
Announcements

• HW 5 due Wednesday, March 29 at 8pm
• Please start early!

• Project Milestone 2 due Wednesday, April 5 at 8pm
• We will post the template this week

Lecture 17: NLP (Part 1)

CIS 4190/5190
Spring 2023

Goals of NLP

• Recognize spam email, fake news articles, etc.
• Read a textbook and solve an exam question
• Translate from English to French
• Search for webpages relevant to a search query
• Read tweets and understand public sentiment on a topic

• Generally: We would like to be able to understand text and extract all
the same kinds of information in the same ways as humans might

Language Understanding is Hard!

• Did Abraham Lincoln have an iPhone?
• No! (requires common sense)

• Mary fought with Kate because she was a bad person. Who was a bad
person? Mary or Kate?
• Ambiguous (requires long-term context)

• The guitar didn’t fit into the box because it was too small. What was
too small? The guitar or the box?
• The box (requires common sense)

IBM Watson Jeopardy! Challenge

https://www.youtube.com/watch?v=Sp4q60BsHoY

https://www.youtube.com/watch?v=Sp4q60BsHoY

Smart Assistant Advancements

Machine Translation

Question Answering

Text Completion

Text Generation

Basic NLP Pipeline

• Classical approach
• Step 1: Manually construct feature mapping from text to ℝ!
• Step 2: Run supervised learning algorithm in conjunction with feature map

• Deep learning approach
• Step 1: Design neural network architecture that can take text as input
• Step 2: Train neural network end-to-end

Bag of Words Feature Map

• Idea: Treat each document as an unordered set of words
• Simple but can be effective choice in practice

• Lexicon: Set of “all possible words”
• Union of words from all documents in the dataset
• Use a dictionary

• Then, represent document as a vector 𝑥 ∈ ℝ! , where 𝑑 is number of
words in the lexicon
• 𝑥" is the number of occurrences of word 𝑗 in the document

Bag of Words Feature Map

aa
rd

va
rk

ab
ac

us
ab

an
do

n
ab

as
e

ab
at

e
ab

er
ra

tio
n

ab
be

y
ab

bo
t ...

zo
o

0 0 1 0 0 0 4 0 ... 0

𝜙 𝑥

number of times
“abbey” occurs

document 𝑥

Shortcomings of Bag of Words

• Cannot distinguish word senses (which come from context)
• “Took money out of the bank”
• “Got stuck on the river bank”
• “The pilot tried to bank the plane”

• Significance of some words vs. others
• Articles (“a”, “an”, “the”) vs. unusual terms (“hagiography”)

Shortcomings of Bag of Words

• Ignores the fact that some words are more similar than others
• “I have a dog”
• “I have a cat”
• “I have a tomato”

• Ignores ordering of words
• “Mary runs faster than Jack”
• “Jack runs faster than Mary”

Improvements to Bag of Words

• 𝒏-grams: Each feature counts the number of times a sequence of 𝑛
words occurs in the document
• “I have a cat” à [“I have”: 1, “have a”: 1, “a cat”: 1]
• Shortcoming: Quickly becomes high dimensional!

• TF-IDF: Downweight words that occur across many documents
• “a” counts for a lot less than “hagiography”
• Can be used for feature selection

Alternatives?

• Can we automatically learn representations of words?

• We can use deep learning to do so, but classical unsupervised
learning approaches can also work well
• Specialized to NLP

Word Embeddings

• Embed words as vectors
• Automatically learn feature map 𝜙 𝑥 ∈ ℝ!

• Bag-of-words: 𝜙 𝑥 = ∑"#$% & ∈ %#()*+,- . OneHot(𝑖)
• OneHot 𝑖 is the vector with all zeros except it equals one at position

corresponding to word 𝑖
• OneHot “dog” = [0, 0, 0, 1, 0, 0, 0]
• OneHot “cat” = 1, 0, 0, 0, 0, 0, 0

• We want to learn embeddings where the structure captures
semantics, e.g., nearby vectors correspond to similar words

Document-Term Matrix

• Counts the number of times each word occurs in each document

Wikipedia
Article

Words
Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Document-Term Matrix

• Key observation: Similar words tend to co-occur

Wikipedia
Article

Words
Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Document-Term Matrix

• Key observation: Similar words tend to co-occur

Wikipedia
Article

Words
Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Document-Term Matrix

• Key observation: Similar words tend to co-occur

Wikipedia
Article

Words
Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Document-Term Matrix

• Key observation: Similar words tend to co-occur
• Potential idea: Represent word by its row!

