
Administrivia
• Co-Instructor Introduction
• HW1 in progress, due next Wednesday.

§ Primers on various topics posted on the class webpage.
• Quizzes each week, starting next week. 1 week to complete. Any score >

50% counts for full points.
• TA introduction slides posted on the class webpage.
• Slides posted after the class.
• TA Office Hour schedule coming soon.

§ Mine will be Friday mornings at 9.15-10.15 a.m. each week
• Some movement on add/drop, some of you added. Prioritizing by date of

graduation, and when you came on the waitlist. Speak with me if you have
an extraordinary need to take the class.

Lecture 2: Linear Regression (Part 1)

CIS 4190/5190
Spring 2023

Recap: Types of Machine Learning

• Supervised learning
§ Input: Examples of inputs and desired outputs
§ Output: Model that predicts output given a new input

• Unsupervised learning
§ Input: Examples of some data (no “outputs”)
§ Output: Representation of structure in the data

• Reinforcement learning
§ Input: Sequence of interactions with an environment
§ Output: Policy that performs a desired task

Recap: The Machine Learning Pipeline

Data 𝑍 Machine learning
algorithm

Model 𝑓

Recap: The Machine Learning Pipeline

Model 𝑓

New input

Predicted output

Think of this learned model as replacing a
manually written function in code
output = function(input)

Supervised ML as Programming 2.0

Traditional Programming Machine learning (ML)

The key difference lies in how the “programmer” specifies tasks to the computer

Supervised ML task specification: programs examples

Mass m (kg) Acceleration a (m/s^2) Force F (N)

2.5 4 10

5 2 10

20 0.5 10

40 0.25 10

40 2.5 100

20 5 100

50 2 100

Here is a program to
implement Newton’s
second law of motion

Here are some
examples. Try to

imitate them.

It seems a bit silly to teach Newton’s law by examples, when you can code it up …

Supervised ML task specification: programs examples

def cow_or_turtle(image):

???

Here is a program to
recognize an image as

a cow or a turtle

Here are some
examples. Try to

imitate them.

“cows” “turtles”

Putting the trained ML system to use

Here are some
examples. Try to

imitate them.

“cows” “turtles”

“cow”

Model 𝑓

Designing the ML pipeline: The Hypothesis Class

Data 𝑍 Machine learning
algorithm

Model 𝑓

New input

Predicted output

Design Choice:
What model family (a.k.a. hypothesis class) to consider when looking for 𝑓?

Linear Functions

• Consider the space of linear functions 𝑓! 𝑥 defined by

𝑓! 𝑥 = 𝛽"𝑥 = 𝛽# ⋯ 𝛽$
𝑥#
⋮
𝑥$

= 𝛽#𝑥# +⋯+ 𝛽$𝑥$

Linear Functions

• Consider the space of linear functions 𝑓! 𝑥 defined by

𝑓! 𝑥 = 𝛽"𝑥 = 𝛽# ⋯ 𝛽$
𝑥#
⋮
𝑥$

= 𝛽#𝑥# +⋯+ 𝛽$𝑥$

• 𝑥 ∈ ℝ$ is called an input (a.k.a. features or covariates)
• 𝛽 ∈ ℝ$ is called the parameters (a.k.a. parameter vector)
• *𝑦 = 𝑓! 𝑥 is called the output (a.k.a. predicted label)

Linear Regression Problem

• Input: Dataset 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Desired Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 such that 𝑦& ≈ 𝛽"𝑥&

• Typical notation
§ Use 𝑖 to index examples 𝑥& , 𝑦& in data 𝑍
§ Use 𝑗 to index components 𝑥' of 𝑥 ∈ ℝ$

§ 𝑥&' is component 𝑗 of input example 𝑖

• Goal: Estimate 𝛽 ∈ ℝ$

“Target labels”, or just “labels”

Linear Regression Problem

• Input: Data 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 such that 𝑦& ≈ 𝛽"𝑥&

