
Announcements

• HW 5 due Wednesday, March 29 at 8pm
• Please start early!

• Project Milestone 2 due Wednesday, April 5 at 8pm
• We will post the template this week

Lecture 18: NLP (Part 2)

CIS 4190/5190
Spring 2023

Recap

• Classical approach: Feature engineering + Standard ML model

• Semi-Classical approach: Word2Vec + Standard ML model
• Sum embeddings of words to get passage features:

𝜙 𝑥 = $
!"#$ % ∈ $"'()*+, -

Embed 𝑖

• Still “bag-of-words” like model! (Embed 𝑖 = OneHot(𝑖)) is bag of words)

Words in Context

• While word2vec is trained based on context, after training, it is
applied independently to each word
• E.g., train linear regression of sum of word vectors, or n-grams

• Why is this problematic?
• “He ate a tasty apple”
• “He wrote his essay on his Apple computer”

• Both use the same embedding!

From Words to Documents

• Sentence2Vec, Paragraph2Vec scale these Word2Vec ideas to learn
direct embeddings for sentences / paragraphs

• However, much more common to treat as a sequence of words, and
represent each word by its word2vec-style representation

• Sequence models have produced huge advances in NLP

Recurrent Neural Networks

• Handle inputs/outputs that are sequences

• Naïve strategy
• Pad inputs to fixed length and use feedforward network
• Ignores temporal structure

• Recurrent neural networks (RNNs): Process input sequentially

Feedforward Neural Networks

𝑥 𝑧(")𝑓$! 𝑔 𝑧(%) 𝑓& 3𝑦𝑧(')𝑓$" 𝑔 𝑧(()

Recurrent Neural Networks

𝑥"

𝑧(")

𝑓$!

𝑧(%)𝑓$" 𝑓$# 𝑧(')

𝑥%

𝑓$$

𝑥'

𝑓$%

𝑓& 3𝑦𝑧(()𝑓$& 𝑓$' 𝑧())

𝑥(

𝑓$(

𝑥)

𝑓$)

Recurrent Neural Networks

𝑥"

𝑧(")

𝑓$

𝑧(%)𝑓* 𝑓* 𝑧(')

𝑥%

𝑓$

𝑥'

𝑓$

𝑓& 3𝑦𝑧(()𝑓* 𝑓* 𝑧())

𝑥(

𝑓$

𝑥)

𝑓$

Recurrent Neural Networks

• Initialize 𝑧 . = 0

• Iteratively compute (for 𝑡 ∈ 1,… , T):

𝑧 / = 𝑔 𝑊𝑥/ + 𝑈𝑧 /01

• Compute output:

𝑦 = 𝛽2𝑧 3

Sentiment Classification

The

𝑧(")

𝑓$

𝑧(%)𝑓* 𝑓* 𝑧(')

Matrix

𝑓$

will

𝑓$

𝑓& 1𝑧(()𝑓* 𝑓* 𝑧())

always

𝑓$

delight

𝑓$

Sentiment Classification

Embed
(The)

𝑧(")

𝑓$

𝑧(%)𝑓* 𝑓* 𝑧(')

Embed
(Matrix)

𝑓$

Embed
(will)

𝑓$

𝑓& 1𝑧(()𝑓* 𝑓* 𝑧())

Embed
(always)

𝑓$

Embed
(delight)

𝑓$

Recurrent Neural Networks

• Initialize 𝑧 . = 0

• Iteratively compute (for 𝑡 ∈ 1,… , T):

𝑧 / = 𝑔 𝑊 Embed 𝑥/ + 𝑈𝑧 /01

• Compute output:

𝑦 = 𝛽2𝑧 3

Recurrent Neural Networks

Image
captioning

Sentiment
prediction

Machine
translation

Video
captioning

Fei-Fei Li, Justin Johnson, Serena Yeung

Training RNNs

• Backpropagation works as before
• For shared parameters, we can show that the overall gradient is sum of

gradient at each usage

• Exploding/vanishing gradients can be particularly problematic

• LSTM (“long short-term memory”) and GRU (“gated recurrent unit”)
do clever things to better maintain hidden state

Training RNNs

𝜕𝐿
𝜕𝑈

=
𝜕𝐿
𝜕𝑧!