Wikipedia
Article

Words
Cat Dog Apple Inc. Apple (fruit) Microsoft Inc. …

a 377 370 842 231 286 …

the 929 787 1690 503 872 …

apple 0 0 1091 166 14 …

computer 0 0 88 0 36 …

fur 15 2 0 0 0 …

hair 6 6 0 0 0 …

… … … … … … …

Term-Term Matrix

• Shortcoming: Document-term matrix depends heavily on structure of
documents in the training data

• Alternative: Term-term matrix counts co-occurrences of pairs of
words across all documents

Term-Term Matrix

• Count how many times a word appears within the neighborhood
“context” of another word (e.g., 4 words to the left/right)

Words
Words pet play tire engine run …

dog 872 649 1 7 378 …

cat 789 831 5 0 285 …

tomato 12 4 290 927 562 …

… … … … … … …

Term-Term Matrix

• Count how many times a word appears within the neighborhood
“context” of another word (e.g., 4 words to the left/right)
• Idea: Represent each word by its row

Words
Words pet play tire engine run …

dog 872 649 1 7 378 …

cat 789 831 5 0 285 …

tomato 12 4 290 927 562 …

… … … … … … …

Term-Term Matrix

• Intuition: Each words is represented by words in its neighborhood

• “The distributional hypothesis in linguistics is derived from the
semantic theory of language usage, i.e. words that are used and occur
in the same contexts tend to purport similar meanings.”
• “A word is characterized by the company it keeps” – John Firth

Term-Term Matrix

• For example, the words that frequently co-occur with “dog” in a
sentence might be words like “play”, “pet”, “sleep”, “fur”, “feed”, etc.
• Would these words tend to co-occur with “cat”?
• How about with “tomato”?
• “I have a pet cat”
• “I have a pet dog”
• “I have a pet tomato”

• Similar words have similar embeddings

Shortcomings of Classical Approaches

• Word embedding vector dimensions:
• Document-term = # of documents
• Term-Term = # of words

• These are huge vectors!
• Can we get a more compact representation?

• Idea: Train a neural network classifier to predict whether one word
will co-occur in the context of another word
• The classifier weights can be interpreted as word embeddings!

Word2Vec

• Idea: Train a neural network classifier to predict whether one word
will co-occur in the context of another word

• Then, the classifier weights can be interpreted as word embeddings!

Word2Vec Training Data

• “The quick brown fox jumped over the lazy dog.”

Word Context
the [quick]

quick [the, brown]
brown [quick, fox]

… …

Word2Vec Training Data

• “The quick brown fox jumped over the lazy dog.”

Word Context
the quick

quick the
quick brown

brown quick
brown fox

… …

Source: https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html

One-Hot Encoding for
the Input Word

One-Hot Encoding for
the Output Word

Word2Vec Model

𝑁 hidden units, for 𝑁 ≪ 𝑉

• 𝑁 columns, 𝑉 (vocabulary size) rows
• Each row corresponds to a word
• Row 𝑖 = embedding for word 𝑖, called “target embedding”

Word2Vec Model

One-Hot Encoding for
the Input Word

One-Hot Encoding for
the Output Word

• 𝑉 (vocabulary size) columns, 𝑁 rows
• Each column corresponds to a word
• Column 𝑖 = embedding for word 𝑖, called “context embedding”

Word2Vec Model

One-Hot Encoding for
the Input Word

One-Hot Encoding for
the Output Word

We can concatenate the target and context embeddings to form our final word embedding

Word2Vec Model

Word2Vec Training

• Standard softmax loss, then train the neural network

• Computing this denominator will be expensive.
• Remember that the vocabulary size V is of the

order of millions of words!

𝑝 𝑤3 𝑤&4 =
exp(𝑣5!

6 . 𝑣5"#)
∑789: exp(𝑣5$6 . 𝑣5"#)

Word2Vec Training

• Standard softmax loss, then train the neural network

𝑝 𝑤3 𝑤&4 =
exp(𝑣5!

6 . 𝑣5"#)
∑789; exp(𝑣5$6 . 𝑣5"#)

• Simple Trick: Sample some random 𝐾 − 1 ≪ 𝑉 negative
example words for each sample. e.g. 𝐾 = 2, 5, 20 etc.

• Also means we need to update many fewer weights
during each iteration of gradient descent.

Properties of Word2Vec

• Words that co-occur have vector representations that are close
together (in Euclidean distance)
• “sofa” and “couch” (synonyms) will be close together
• But also things like “hot” and “cold” (antonyms)
• People say “It’s ____ outside today” for both

Properties of Word2Vec

• Vector operations (vector addition and vector subtraction) on word
vectors often capture the semantic relationships of their words.

man : king :: woman: ?

Source: https://www.ed.ac.uk/informatics/news-events/stories/2019/king-man-woman-queen-the-hidden-algebraic-struct

Use in Practice

• GLoVe is an alternative word vector embedding similar to word2vec

• Available freely, and often used off-the-shelf:
• English word2vec weights trained on Google News data
• GloVe vectors trained on the Common Crawl dataset and a Twitter dataset

• If you have a lot of training data or a different/niche domain (e.g.,
medical), you may want to train your own word vectors!

Other Variations

Predict word from bag-of-words context Predict context from word

From Words to Documents

• Sentence2Vec, Paragraph2Vec scale these Word2Vec ideas to learn
direct embeddings for sentences / paragraphs

• However, much more common to treat as a sequence of words, and
represent each word by its word2vec-style representation

• Sequence models have produced huge advances in NLP

Words in Context

• While word2vec is trained based on context, after training, it is
applied independently to each word
• E.g., train linear regression of sum of word vectors, or n-grams

• Why is this problematic?
• “He ate a tasty apple”
• “He wrote his essay on his Apple computer”

• Both use the same embedding!

