Administrivia

- Co-Instructor Introduction
- HW1 in progress, due next Wednesday.
 - Primers on various topics posted on the class webpage.
- Quizzes each week, starting next week. 1 week to complete. Any score > 50% counts for full points.
- TA introduction slides posted on the class webpage.
- Slides posted after the class.
- TA Office Hour schedule coming soon.
 - Mine will be Friday mornings at 9.15-10.15 a.m. each week
- Some movement on add/drop, some of you added. Prioritizing by date of graduation, and when you came on the waitlist. Speak with me if you have an extraordinary need to take the class.

Lecture 2: Linear Regression (Part 1)

CIS 4190/5190 Spring 2023

Recap: Types of Machine Learning

- Supervised learning
 - Input: Examples of inputs and desired outputs
 - Output: Model that predicts output given a new input
- Unsupervised learning
 - Input: Examples of some data (no "outputs")
 - Output: Representation of structure in the data
- Reinforcement learning
 - Input: Sequence of interactions with an environment
 - Output: Policy that performs a desired task

Recap: The Machine Learning Pipeline

Recap: The Machine Learning Pipeline

Think of this learned model as replacing a manually written function in code output = function(input)

Supervised ML as Programming 2.0

Traditional Programming

Machine learning (ML)

The key difference lies in how the "programmer" specifies tasks to the computer

Supervised ML task specification: programs examples

1	<pre>def compute_force(m, a):</pre>	Mass m (kg)	Acceleration a (m/s^2)	Force F (N)
2	<pre>returns force (in N) needed to move mass m (in kg) at acceleration a (in m/s^2) </pre>	2.5	4	10
3		5	2	10
5		20	0.5	10
6		40	0.25	10
7		40	2.5	100
0	$\Gamma = \Pi * a$	20	5	100
It seems a bit silly to teach Newton's law by examples, when you can code it up				

Supervised ML task specification: programs examples

def cow or turtle(image):

Putting the trained ML system to use

Designing the ML pipeline: The Hypothesis Class

Design Choice:

What **model family** (a.k.a. **hypothesis class**) to consider when looking for *f*?

Linear Functions

• Consider the space of linear functions $f_{\beta}(x)$ defined by

$$f_{\beta}(x) = \beta^{\top} x$$

Linear Functions

• Consider the space of linear functions $f_{\beta}(x)$ defined by

$$f_{\beta}(x) = \beta^{\mathsf{T}} x = \begin{bmatrix} \beta_1 & \cdots & \beta_d \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} = \beta_1 x_1 + \cdots + \beta_d x_d$$

- $x \in \mathbb{R}^d$ is called an **input** (a.k.a. **features** or **covariates**)
- $\beta \in \mathbb{R}^d$ is called the **parameters** (a.k.a. **parameter vector**)
- $\hat{y} = f_{\beta}(x)$ is called the **output** (a.k.a. **predicted label**)

Linear Regression Problem "Target labels", or just "labels"

- Input: Dataset $Z = \{(x_1 | y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- **Desired Output:** A linear function $f_{\beta}(x) = \beta^{\top} x$ such that $y_i \approx \beta^{\top} x_i$
- Typical notation
 - Use *i* to index examples (x_i, y_i) in data Z
 - Use j to index components x_j of $x \in \mathbb{R}^d$
 - x_{ij} is component *j* of input example *i*
- **Goal:** Estimate $\beta \in \mathbb{R}^d$

Linear Regression Problem

- Input: Data $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- **Output:** A linear function $f_{\beta}(x) = \beta^{\top} x$ such that $y_i \approx \beta^{\top} x_i$

Image: <u>https://www.flickr.com/photos/gsfc/5937599688/</u> Data from <u>https://nsidc.org/arcticseaicenews/sea-ice-tools/</u>

Linear Regression Problem Design Choice: What does this mean?

- Input: Data $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ Output: A linear function $f_{\beta}(x) = \beta^{\top} x$ such that $y_i \approx \beta^{\top} x_i$

Image: https://www.flickr.com/photos/gsfc/5937599688/ Data from https://nsidc.org/arcticseaicenews/sea-ice-tools/

Choice of Loss Function

- For a single example, • $y_i \approx \beta^T x_i$ if $(y_i - \beta^T x_i)^2$ small
- Mean squared error (MSE):

$$L(\boldsymbol{\beta}; \boldsymbol{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{y}_i - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i)^2$$

• Computationally convenient and works well in practice

Linear Regression Problem, More Precisely

- Input: Data $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- **Output:** A linear function $f_{\beta}(x) = \beta^{\top} x$ such that $y_i \approx \beta^{\top} x_i$

Linear Regression Problem, More Precisely

- Input: Data $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- **Output:** A linear function $f_{\beta}(x) = \beta^{T} x$ that minimizes the MSE:

$$L(\boldsymbol{\beta}; \boldsymbol{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{y}_i - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{x}_i)^2$$

With these choices, the linear regression problem is sometimes called "Ordinary Least Squares" (OLS).

