
CIS 419/519

Reinforcement Learning: ML For
Decision Making Over Time

Lecture 19

Mar 27, 2023

Instructor: Dinesh Jayaraman

1Robot Image Credit: Viktoriya Sukhanova © 123RF.comBased on slides from Sergey Levine, Dan Klein, Eric Eaton

Machine Learning Systems Make Decisions

• ML systems make decisions, broadly speaking. For example:
§ A spam classifier might decide whether to place an email in your inbox

or spam.
§ ML-based credit scoring in a financial institution might decide whether

to approve a loan application.

• In these and all the settings we have considered so far, the ML system
makes a one-time decision.
§ For each loan application or each email, the system would make an

independent decision. There is no reason to be influenced by the
previous decision.

What if we need to make a series of interconnected decisions over time?

New Problem Setting: Sequential Decision Making

● The decision-making “agent” must
make a series of interconnected
decisions that affect each other. The
outcome of one decision affects the
future decision-making process.

● Performance score is typically a
function of the full sequence of states
and decisions.

Examples of Sequential Decision Making
Must make a sequence of decisions to

maximize some success measure/”reward”,
which is a cumulative effect of the full sequence.

Actions !!: muscle contractions
Observations "!: sight, smell
Reward #!: food

motor current or torque
camera images
average speed

what to purchase
inventory levels
profit

Could we solve sequential decision making with supervised learning?

Imitation Learning Through
Behavior Cloning
Solving sequential decision making problems with supervised learning!

Towards answering that, let’s try …

“Policies” for Sequential Decision Making

For any input state of the system, the ML model maps it to a decision.

• This motivates the following input-output structure of the model:
§ Input: state observation, like sight and smell for the dog.
§ Output: actions, like muscle contractions.

This mapping from input states to a probability distribution over output
actions (or sometimes just a single deterministic action) is called a decision-
making “policy”, often denoted !.

Supervised learning of Action Policies?

• Given the current “state” ", make a decision #$ = max
$
!%($|").

§ Supervision => labels for “good” decisions that maximize future rewards.
§ So, we’d like to have some dataset of (state ", good decision $∗) pairs.

Then we could try running supervised learning just as always.

• For the sequential decision making problem, we will use the notation:
§ state input , instead of ",
§ action output - instead of $.
§ We will often subscript these items with time indices as ,', -' etc.

Behavior Cloning (BC)
observed states
s1, s2, ..., sH
a1, a2, ..., aH

actions
training

data
supervised

learning

observed state st action atconvolutional network

expert

Behavior Cloning Objective Function
Supervised maximum-likelihood objective to train a function that maps from
expert sensory inputs to expert actions.

!"## = −
1

'
(
()*

+

(
')*

,

log ,%(.(,'|#(,')

Does this work?

Expert actionsDemonstration data

1
'
(
()*

+

(
')*

,

∇% log ,%(.(,'|#(,')

trajectories time
Likelihood gradient:
“Change the policy to
make these actions
more likely”.

Could minimize by following the gradient:

Key Issue with BC: Distributional Shift

The cloned policy is imperfect; this leads to “compounding” errors, and the agent soon encounters
unfamiliar states, leading to failure.

The policy is trained on demonstration data that is different from the data it encounters in the world.

Note how these errors arise from ignoring the the sequential, interconnected
nature of the task. Past decisions influence future states!

Active Behavior Cloning: DAGGER
A general trick for handling distributional shift: requery expert on new states
encountered by the initial cloned policy upon execution, then retrain.

Ross et al, DAGGER, 2011

1. Train !! ""|$" from expert data % = $#, "#, … , $$, "$
2. Run !! ""|$" to get dataset %% = $#&'(, … , $)&'(
3. Ask expert to label each state in %% with actions ""&'(
4. Aggregate: % ← % ∪ %%

Assumes it is okay to keep asking the expert all through the training process.

