Administrivia
e Co-Instructor Introduction

* HW1 in progress, due next Wednesday.
" Primers on various topics posted on the class webpage.

* Quizzes each week, starting next week. 1 week to complete. Any score >
50% counts for full points.

* TA introduction slides posted on the class webpage.
* Slides posted after the class.

* TA Office Hour schedule coming soon.
" Mine will be Friday mornings at 9.15-10.15 a.m. each week
* Some movement on add/drop, some of you added. Prioritizing by date of

graduation, and when you came on the waitlist. Speak with me if you have
an extraordinary need to take the class.
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Recap: Types of Machine Learning

* Supervised learning
" Input: Examples of inputs and desired outputs
= Qutput: Model that predicts output given a new input

* Unsupervised learning
" Input: Examples of some data (no “outputs”)
" Qutput: Representation of structure in the data

* Reinforcement learning
" Input: Sequence of interactions with an environment
" Qutput: Policy that performs a desired task




Recap: The Machine Learning Pipeline
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algorithm




Recap: The Machine Learning Pipeline

New input

¥

Think of this learned model as replacing a g
@

manually written function in code

output = function (input) -

Model f

¥

Predicted output




Supervised ML as Programming 2.0

Traditional Programming Machine learning (ML)

The key difference lies in how the “programmer” specifies tasks to the computer



Supervised ML task specification: pregrams examples

Here is a program to
implement Newton’s
second law of motion

lef compute_force(m, a):
[i]
returns force (in N) needed to
move mass m (in kg) at
acceleration a (in m/s”"2)

B

F=mnx*xa

Here are some

examples. Try to
imitate them.

2.5 4 10

5 2 10
20 0.5 10
40 0.25 10
40 2.5 100
20 ~ 100

It seems a bit silly to teach Newton’s law by examples, when you can code it up ...




Supervised ML task specification: pregrams examples

Here are some
examples. Try to
imitate them.

Here is a program to
recognize an image as

a CoOw or a turtle

&

def cow or turtle (image):

207

“turtles”




Putting the trained ML system to use

Here are some
examples. Try to
imitate them.

“turtles”







Designing the ML pipeline: The Hypothesis Class

New mput

Data Z Machine learning Model f
algorithm

Predlcted output
Design Choice:

What model family (a.k.a. hypothesis class) to consider when looking for [ ?



Linear Functions

* Consider the space of linear functions fz (x) defined by

fp(x)=p"x



Linear Functions

* Consider the space of linear functions fz (x) defined by

X1

fp)=p"'x=1[B1 - Bal| i |=Pxs+ -+ Paxg

| Xd ]

« x € R% is called an input (a.k.a. features or covariates)
* 3 € R% is called the parameters (a.k.a. parameter vector)
* § = fz(x) is called the output (a.k.a. predicted label)



Linear Regression Problem “Target labels”, or just “labels”

* Input: Dataset Z = { (x| v{), ..., (x,,|v, ]}, where x; € R% and y; € R

* Desired Output: A linear function f;(x) = ' x such that y; = ' x;

* Typical notation
» Use i to index examples (x;,y;) in data Z
" Use j to index components x; of x € R4

" x;j is component j of input example i

* Goal: Estimate f € R?



Linear Regression Problem

* Input: Data Z = {(x{,v¢), ..., (x,, v,)}, where x; € R* and y; € R
* Output: A linear function f;(x) = ' x such that y; = ' x;

NSIDC Index of Arctic Sea Ice in September
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https://www.flickr.com/photos/gsfc/5937599688/
https://nsidc.org/arcticseaicenews/sea-ice-tools/

Linear Regression Problem Design Choice: What does this mean?

e Input: Data Z = {(x{,v¢), ..., (x,, v,)}, where x; € R 4nd y; € R
* Output: A linear function f; (x) = ' x such that y; = ' x;

NSIDC Index of Arctic Sea Ice in September

7.0 S'\\ i fﬁ (X)

E’é 6.0 . \-
i f% 5.0 \‘/ .
gy 4' T s —
580 — y;isthe seaice extent
2= 3
°E
< 20 1 -
10 x; € R is the year
L 0.0
Photo by NASA Goddard . ; 1975 1985 1995 2005 2015 2025

Year

Image: https://www.flickr.com/photos/gsfc/5937599688/
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Choice of Loss Function

* For a single example,
"y = Bl i (v = B x)* small
* Mean squared error (MSE):

1 n
L5 7)== ) (v = T
=1

 Computationally convenient and
works well in practice




Linear Regression Problem, More Precisely

* Input: Data Z = {(x{,v¢), ..., (x,, v,)}, where x; € R* and y; € R
* Output: A linear function f;(x) = ' x such that y; = ' x;




Linear Regression Problem, More Precisely

* Input: Data Z = {(x{,v¢), ..., (x,, v,)}, where x; € R* and y; € R
* Output: A linear function f; (x) = £ " x that minimizes the MSE:

1 n
L(S;7) = Ez(% — BT x;)?
i=1

With these choices, the linear regression problem is sometimes called
“Ordinary Least Squares” (OLS).