𝜕𝑧!
𝜕𝑈

+
𝜕𝐿
𝜕𝑧!

𝜕𝑧!
𝜕𝑧"

𝜕𝑧"
𝜕𝑈

+
𝜕𝐿
𝜕𝑧!

𝜕𝑧!
𝜕𝑧"

𝜕𝑧"
𝜕𝑧#

𝜕𝑧#
𝜕𝑈

𝑧# = 𝑔 𝑊𝑥# + 𝑈𝑧$
𝑧" = 𝑔 𝑊𝑥" + 𝑈𝑧#
𝑧! = 𝑔 𝑊𝑥! + 𝑈𝑧"

Local Contribution Historical Contribution

Pretraining RNNs

• Unsupervised pretraining
• Train on dataset of text to predict next word (classification problem)
• 𝑥 = 𝑤"𝑤%…𝑤+ and 𝑦 = 𝑤+," (usually 𝑦 is one-hot even if 𝑥 is not)

• Finetune pretrained RNN on downstream task

Pretraining RNNs

• Step 0: Pretrained on a large unlabeled text dataset
• Also called “self-supervised”
• Trained using supervised learning, but labels are predicting data itself

• Step 1: Replace next-word prediction layer with new layer for task

• Step 2: Train new layer or finetune end-to-end
• Can think of last layer of pretrained RNN as a “contextual word embedding”

Pretraining RNNs

OneHot
(The)

𝑧(")

𝑓$

𝑧(%)𝑓* 𝑓* 𝑧(')

OneHot
(Matrix)

𝑓$

OneHot
(will)

𝑓$

𝑧(()𝑓* 𝑓* 𝑧())

OneHot
(always)

𝑓$

OneHot
(delight)

𝑓$

OneHot
(Matrix)

𝑓-

OneHot
(will)

𝑓-

OneHot
(always)

𝑓-

OneHot
(delight)

𝑓-

OneHot
(<end>)

𝑓-

Pretraining RNNs

OneHot
(The)

𝑧(")

𝑓$

𝑧(%)𝑓* 𝑓* 𝑧(')

OneHot
(Matrix)

𝑓$

OneHot
(will)

𝑓$

𝑧(()𝑓* 𝑓* 𝑧())

OneHot
(always)

𝑓$

OneHot
(delight)

𝑓$

Pretraining RNNs

OneHot
(The)

𝑧(")

𝑓$

𝑧(%)𝑓* 𝑓* 𝑧(')

OneHot
(Matrix)

𝑓$

OneHot
(will)

𝑓$

𝑧(()𝑓* 𝑓* 𝑧())

OneHot
(always)

𝑓$

OneHot
(delight)

𝑓$

𝑓& 1

Shortcomings of RNNs

• Shortcomings
• Unidirectional information flow (must remember everything relevant)
• Need to remember everything until it is needed

• Improvements/alternatives
• Stacked/Bidirectional models
• LSTMs/GRUs
• CNNs
• Transformers

Stacked RNN

Bidirectional RNN

Stacked + Bidirectional RNN

Long Short Term Memory

• Goal: Replace some multiplicative relationships in hidden state with
additive relationships

LSTM
Cell

Input (x)

Previous State (h) Next State (h)

Output (y)

Previous Memory (c) Next Memory (c)

ELMo Word Embeddings

• Bidirectional LSTM: Combine one LSTM to predict next word given
previous words, another to predict previous word given later words

CNNs

• Model
• 1D convolutional layers
• Input is word embedding sequence
• # channels is word embedding dimension

CNNs

• Shortcomings
• Hard to reason about interactions between words that are far apart

Figure credit to d2l.ai

http://d2l.ai/

Attention

• RNNs have trouble propagating information forwards

• Solution: Let RNN “pay attention” to small part of past sequence

Example: Machine Translation

Example: Machine Translation

Attention

Attention

34

Attention

Attention

Attention

Attention

Attention

Transformers

• Composition of self-attention layers

• Intuition
• Want sparse connection structure of CNNs, but with different structure
• Can we learn the connection structure?