“Queryable experts”. Might not always be practical.

https://www.youtube.com/watch?v=-96BEoXJMs0

https://www.youtube.com/watch?v=M-QUkgk3HyE

https://xbpeng.github.io/projects/SFV/index.html

Aside: Distribution Shift More Broadly

● When supervised ML systems are deployed, it is common for the
distribution to shift.
○ E.g. when a new spam classifier is deployed on gmail, spammers might notice that

their old spamming techniques are not working, and innovate to break the new

spam classifier.

● One strategy to fix this is continuous data aggregation, like in DAGGER.
○ E.g., Allow users to mark new emails that slip through the filter as spam. Add these

to the training data, and retrain the spam classifier from time to time.

Lesson: ML systems are often deployed in sequential decision making
settings without realizing it: later inputs may be influenced in some complex
way by older decisions of the ML system. Warrants caution!

Other Ways to Do Imitation

● BC might not generalize beyond demonstrations. Instead learn explicitly
about the “reward” function that the demonstrator is trying to maximize?
○ This is called “inverse reinforcement learning”

Would you conclude that this

agent likes / dislikes:

- Blue squares?

- White squares?

- Orange squares?

- Red squares?

- Green square?

Knowing the reward could

inform more generalizable

imitation, e.g. starting from a

different location than expert

BC Operates Per-Timestep, Ignores Future Impacts
• Suppose you try to imitate driving. The imitator is not perfect, and you

either:
§ Are slower by 5 mph than the expert behavior on a highway, or
§ Are off by 5 mph as you start your car in your garage (e.g. moving

forward at 4 mph, instead of backing out at 1 mph).
§ BC objective might value both errors similarly, but one is much worse!

• Another example:
§ You make a 5 degree heading error when turning into a lane, but keep

the steering exactly straight once you’re on the lane.
§ You make uncorrelated small 0.1 degree errors at every instant during

driving.
§ BC objective could like both equally, but one is much worse than the

other.

Going Beyond Imitation

• Imitation is often very useful. In most cases where you have access to
expert demonstrations, you should aim to use it through some kind of
imitation. But there are limitations.
• BC usually takes the short-term myopic view:

§ The BC loss is only per-timestep deviations from the expert actions.
§ It does not account for the impacts of current actions on the future.

• More broadly, imitation is limited to mimicking experts and cannot discover
new solutions. What about solving new problems, like controlling a new
robot, or trading on the stock market, or beating the world’s best Go
player?
• Reinforcement Learning (next) addresses all this more carefully. There are

also ways to naturally combine imitation and RL (out of class scope).

Introducing Reinforcement
Learning

Learning Through Trial and Error

The aim of RL is to learn to make sequential decisions in an environment:

• Driving a car

• Cooking

• Playing a videogame

• Controlling a power plant

• Riding a bicycle

• Making movie recommendations

• Navigating a webpage

• Treating a trauma patient

How does an RL agent learn to do these things?
• Assume only occasional feedback, such as a tasty meal, or a car crash, or

video game points.
• Assume very little is known about the “environment” in advance.
• Learn through trial and error.

19

action at

state st

reward rt

The Standard Reinforcement Learning Interface

• Agent receives observations (state st
Î S) and feedback (reward rt) from
the world
• Agent takes action at Î A
• Agent receives updated state st+1 and

reward rt+1

• Agent’s goal is to maximize, loosely speaking,
“expected rewards in the future”.

Image: https://robots.ieee.org/robots/pr2/

rt+1

st+1

environment

States might have to be
estimated, e.g., from images

20

agent

https://robots.ieee.org/robots/pr2/

The Environment as a Markov Decision Process

Image: https://towardsdatascience.com/reinforcement-learning-
demystified-markov-decision-processes-part-1-bf00dda41690

An MDP (2, 4, 5, 6, 7) is defined by:
• Set of states # ∈ 2
• Set of actions . ∈ 4
• Transition function 5(#’ | #, .)

oProbability !(#’ | #, ') that ' from # leads to #!
oAlso “dynamics model” / just “model”

• Reward function :' = 6 (#, ., #′)
• Discount factor 7 < 1, expressing how much we

care about the future (vs. immediate rewards)
• “utility” = discounted future reward sum ∑' 7

