainty

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Neural Network Tips & Tricks

Managing Weights

Managing TrainingDropout

Optimization Activation Functions

Early Stopping

• Stop when your validation loss starts increasing (alternatively, finish
training and choose best model on validation set)
• Simple way to introduce regularization

Data Augmentation

• Data augmentation: Generate more data by modifying training inputs

• Often used when you know that your output is robust to some
transformations of your data
• Image domain: Color shifts, add noise, rotations, translations, flips, crops
• NLP domain: Substitute synonyms, generate examples (doesn’t work as well

but ongoing research direction)
• Can combine primitive shifts

• Note: Labels are simply the label of original image

Data Augmentation

Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation

Hyperparameteter Choices

• Architecture: Stick close to tried-and-tested architectures (esp. for images)
• SGD variant: Adam, second choice SGD + 0.9 momentum
• Learning rate: 3e-4 (Adam), 1e-4 (for SGD + momentum)
• Learning rate schedule: Divide by 10 every time training loss stagnates
• Weight initialization: “Kaiming” initialization (scaled Gaussian)
• Activation functions: ReLU
• Regularization: BatchNorm (& cousins), L2 regularization + Dropout on

some or all fully connected layers
• Hyperparameter Optimization: Random sampling (often uniform on log

scale), coarse to fine

Hyperparameter Optimization

• Recall: Use cross-validation to tune hyperparameters!
• Typically use one held-out validation set for computational tractability
• E.g., 60/20/20 split
• Can use smaller validation/test sets if you have a very large dataset

Given data 𝑍

Training data 𝑍EFGCD Test data 𝑍EHIEVal data 𝑍JGK

Hyperparameter Optimization Tips

• Keep the number of hyperparameters as small as possible
• Most important: Learning rate

• Strategy: Automatically search over grid of hyperparameters and
choose the best one on the validation set
• Easy to parallelize across many machines
• Record hyperparameters of all runs carefully!
• Use the same random seeds for all runs

Hyperparameter Optimization Tips

• What about multiple hyperparameters?
• For 2 or 3 hyperparameters, do a systematic “grid search”

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

• What about multiple hyperparameters?
• For >3 hyperparameters, do random search

[Bergstra & Bengio, JMLR 2012]

Hyperparameter Optimization Tips

• Coarse-to-find search
• Iteratively search over a window of

hyperparameters
• If the best results are near the boundary,

center it on best hyperparameters
• Otherwise, set a smaller window

centered on the best hyperparameters

• Bayesian optimization: ML-guided
search across hyperparameter trials to
find good choices

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

https://www.andreaperlato.com/aipost/hyperparameters-tuning-in-ai/

More Practical Tips

• Andrej Karpathy’s blog post:
• http://karpathy.github.io/2019/04/25/recipe
• Fix random seed during debugging
• Overfit a tiny dataset first
• With everything (architecture, learning algorithm, data etc.), start simple and

build complexity slowly over iterations
• Plot weight and gradient magnitudes to detect vanishing/exploding gradients

• Additional reading:
• Chapter 11 of the Deep Learning textbook: “Practical Methodology”
• https://www.deeplearningbook.org/contents/guidelines.html

http://karpathy.github.io/2019/04/25/recipe/
https://www.deeplearningbook.org/contents/guidelines.html

Agenda

• Recap

• Neural network tips and tricks

• Hyperparameter tuning

• Implementation

Pytorch

• Open source packages have helped democratize deep learning

Pytorch

Common parent class: nn.Module
Constructor: Defining layers of the network

Forward propagation

What about backward propagation?

Pytorch

• Open source packages have helped democratize deep learning

• Backpropagation implemented for all neural network architectures
• Most modern libraries, including Tensorflow, Mxnet, Caffe, Pytorch, and Jax
• Only need gradients of new layers

• Basic Idea: Provide model family as sequence of functions 𝑓%, … , 𝑓+
• What about more general compositions?
• Solution: Composition of functions can be represented as trees (but typically

called graphs)!

Computation Graphs

• The tensor datatype represents a computation graph
• Not just a numpy array!
• Instead, performing the computation produces a numpy array

• Example:
• Suppose 𝑥 is tensor that evaluates to 1 0

0 1
• Suppose 𝑦 is a tensor evaluates to 1 1

1 0
• Then, 𝑥 + 𝑦 is a tensor that evaluates to 2 1

1 1 𝑥 𝑦

+

Toy Implementation of Computation Graphs

class Constant(tensor):

def __init__(self, val):

self.val = val

def backpropagate(self):

...

class Add(tensor):

def __init__(self, t1, t2):

self.t1 = t1

self.t2 = t2

self.val = self.t1.val + self.t2.val

def backpropagate(self):

...

𝑥 𝑦

+

x = Constant(np.array([[1, 0], [0, 1]])
y = Constant(np.array([[1, 1], [1, 0]])
z = x + y # z has type Add

Toy Implementation of Computation Graphs

class Constant(tensor):

def __init__(self, val):

self.val = val

def backpropagate(self):

...

class Add(tensor):

def __init__(self, t1, t2):

self.t1 = t1

self.t2 = t2

self.val = self.t1.val + self.t2.val

def backpropagate(self):

...

𝑥 𝑦

+

x = Constant(np.array([[1, 0], [0, 1]])
y = Constant(np.array([[1, 1], [1, 0]])
z = x + x + y # Z has type Add

Computation Graphs

• Layers are implemented as tensors
• Examples: addition, multiplication, ReLU, sigmoid, softmax, matrix

multiplication/linear layers, MSE, logistic NLL, concatenation, etc.
• You can also implement your own by providing forward pass and derivatives

• Tensors can be composed together to form neural networks

Computation Graphs

• Forward propagation: Values are evaluated as they are constructed

• Backpropagation: Automatically compute derivative of scalar with
respect to all parameters based on derivatives of layers
• x.backwards()
• Does not perform any gradient updates!

Computation Graphs

x x1

W1 W2

x2 x3 log_prob× relu × log_sof
tmax

nn.functional operation

parameter(tensor)

tensor

fc1(nn.Linear) fc2(nn.Linear)

Pytorch Training Loop

Gradient step
Backpropagation

Loss computation
Runs forward pass model.forward(data)

Looping over mini-batches

Zero out all old gradients

Pytorch Training Loop

Load dataset

Define optimizer, base learning rate schedule etc.

Loop over epochs (full passes over data)
Minibatch SGD for one epoch

Update base learning rate

Pytorch Model

• To use your model (once it has been trained):

label = model(input)

