
Announcements

• HW 5 due Wednesday, March 29 at 8pm
• Please start early!

• Project Milestone 2 due Wednesday, April 5 at 8pm
• We will post the template this week



Lecture 18: NLP (Part 2)

CIS 4190/5190
Spring 2023



Recap

• Classical approach: Feature engineering + Standard ML model

• Semi-Classical approach: Word2Vec + Standard ML model
• Sum embeddings of words to get passage features:

𝜙 𝑥 = $
!"#$ % ∈ $"'()*+, -

Embed 𝑖

• Still “bag-of-words” like model! (Embed 𝑖 = OneHot(𝑖)) is bag of words)



Words in Context

• While word2vec is trained based on context, after training, it is 
applied independently to each word
• E.g., train linear regression of sum of word vectors, or n-grams

• Why is this problematic?
• “He ate a tasty apple”
• “He wrote his essay on his Apple computer”

• Both use the same embedding!



From Words to Documents

• Sentence2Vec, Paragraph2Vec scale these Word2Vec ideas to learn 
direct embeddings for sentences / paragraphs

• However, much more common to treat as a sequence of words, and 
represent each word by its word2vec-style representation

• Sequence models have produced huge advances in NLP



Recurrent Neural Networks

• Handle inputs/outputs that are sequences

• Naïve strategy
• Pad inputs to fixed length and use feedforward network
• Ignores temporal structure

• Recurrent neural networks (RNNs): Process input sequentially



Feedforward Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks

• Initialize 𝑧 . = 0

• Iteratively compute (for 𝑡 ∈ 1,… , T ):

𝑧 / = 𝑔 𝑊𝑥/ + 𝑈𝑧 /01

• Compute output:

𝑦 = 𝛽2𝑧 3



Sentiment Classification
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Sentiment Classification
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Recurrent Neural Networks

• Initialize 𝑧 . = 0

• Iteratively compute (for 𝑡 ∈ 1,… , T ):

𝑧 / = 𝑔 𝑊 Embed 𝑥/ + 𝑈𝑧 /01

• Compute output:

𝑦 = 𝛽2𝑧 3



Recurrent Neural Networks

Image 
captioning

Sentiment 
prediction

Machine 
translation

Video 
captioning

Fei-Fei Li, Justin Johnson, Serena Yeung



Training RNNs

• Backpropagation works as before
• For shared parameters, we can show that the overall gradient is sum of 

gradient at each usage

• Exploding/vanishing gradients can be particularly problematic

• LSTM (“long short-term memory”) and GRU (“gated recurrent unit”) 
do clever things to better maintain hidden state



Training RNNs
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Pretraining RNNs

• Unsupervised pretraining
• Train on dataset of text to predict next word (classification problem)
• 𝑥 = 𝑤"𝑤%…𝑤+ and 𝑦 = 𝑤+," (usually 𝑦 is one-hot even if 𝑥 is not)

• Finetune pretrained RNN on downstream task



Pretraining RNNs

• Step 0: Pretrained on a large unlabeled text dataset
• Also called “self-supervised”
• Trained using supervised learning, but labels are predicting data itself

• Step 1: Replace next-word prediction layer with new layer for task

• Step 2: Train new layer or finetune end-to-end
• Can think of last layer of pretrained RNN as a “contextual word embedding”



Pretraining RNNs
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Pretraining RNNs
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Pretraining RNNs
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Shortcomings of RNNs

• Shortcomings
• Unidirectional information flow (must remember everything relevant)
• Need to remember everything until it is needed

• Improvements/alternatives
• Stacked/Bidirectional models
• LSTMs/GRUs
• CNNs
• Transformers



Stacked RNN



Bidirectional RNN



Stacked + Bidirectional RNN



Long Short Term Memory

• Goal: Replace some multiplicative relationships in hidden state with 
additive relationships

LSTM 
Cell

Input ( x )

Previous State ( h ) Next State ( h )

Output (  y )

Previous Memory ( c ) Next Memory ( c )



ELMo Word Embeddings

• Bidirectional LSTM: Combine one LSTM to predict next word given 
previous words, another to predict previous word given later words



CNNs

• Model
• 1D convolutional layers
• Input is word embedding sequence
• # channels is word embedding dimension



CNNs

• Shortcomings
• Hard to reason about interactions between words that are far apart

Figure credit to d2l.ai

http://d2l.ai/


Attention

• RNNs have trouble propagating information forwards

• Solution: Let RNN “pay attention” to small part of past sequence



Example: Machine Translation



Example: Machine Translation
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Transformers

• Composition of self-attention layers

• Intuition
• Want sparse connection structure of CNNs, but with different structure
• Can we learn the connection structure?



Self-Attention Layer

• Self-attention layer:

𝑦 𝑡 =$
451

3

attention 𝑥 𝑠 , 𝑥 𝑡 ⋅ 𝑓 𝑥 𝑠

• Input first processed by local layer 𝑓
• All inputs can affect 𝑦 𝑡
• But weighted by attention 𝑥 𝑠 , 𝑥 𝑡

• Resembles convolution but connection is 
learned instead of hardcoded

Figure credit to d2l.ai

vector, not a single 
component!

http://d2l.ai/


Self-Attention Layer

• Self-attention layer:

𝑦 𝑡 =$
451

3

softmax query 𝑥 𝑡 2key 𝑥 𝑠 ⋅ value 𝑥 𝑠

• Here, we have (learnable parameters are 𝑊6, 𝑊7 , and 𝑊8):

query 𝑥 𝑠 = 𝑊6𝑥 𝑠
key 𝑥 𝑠 = 𝑊7𝑥 𝑠
value 𝑥 𝑠 = 𝑊8𝑥 𝑠



Self-Attention Layer
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Self-Attention Layer
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Self-Attention Layer
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Self-Attention Layer
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Multi-Head Self-Attention
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Transformers

• Stack self-attention layers to form a neural network architecture

• Examples:
• BERT: Bidirectional transformer similar to ELMo, useful for prediction
• GPT: Unidirectional model suited to text generation

• Aside: Self-attention layers subsume convolutional layers
• Use “positional encodings” as auxiliary input so each input knows its position
• https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-

encoding.html#
• Then, the attention mechanism can learn convolutional connection structure

https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html
https://d2l.ai/chapter_attention-mechanisms/self-attention-and-positional-encoding.html


Visualizing Attention Outputs

https://transformer.huggingface.co/

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0



Applications: Spam Detection

• “Bag of words” + SVMs for spam classification

• Features: Words like “western union”, “wire 
transfer”, “bank” are suggestive of spam



Applications: Search

• Use “bag of words” + TF-IDF to identify 
relevant documents for a search query



Applications: Virtual Assistants

• Use word vectors to predict intent of queries users ask



Applications: Question Answering

• Language models can be used to 
answer questions based on a given 
passage



Applications: Generation

• Language models can automatically generate text for applications 
such as video games

AI Dungeon, an infinitely 
generated text adventure 

powered by deep learning.



Transformers for Computer Vision

Figure credit to “End-to-End Object Detection with Transformers”

https://arxiv.org/pdf/2005.12872.pdf