' :'.*
• Goal: maximize expected utility

In RL , we assume no knowledge of the true functions 5(⋅) or 6(⋅)
21

Example

Unknown to agent

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Sample RL environment: Grid World
• The agent’s state is one cell ! = ($, &) within the

grid $ ∈ {1,2,3,4} and & ∈ {1,2,3}.
• The agent can execute 4 actions: / =“N”, “E”, “S”,

“W”
For the moment, this is all that that the RL agent
knows about the environment. In particular, it does
not know:
- 1(!’|!, /)

- Which cell would it move to, if it executes an
action from a cell? (e.g. / =“N” from s = (1, 2))

- The result might even be non-deterministic.
- 5 !, /, !!

- What is the instantaneous reward it would get if
it moved from s = 1,2 to s! = (1,3) by
executing action / =“N”?

Based on slide by Dan Klein 22

A random trajectory of an RL agent

s=(1,1)

Time t=1

A random trajectory of an RL agent

s=(1,1)
Action= “N”

Time t=1

A random trajectory of an RL agent

s=(1,1)
Action= “N”

s’=(1,2)
Reward = -0.03

Time t=1

Time step t=1 over

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=?
Reward = ?

Time t=2

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=(1,2)
Reward = -0.03

Time t=2

Time step t=2 over

A random trajectory of an RL agent

s=(1,2)
Action= “N”

s’=?
Reward = ?

Time t=3

A random trajectory of an RL agent

Time step t=3 over

Time t=3

s=(1,2)
Action= “N”

s’=(1,3)
Reward = -0.03

A random trajectory of an RL agent

Time t=4 s=(1,3)
Action= “N”

s’=(2,3)
Reward = -0.03

Time step t=4 over

A random trajectory of an RL agent

Time t=5

Time step t=5 over

s=(2,3)
Action= “E”

s’=(3,3)
Reward = -0.03

A random trajectory of an RL agent

s=(3,3)
Action= “E”

s’=(4,3)
Reward = -0.03

Time t=6

Time step t=6 over

A random trajectory of an RL agent

s=(4,3)
Action= “N”

s’= special state “END”
Reward = +1

One “episode” is over.
Next, the agent respawns in the environment. “Reset”

END

Reset

s=(1,1)
Action=?

s’= ?
Reward = ?

Another episode begins!

So, can we maximize rewards in this environment?

• What have we learned about this environment after having acquired this
experience?
§ Do we know something about 5, 6?
§ Do we know how to act optimally now?

We have learned some things, but there is still far too much ambiguity.

Perhaps with more experience …

Provided sufficient experience, RL algorithms can learn optimal policies!

Behind The Scenes: The Full Environment
• A grid map with solid / open cells. Agent moves between open cells.

• From terminal states (4,3) and (4,2), any action ends the episode,
and results in a +1/-1 reward respectively.

• For each timestep outside terminal states , the agent pays a small
“living” cost (negative reward): −0.03

• The agent actions N, E, S, W correspond to North, East, South, West
§ But the outcomes of actions are not deterministic!

§ The chosen motion direction is attempted 80% of the time
§ 10% of the time, the agent instead executes a different

direction 90° off. Another 10% of the time, -90° off.
§ E.g. an agent surrounded by open cells and executing action

N will end up in the northern cell 80% of the time, in the
eastern cell 10% of the time, and in the western cell 10% of
the time.

§ The agent stays put if it attempts to move into a solid cell or
outside the world. (Imagine the map is surrounded by solid cells)

• Goal: As always, maximize the sum of discounted future rewards
within an episode

Based on slide by Dan Klein 37

What actually happened in that episode?

• Now that we have seen the full environment, let’s view a replay with all this
extra information to see what actually happened during that one episode of
experience we saw before.

What actually happened in that episode?

What actually happened in that episode?

Action= “N”

What actually happened in that episode?

Action= “N”
Attempted motion = “N”

Reward = -0.03

What actually happened in that episode?

Action= “N”

What actually happened in that episode?

Action= “N”
Attempted Motion=“E”

Reward = -0.03

(stays still because blocked)

What actually happened in that episode?