Image: https://www.flickr.com/photos/gsfc/5937599688/
Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1975 1985 1995 2005 2015 2025
A

rc
ti

c
Se

a
Ic

e
E

xt
en

t
(m

ill
io

n
s

o
f s

q
 k

m
)

Year

NSIDC Index of Arctic Sea Ice in September

Photo by NASA Goddard

𝑥& ∈ ℝ# is the year

𝑦& is the sea ice extent

𝑓! 𝑥

https://www.flickr.com/photos/gsfc/5937599688/
https://nsidc.org/arcticseaicenews/sea-ice-tools/

Linear Regression Problem

• Input: Data 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 such that 𝑦& ≈ 𝛽"𝑥&

Image: https://www.flickr.com/photos/gsfc/5937599688/
Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1975 1985 1995 2005 2015 2025
A

rc
ti

c
Se

a
Ic

e
E

xt
en

t
(m

ill
io

n
s

o
f s

q
 k

m
)

Year

NSIDC Index of Arctic Sea Ice in September

Photo by NASA Goddard

𝑦& is the sea ice extent

𝑓! 𝑥

Design Choice: What does this mean?

𝑥& ∈ ℝ# is the year

https://www.flickr.com/photos/gsfc/5937599688/
https://nsidc.org/arcticseaicenews/sea-ice-tools/

Choice of Loss Function

• For a single example,
§ 𝑦& ≈ 𝛽"𝑥& if 𝑦& − 𝛽"𝑥& (small

• Mean squared error (MSE):

𝐿 𝛽; 𝑍 =
1
𝑛
7
&)#

%

𝑦& − 𝛽"𝑥& (

• Computationally convenient and
works well in practice

𝐿 𝛽; 𝑍 =
𝜖! + 𝜖! + 𝜖! + 𝜖! + 𝜖!

𝑛

𝑥

𝑦 𝑓! 𝑥 = 𝛽"𝑥

Linear Regression Problem, More Precisely

• Input: Data 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 such that 𝑦& ≈ 𝛽"𝑥&

Linear Regression Problem, More Precisely

• Input: Data 𝑍 = 𝑥#, 𝑦# , … , 𝑥% , 𝑦% , where 𝑥& ∈ ℝ$ and 𝑦& ∈ ℝ
• Output: A linear function 𝑓! 𝑥 = 𝛽"𝑥 that minimizes the MSE:

𝐿 𝛽; 𝑍 =
1
𝑛
7
&)#

%

𝑦& − 𝛽"𝑥& (

With these choices, the linear regression problem is sometimes called
“Ordinary Least Squares” (OLS).

Linear Regression Algorithm

• Input: Dataset 𝑍 = 𝑥!, 𝑦! , … , 𝑥", 𝑦"
• Compute

'𝛽 𝑍 = arg min
#∈ℝ!

𝐿 𝛽; 𝑍

'𝛽 𝑍 = arg min
#∈ℝ!

!
"
∑&'!" 𝑦& − 𝛽(𝑥&)

• Output: 𝑓*# + 𝑥 = '𝛽 𝑍 (𝑥

We will later discuss how to find the parameters 𝛽 that minimize the MSE
loss 𝐿

Minimizing the Mean Squared Error

Youtube: 3-Minute Data Science

Q: What is depicted here is actually the “sum” of squared errors (SSE), but it
doesn’t really matter. Why?

Intuition on Minimizing MSE Loss with 1-D inputs

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ, for the hypothesis class 𝑦 = 𝛽𝑥

• Then, MSE = 𝐿 𝛽; 𝑍 = #
*
∑&)#% 𝑦& − 𝛽𝑥& (

0

1

2

3

0 1 2 3
𝑥𝛽 = 1

𝑦

0
1
2
3
4
5

0 0.5 1 1.5 2
𝛽

𝐿(𝛽; 𝑍)

Intuition on Minimizing MSE Loss with 1-D inputs

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ, for the hypothesis class 𝑦 = 𝛽𝑥