Linear Regression Algorithm

* Input: Dataset Z = {(xq, V1), ..., (%, v, ) }
* Compute

((Z) = argmin L(B; Z)
LERA

.1
= arg min =m0 = B x)?
ER

* Output: [, (x) = B(2)Tx

I\/Ve vi/ill later discuss how to find the parameters [ that minimize the MSE
0SS






Minimizing the Mean Squared Error

Q: What is depicted here is actually the “sum” of squared errors (SSE), but it
doesn’t really matter. Why?

Youtube: 3-Minute Data Science



Intuition on Minimizing MSE Loss with 1-D inputs

* Consider x € Rand [ € R, for the hypothesis class y = fx
* Then, MSE = L(; 7Z) =% m (= Bx)?
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Intuition on Minimizing MSE Loss with 1-D inputs

* Consider x € Rand [ € R, for the hypothesis class y = fx
* Then, MSE = L(; 7Z) =% m (= Bx)?
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Intuition on Minimizing MSE Loss with 1-D inputs

* Consider x € Rand [ € R, for the hypothesis class y = fx
* Then, MSE = L(; 7Z) =% m (= Bx)?
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Intuition on Minimizing MSE Loss with 1-D inputs

* Consider x € Rand [ € R, for the hypothesis class y = fx
* Then, MSE = L(; 7Z) =% m (= Bx)?

y L(B;7)

N
@
O R, N W A U




Intuition on Minimizing MSE Loss

* Convex (“bowl shaped”) in general

100 5

L(B;Z)

0, 20 -20 o,

Later, we will discuss how to find the parameters [ that minimize the MSE loss L

Slide by Andrew Ng






What Is A “Good” Mean Squared Error?

e Zero MSE is rarely achievable. How do we know that the linear regression
algorithm worked well?

 Compare to simple baselines: “Is my ML algorithm giving me more than
what | could easily have coded up?” For example,

" Constant prediction, e.g., predicting the mean of the training dataset
target labels

= Handcrafted model

* A suite of performance metrics: There’s no reason to solely rely on MSE for
performance evaluation, even if you use MSE as the loss function.

* Evaluate beyond the training examples: (more on this soon)




Alternative Functions to Measure Performance

1

* Mean absolute error: - i=1 Vi — il
. 1 |’\._ |
e Mean relative error: — ?=1 il
n Vil
e R? score: 1 ——>
Variance

» “Coefficient of determination”
= Higher is better, R* = 1 is perfect



Alternative Functions to Measure Performance

Iyvn Oi-BHi—w)

n <it=1 Go

" Usually estimated from some sampled measurements of those variables,
and denoted as R (related to R? on the last slide!)

* Pearson correlation:

 Rank-order correlation:

" First rank the measurements of J; and y separately, then replace each
value in y by its rank, and ditto for y

" Then measure the linear correlation between those ranks



Performance Metrics

* Loss functions are special performance metrics.
" Every loss function, e.g. MSE, is a performance metric, but not every
performance metric is a convenient loss function for ML. (Reasons later)

* Always think carefully about the useful performance metric(s) for your ML
problem. Use them to iterate on your ML design choices.
" E.g. For an ML model that makes car driving decisions,
" How frequently did it successfully get from A to B?
" How fast did it get there?
" How many traffic violations did it commit?

* The loss function is a single scalar function. A good choice of loss function:
» expresses all the performance metrics.
" is “convenient for machine learning.” More on this later.



Zooming Out of Linear Regression

To The Big Picture For a Bit ...




Function Approximation View of ML

3-0+0

Data Z Machine learning Model f
algorithm

ML algorithm outputs a model f that best “approximates” the “true” function
that generated data /



he “True Function” f~

* Input: Dataset Z
" Presume there is an unknown function f~ that generates 7

* Goal: Find an approximation fz = f~ in our model family f; € F
" Typically, f* not in our model family F




Function Approximation View of ML

* Framework for designing machine learning algorithms

* Two key design decisions:
" What is the family of candidate models f?

" How to define “approximating”?

Let us see how linear regression fits in this framework.