Action= “N”
Attempted Motion=“N”

Reward = -0.03

What actually happened in that episode?

Action= “N”
Attempted Motion=“E”

Reward = -0.03

What actually happened in that episode?

Action= “E”
Attempted Motion=“E”

Reward = -0.03

What actually happened in that episode?

Action= “E”
Attempted Motion=“E”

Reward = -0.03

What actually happened in that episode?
Action= “N”

Attempted Motion: ?
Result=“the end”

Reward = +1

Note: this corresponds to saying: “when 7 = (4,3), for any 9, the reward is : 7, 9, 7" = :(7) = +1”.
This is meaningfully different from: “when 7′ = (4,3), the reward is : 7, 9, 7" = :(7′) = +1 for any 7, 9.”

It so happened that our random
trajectory did end up at the right place!

Was this action sequence “optimal?” No

Desired Outcome of RL: Optimal Policies

Goal: given some environment, find the optimal policy ,∗ # : 2 → 4

• “Optimal” ⟹ Following ,∗ maximizes expected utility

Optimal policy when living cost is
) #, ', #! =) # = −0.03

for all non-terminal states #

Example optimal policy /∗

Based on slide by Dan Klein 49

Goal of RL: Learn Optimal Policies

e.g. state #' = robot pose, action .'= motor torques, :'= running speed

>∗ = argmax
$

D%~'! % E
(
F(G(7(, 9()

Trajectory
distribution

Optimal policy
parameters

Why discounts?

Idea: future rewards are worth exponentially less than current rewards.
- They are less certain

Future rewards are discounted by 0 < 7 < 1:
∑')H
I 7':'.*

Future rewards matter
less to the decision than
more recent rewards

Image by Dan Klein

Also very useful for theoretical analysis

discounted cumulative future reward / “utility”

#'

#'.*

#'.J

#'.K

Sensitivity of Optimal Policy To ! And "

6 #, ., #L = 0 6 #, ., #L = −1 6 #, ., #L = −2

7 = 0.9 7 = 0.5 7 = 0.1

The task specification through 6 (and 7) is critical!

Warning: “Reward Hacking”
• Reward functions as task specifications can be surprisingly hard to get right!

def reward_function(params):
'''
A complex reward function for a robot arm reaching a specific target position and

orientation.
'''
Set up the target position and orientation
target_pos = [0.5, 0.5, 0.5]
target_orient = [0.0, 0.0, 0.0, 1.0]

Get the current position and orientation of the robot arm
robot_pos = params['position']
robot_orient = params['orientation']

Calculate the distance to the target position and orientation
pos_diff = math.sqrt((robot_pos[0] - target_pos[0])**2 + (robot_pos[1] -

target_pos[1])**2 + (robot_pos[2] - target_pos[2])**2)
orient_diff = np.linalg.norm(np.subtract(robot_orient, target_orient))

Penalize the robot for being too far away from the target position or orientation
if pos_diff > 0.1 or orient_diff > 0.1:

reward = -1.0
else:

Calculate a reward based on the proximity to the target position and orientation
pos_reward = (1.0 - pos_diff) ** 2
orient_reward = (1.0 - orient_diff) ** 2

Penalize the robot for moving too much
movement_penalty = params['speed'] * 0.01

Combine the rewards and penalties to get the final reward
reward = (pos_reward + orient_reward) - movement_penalty

return reward

How is RL Different from Supervised Learning (SL)?

Supervised Learning
• Target labels for ℎ are directly

available in the training data
• Train to map (regress/classify)

from H to I in the training data

Reinforcement Learning
• Optimal action labels . for states
are not given to us. No
predefined solutions!

• Train by trying various action
sequences in an environment,
and observing which ones
produce good rewards over time.

RL: Find , # : 2 → 4 that maximizes expected utility

SL: Find ℎ H : J → K, that minimizes a loss ! over training (H, I) pairs

Key Problems Specific to RL:
• Credit assignment: Which actions in a sequence were the good/bad ones?
• Exploration vs Exploitation: Yes, trial-and-error, but smartly pick what to try?

54