• Then, MSE = 𝐿 𝛽; 𝑍 = #
*
∑&)#% 𝑦& − 𝛽𝑥& (

0

1

2

3

0 1 2 3
𝑥𝛽 = 0.5

0
1
2
3
4
5

0 0.5 1 1.5 2
𝛽

𝐿(𝛽; 𝑍)𝑦

Intuition on Minimizing MSE Loss with 1-D inputs

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ, for the hypothesis class 𝑦 = 𝛽𝑥

• Then, MSE = 𝐿 𝛽; 𝑍 = #
*
∑&)#% 𝑦& − 𝛽𝑥& (

0

1

2

3

0 1 2 3
𝑥𝛽 = 0.25

0
1
2
3
4
5

0 0.5 1 1.5 2
𝛽

𝐿(𝛽; 𝑍)𝑦

Intuition on Minimizing MSE Loss with 1-D inputs

• Consider 𝑥 ∈ ℝ and 𝛽 ∈ ℝ, for the hypothesis class 𝑦 = 𝛽𝑥

• Then, MSE = 𝐿 𝛽; 𝑍 = #
*
∑&)#% 𝑦& − 𝛽𝑥& (

0

1

2

3

0 1 2 3
𝑥

0
1
2
3
4
5

0 0.5 1 1.5 2
𝛽

𝐿(𝛽; 𝑍)𝑦

Intuition on Minimizing MSE Loss

• Convex (“bowl shaped”) in general

Slide by Andrew Ng

𝐿 𝛽; 𝑍

𝛽(

𝛽#

Later, we will discuss how to find the parameters 𝛽 that minimize the MSE loss 𝐿

What Is A “Good” Mean Squared Error?
• Zero MSE is rarely achievable. How do we know that the linear regression

algorithm worked well?
• Compare to simple baselines: “Is my ML algorithm giving me more than

what I could easily have coded up?” For example,
§ Constant prediction, e.g., predicting the mean of the training dataset

target labels
§ Handcrafted model
§ …

• A suite of performance metrics: There’s no reason to solely rely on MSE for
performance evaluation, even if you use MSE as the loss function.
• Evaluate beyond the training examples: (more on this soon)

Alternative Functions to Measure Performance

• Mean absolute error: #
%
∑&)#% | *𝑦& − 𝑦&|

• Mean relative error: #
%
∑&)#% +,!-,!

|,!|

• 𝑹𝟐 score: 1 − 012
34564*78

§ “Coefficient of determination”
§ Higher is better, 𝑅(= 1 is perfect

Alternative Functions to Measure Performance

• Pearson correlation: #
%
∑&)#% (:,!-;<)(,!-<)

;>>
§ Usually estimated from some sampled measurements of those variables,

and denoted as 𝑅 (related to 𝑅(on the last slide!)

• Rank-order correlation:
§ First rank the measurements of *𝑦𝒊 and 𝑦 separately, then replace each

value in 𝑦 by its rank, and ditto for *𝑦
§ Then measure the linear correlation between those ranks

Performance Metrics

• Loss functions are special performance metrics.
§ Every loss function, e.g. MSE, is a performance metric, but not every

performance metric is a convenient loss function for ML. (Reasons later)
• Always think carefully about the useful performance metric(s) for your ML

problem. Use them to iterate on your ML design choices.
§ E.g. For an ML model that makes car driving decisions,

§ How frequently did it successfully get from A to B?
§ How fast did it get there?
§ How many traffic violations did it commit?

• The loss function is a single scalar function. A good choice of loss function:
§ expresses all the performance metrics.
§ is “convenient for machine learning.” More on this later.