Self-Attention Layer

• Self-attention layer:

𝑦 𝑡 =$
451

3

attention 𝑥 𝑠 , 𝑥 𝑡 ⋅ 𝑓 𝑥 𝑠

• Input first processed by local layer 𝑓
• All inputs can affect 𝑦 𝑡
• But weighted by attention 𝑥 𝑠 , 𝑥 𝑡

• Resembles convolution but connection is
learned instead of hardcoded

Figure credit to d2l.ai

vector, not a single
component!

http://d2l.ai/

Self-Attention Layer

• Self-attention layer:

𝑦 𝑡 =$
451

3

softmax query 𝑥 𝑡 2key 𝑥 𝑠 ⋅ value 𝑥 𝑠

• Here, we have (learnable parameters are 𝑊6, 𝑊7 , and 𝑊8):

query 𝑥 𝑠 = 𝑊6𝑥 𝑠
key 𝑥 𝑠 = 𝑊7𝑥 𝑠
value 𝑥 𝑠 = 𝑊8𝑥 𝑠

Self-Attention Layer

𝑊!
query

vectors

𝑊" value
vectors

𝑊# key
vectors

𝑇×𝑇 matrix
matrix$% = query$&key%

row-wise
softmax

𝑇×𝑇 matrix
attention'(
= softmax matrix$%

×

𝑥 1

sequence of
input vectors

𝑥 𝑇

⋮

= 𝑦[1] 𝑦[𝑇]⋯

Self-Attention Layer

committee awards Strickland advanced opticswho

Layer p

Q
K
V

Nobel

Self-Attention Layer

Layer p

Q
K
V

committee awards Strickland advanced opticswhoNobel

Self-Attention Layer

Layer p

Q
K
V

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Self-Attention Layer

Layer p

Q
K
V

M

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Multi-Head Self-Attention

Layer p

Q
K
V

MM1

MH

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Multi-Head Self-Attention

Layer p

Q
K
V

MH

M1

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Layer p

Q
K
V

MH

M1

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

Feed
Forward

committee awards Strickland advanced opticswhoNobel

optics
advanced

who
Strickland

awards
committee

Nobel

A

Transformers

• Stack self-attention layers to form a neural network architecture

• Examples:
• BERT: Bidirectional transformer similar to ELMo, useful for prediction
• GPT: Unidirectional model suited to text generation

• Aside: Self-attention layers subsume convolutional layers
• Use “positional encodings” as auxiliary input so each input knows its position
• https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-

encoding.html#
• Then, the attention mechanism can learn convolutional connection structure

https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html
https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html

Visualizing Attention Outputs

https://transformer.huggingface.co/

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Applications: Spam Detection

• “Bag of words” + SVMs for spam classification

• Features: Words like “western union”, “wire
transfer”, “bank” are suggestive of spam

Applications: Search

• Use “bag of words” + TF-IDF to identify
relevant documents for a search query

Applications: Virtual Assistants

• Use word vectors to predict intent of queries users ask

Applications: Question Answering

• Language models can be used to
answer questions based on a given
passage

Applications: Generation

• Language models can automatically generate text for applications
such as video games

AI Dungeon, an infinitely
generated text adventure

powered by deep learning.

Transformers for Computer Vision

Figure credit to “End-to-End Object Detection with Transformers”

https://arxiv.org/pdf/2005.12872.pdf