Machine Learning

3-0+0

Data Z Machine learning Model f
algorithm




Machine Learning as Parametric Function Approximation

3-0+0

Data Z Machine learning Model /5

algorithm /

Parametric model family (i.e., F = {f[; | f € R4 })




Machine Learning as Parametric Function Approximation

3-0+0

A

Data / p(Z) = argming L(S; Z) Model fB(Z)

N

ML algorithm minimizes loss of parameters [ over data 7




... For Supervised Learning

3-0+0

Data / [(Z) = arg ming L(f; Z) Model fB(Z)




... For Supervised Learning

3-0+0

A

Data Z = {(x;, y)}i~y  f(Z) = argming L(B; 2) Model /7 )

\ L encodes y; =~ fz(x;)

Goal is for function to approximate label y given input x




... Specifically, For Regression

3-0+0

A

Data Z = {(x;, y)}i~y  f(Z) = argming L(B; 2) Model /7 )

\ L encodes y; =~ fz(x;)

Label is a real number y; € R




... Specifically, For Linear Regression

£33

A

Data Z = {(x;, y)}i~y  f(Z) = argming L(B; 2) Model /7 )
L encodes y; = fz(x;)

/ S

MSE loss Model is a linear function fz(x) = ' x




Linear Regression

General strategy Linear regression strategy
* Model family F = {fﬁ}[; * Linear functions F = {fﬁ(x) = ,BTx}
* Loss function L(f; Z) e MSEL(f3;7) = % L= BTx)?

Linear regression algorithm

f(Z) = arg min L(f; Z)
B






Linear Regression With Feature
Maps



Example: Quadratic Function




Example: Quadratic Function

Can we get a better fit?



Feature Maps

General strategy Linear regression with feature map
* Model family FF = {fﬁ} * Linear functions over a given feature
g map ¢: X - R¥

* Loss function L(f; Z)
F={f3(x)=p3Tpx)]}

« MSE L(3;7) = % r (= BT ()



Quadratic Feature Map

* Consider the feature map ¢: R — R? given by
X
P (x) = [le

* Then, the model family is

fp(x) = Byx + Box?



Quadratic Feature Map

9 fg(x) = Ox + 1x°

In our family for [/ = [2]'



Feature Maps

* Effectively changes the hypothesis space! This is a powerful strategy
for encoding “prior knowledge” about the function we are looking to
approximate.

* Terminology
= x is the input and ¢ (x) is the features
" Often used interchangeably



Examples of Feature Maps

* Polynomial features
" p(x) = [1, %1, X2, X7, X1 X3, X5 ]
" fp(x) = By + Pox1 + B3x; + Baxi + Bsx1xy + Pexs + -
" Quadratic features are very common; capture “feature interactions”
" Can use other nonlinearities (exponential, logarithm, square root, etc.

* Note the intercept term (in red)

n q')(x) — [1 X1 Xd]T
" Almost always used; captures constant effect

* Encoding non-real inputs
V(]

" E.g. Education level x € {"high school”, “college”, “masters”, “doctoral”}
¢(x) maps to {1, 2, 3, 4}



Examples of Feature Maps

* Feature maps can also help handle very complex data like text and images
" E.g., x = “the food was good” and y = 4 stars

= p(x) = [1(“good” € x) 1(“bad” € x) ..]T

* More on features for text and images later in the course!



Algorithm for Non-Linear Regression

First, select an appropriate feature map:

d(x)=| :
-d)d’(x)-

Then, non-linear regression reduces to linear regression!
e Step 1: Compute ¢p; = ¢p(x;) for each x; in Z

e Step 2: Run linear regression with Z' = {(¢p1, v1), ..., (¢, ¥,,)}






Question

* Why not always throw in lots of features?
" After all, more features => more expressive hypothesis space!
= For example, if p(x) = [1, x4, x5, X, X1 X5, X5, ... ]
= Can fit any n points using an n-th degree polynomial f(x) = ; +
Baxy + Baxy + Baxi + Psxi Xy + Pexs + -+

Y|




Generalization To Unseen Inputs

* Issue: The goal in machine learning is generalization
= Given a new input x, predict the label § = fz(x)

The errors on new inputs are very large!



Generalization To Unseen Inputs

* Issue: The goal in machine learning is generalization
= Given a new input x, predict the label § = fz(x)

e 2¢%¢ +2-- (0

X
Vanilla linear regression actually works better!



raining vs. Test Data

* Training data: Examples Z = {(x, v)} used to fit our model

* Test data: New inputs x whose labels v we want to predict



Overfitting vs. Underfitting

* Overfitting * Underfitting
" Fit the training data Z well = Fit the training data Z poorly
= Fit new test data (x, y) poorly = (Necessarily also fit new test data

(x, y) poorly)




Hypothesis Space, Overfitting, and Underfitting

Overfitting
Too many hypotheses in H
that all fit the data well,
Too little data,
Noisy data

A’ 4

fo

Underfitting
Inexpressive hypothesis
space, i.e., no function in F
that can approximate [~
on the data



“Noisy” Data

* Noise in labels y;
" True data generating process is more complex than we can capture
" May depend on unobserved features

* Noise in features x;
" Measurement error in the feature values
" Errors due to preprocessing
" Some features might be irrelevant to the decision function