Zooming Out of Linear Regression
To The Big Picture For a Bit …

Function Approximation View of ML

Data 𝑍 Machine learning
algorithm

Model 𝑓

ML algorithm outputs a model 𝑓 that best “approximates” the “true” function
that generated data 𝑍

The “True Function” 𝑓∗

• Input: Dataset 𝑍
§ Presume there is an unknown function 𝑓∗ that generates 𝑍

• Goal: Find an approximation 𝑓! ≈ 𝑓∗ in our model family 𝑓! ∈ 𝐹
§ Typically, 𝑓∗ not in our model family 𝐹

𝐹𝑓!𝑓∗

Function Approximation View of ML

• Framework for designing machine learning algorithms

• Two key design decisions:
§ What is the family of candidate models 𝑓?
§ How to define “approximating”?

Let us see how linear regression fits in this framework.

Machine Learning

Data 𝑍 Machine learning
algorithm

Model 𝑓

Machine Learning as Parametric Function Approximation

Data 𝑍 Machine learning
algorithm

Model 𝑓"

Parametric model family (i.e., 𝐹 = 𝑓" 𝛽 ∈ ℝ#)

Machine Learning as Parametric Function Approximation

Data 𝑍 -𝛽 𝑍 = arg min" 𝐿(𝛽; 𝑍) Model 𝑓$" %

ML algorithm minimizes loss of parameters 𝛽 over data 𝑍

… For Supervised Learning

Data 𝑍 -𝛽 𝑍 = arg min" 𝐿(𝛽; 𝑍) Model 𝑓$" %

… For Supervised Learning

Data 𝑍 = 𝑥&, 𝑦& &'(
) -𝛽 𝑍 = arg min" 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦& ≈ 𝑓" 𝑥&
Model 𝑓$" %

Goal is for function to approximate label 𝑦 given input 𝑥

... Specifically, For Regression

Data 𝑍 = 𝑥&, 𝑦& &'(
) -𝛽 𝑍 = arg min" 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦& ≈ 𝑓" 𝑥&
Model 𝑓$" %

Label is a real number 𝑦& ∈ ℝ

... Specifically, For Linear Regression

Data 𝑍 = 𝑥&, 𝑦& &'(
) -𝛽 𝑍 = arg min" 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦& ≈ 𝑓" 𝑥&
Model 𝑓$" %

MSE loss Model is a linear function 𝑓" 𝑥 = 𝛽*𝑥

Linear Regression

General strategy
• Model family 𝐹 = 𝑓! !

• Loss function 𝐿 𝛽; 𝑍

Linear regression strategy
• Linear functions 𝐹 = 𝑓! 𝑥 = 𝛽"𝑥

• MSE 𝐿 𝛽; 𝑍 = #
%
∑&)#% 𝑦& − 𝛽"𝑥& (

Linear regression algorithm

B𝛽 𝑍 = arg min
!

𝐿 𝛽; 𝑍

Linear Regression With Feature
Maps
Linear Regression When Data is Non-Linear?

Example: Quadratic Function

𝑥

𝑦

𝑓! 𝑥 = 𝑥/2

Example: Quadratic Function

𝑥

𝑦
𝑓! 𝑥 = 𝑥

Can we get a better fit?

Feature Maps

General strategy
• Model family 𝐹 = 𝑓! !

• Loss function 𝐿 𝛽; 𝑍

Linear regression with feature map
• Linear functions over a given feature

map 𝜙:𝑋 → ℝ$A

𝐹 = 𝑓! 𝑥 = 𝛽"𝜙 𝑥

• MSE 𝐿 𝛽; 𝑍 = #
%
∑&)#% 𝑦& − 𝛽"𝜙 𝑥&

(

Quadratic Feature Map

• Consider the feature map 𝜙:ℝ → ℝ(given by

𝜙 𝑥 = 𝑥
𝑥(

• Then, the model family is

𝑓! 𝑥 = 𝛽#𝑥 + 𝛽(𝑥(

Quadratic Feature Map

𝑥

𝑦
𝑓! 𝑥 = 0𝑥 + 1𝑥(

In our family for 𝛽 = 0
1 !

Feature Maps

• Effectively changes the hypothesis space! This is a powerful strategy
for encoding “prior knowledge” about the function we are looking to
approximate.

• Terminology
§ 𝑥 is the input and 𝜙 𝑥 is the features
§ Often used interchangeably

Examples of Feature Maps

• Polynomial features
§𝝓 𝑥 = [1, 𝑥#, 𝑥(, 𝑥#(, 𝑥#𝑥(, 𝑥((]
§ 𝑓! 𝑥 = 𝛽# + 𝛽(𝑥# + 𝛽B𝑥(+ 𝛽C𝑥#(+ 𝛽D𝑥#𝑥(+ 𝛽E𝑥((+⋯
§ Quadratic features are very common; capture “feature interactions”
§ Can use other nonlinearities (exponential, logarithm, square root, etc.

• Note the intercept term (in red)
§𝜙 𝑥 = 1 𝑥# … 𝑥$ "

§ Almost always used; captures constant effect

• Encoding non-real inputs
§ E.g. Education level 𝑥 ∈ {“high school”, “college”, “masters”, “doctoral”}
𝜙 𝑥 maps to {1, 2, 3, 4}

Examples of Feature Maps

• Feature maps can also help handle very complex data like text and images
§ E.g., 𝑥 = “the food was good” and 𝑦 = 4 stars
§𝜙 𝑥 = 1 “good” ∈ 𝑥 1 “bad” ∈ 𝑥 … "

• More on features for text and images later in the course!

Algorithm for Non-Linear Regression

First, select an appropriate feature map:

𝝓 𝑥 =
𝜙# 𝑥
⋮

𝜙$" 𝑥

Then, non-linear regression reduces to linear regression!

• Step 1: Compute 𝝓& = 𝝓 𝑥& for each 𝑥& in 𝑍

• Step 2: Run linear regression with 𝑍A = 𝝓#, 𝑦# , … , 𝝓% , 𝑦%

Question

• Why not always throw in lots of features?
§ After all, more features => more expressive hypothesis space!
§ For example, if 𝝓 𝑥 = [1, 𝑥#, 𝑥(, 𝑥#(, 𝑥#𝑥(, 𝑥((, …]
§ Can fit any 𝑛 points using an n-th degree polynomial 𝑓 𝑥 = 𝛽# +
𝛽(𝑥# + 𝛽B𝑥(+ 𝛽C𝑥#(+ 𝛽D𝑥#𝑥(+ 𝛽E𝑥((+⋯

𝑥

𝑦

𝑓! 𝑥

Generalization To Unseen Inputs

• Issue: The goal in machine learning is generalization
§ Given a new input 𝑥, predict the label *𝑦 = 𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥

The errors on new inputs are very large!

Generalization To Unseen Inputs

𝑥

𝑦

𝑓! 𝑥

Vanilla linear regression actually works better!

• Issue: The goal in machine learning is generalization
§ Given a new input 𝑥, predict the label *𝑦 = 𝑓! 𝑥

Training vs. Test Data

• Training data: Examples 𝑍 = 𝑥, 𝑦 used to fit our model

• Test data: New inputs 𝑥 whose labels 𝑦 we want to predict

Overfitting vs. Underfitting

• Overfitting
§ Fit the training data 𝑍 well
§ Fit new test data 𝑥, 𝑦 poorly

• Underfitting
§ Fit the training data 𝑍 poorly
§ (Necessarily also fit new test data
𝑥, 𝑦 poorly)

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥

Hypothesis Space, Overfitting, and Underfitting

𝐹
𝑓∗

𝑓!∗

Overfitting
Too many hypotheses in ℋ

that all fit the data well,
Too little data,

Noisy data

𝑓∗
𝐹𝑓!∗

Underfitting
Inexpressive hypothesis

space, i.e., no function in F
that can approximate 𝑓∗

on the data

“Noisy” Data

• Noise in labels 𝒚&
§ True data generating process is more complex than we can capture
§ May depend on unobserved features

• Noise in features 𝒙&
§ Measurement error in the feature values
§ Errors due to preprocessing
§ Some features might be irrelevant to the decision function