Linear Regression Algorithm

- Input: Dataset $Z = \{(x_1, y_1), ..., (x_n, y_n)\}$
- Compute

$$\hat{\beta}(Z) = \arg\min_{\substack{\beta \in \mathbb{R}^d \\ \beta \in \mathbb{R}^d}} L(\beta; Z)$$
$$= \arg\min_{\substack{\alpha \in \mathbb{R}^d \\ \beta \in \mathbb{R}^d}} \frac{1}{n} \sum_{i=1}^n (y_i - \beta^\top x_i)^2$$

• **Output:** $f_{\hat{\beta}(Z)}(x) = \hat{\beta}(Z)^{\top}x$

We will later discuss how to find the parameters β that minimize the MSE loss L

Minimizing the Mean Squared Error

doesn't really matter. Why?

Youtube: 3-Minute Data Science

- Consider $x \in \mathbb{R}$ and $\beta \in \mathbb{R}$, for the hypothesis class $y = \beta x$
- Then, MSE = $L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i \beta x_i)^2$

- Consider $x \in \mathbb{R}$ and $\beta \in \mathbb{R}$, for the hypothesis class $y = \beta x$
- Then, MSE = $L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i \beta x_i)^2$

- Consider $x \in \mathbb{R}$ and $\beta \in \mathbb{R}$, for the hypothesis class $y = \beta x$
- Then, MSE = $L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i \beta x_i)^2$

- Consider $x \in \mathbb{R}$ and $\beta \in \mathbb{R}$, for the hypothesis class $y = \beta x$
- Then, MSE = $L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i \beta x_i)^2$

Intuition on Minimizing MSE Loss

Later, we will discuss how to find the parameters β that minimize the MSE loss L

What Is A "Good" Mean Squared Error?

- Zero MSE is rarely achievable. How do we know that the linear regression algorithm worked well?
- Compare to simple baselines: "Is my ML algorithm giving me more than what I could easily have coded up?" For example,
 - Constant prediction, e.g., predicting the mean of the training dataset target labels
 - Handcrafted model
 - ...
- A suite of performance metrics: There's no reason to solely rely on MSE for performance evaluation, even if you use MSE as the loss function.
- Evaluate beyond the training examples: (more on this soon)

Alternative Functions to Measure Performance

Mean absolute error:

$$\frac{1}{n}\sum_{i=1}^{n}|\hat{y}_{i}-y_{i}|$$

Mean relative error:

$$\frac{1}{n}\sum_{i=1}^{n}\frac{|\widehat{y_i}-y_i|}{|y_i|}$$

• R^2 score:

$$1 - \frac{\text{MSE}}{\text{Variance}}$$

- "Coefficient of determination"
- Higher is better, $R^2 = 1$ is perfect

Alternative Functions to Measure Performance

• Pearson correlation:

$$\frac{1}{n}\sum_{i=1}^{n}\frac{(\hat{y}_{i}-\hat{\mu})(y_{i}-\mu)}{\hat{\sigma}\sigma}$$

- Usually estimated from some sampled measurements of those variables, and denoted as R (related to R² on the last slide!)
- Rank-order correlation:
 - First rank the measurements of \hat{y}_i and y separately, then replace each value in y by its rank, and ditto for \hat{y}
 - Then measure the linear correlation between those ranks

Performance Metrics

- Loss functions are special performance metrics.
 - Every loss function, e.g. MSE, is a performance metric, but not every performance metric is a convenient loss function for ML. (Reasons later)
- Always think carefully about the useful performance metric(s) for your ML problem. Use them to iterate on your ML design choices.
 - E.g. For an ML model that makes car driving decisions,
 - How frequently did it successfully get from A to B?
 - How fast did it get there?
 - How many traffic violations did it commit?
- The loss function is *a single scalar function*. A good choice of loss function:
 - expresses all the performance metrics.
 - is "convenient for machine learning." More on this later.

Zooming Out of Linear Regression To The Big Picture For a Bit ...

Function Approximation View of ML

ML algorithm outputs a model f that best "approximates" the "true" function that generated data Z

The "True Function" f^*

- Input: Dataset Z
 - Presume there is an unknown function f^* that generates Z
- **Goal:** Find an approximation $f_{\beta} \approx f^*$ in our model family $f_{\beta} \in F$
 - Typically, f* not in our model family F

Function Approximation View of ML

- Framework for designing machine learning algorithms
- Two key design decisions:
 - What is the family of candidate models f?
 - How to define "approximating"?

Let us see how linear regression fits in this framework.

Machine Learning

Data Z

Machine learning algorithm

Model *f*

Machine Learning as Parametric Function Approximation

Machine Learning as Parametric Function Approximation

ML algorithm minimizes loss of parameters β over data Z

... For Supervised Learning

Data Z $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$

Model $f_{\widehat{\beta}(Z)}$

... For Supervised Learning

Model $f_{\widehat{\beta}(Z)}$

Data
$$Z = \{(x_i, y_i)\}_{i=1}^n$$
 $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$
 $L \text{ encodes } y_i \approx f_{\beta}(x_i)$

Goal is for function to approximate **label** y given **input** x

... Specifically, For Regression

Model $f_{\widehat{\beta}(Z)}$

Data $Z = \{(x_i, y_i)\}_{i=1}^n$ $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$ $L \text{ encodes } y_i \approx f_{\beta}(x_i)$

Label is a real number $y_i \in \mathbb{R}$

... Specifically, For Linear Regression

Data
$$Z = \{(x_i, y_i)\}_{i=1}^n$$
 $\hat{\beta}(Z) = \arg \min_{\beta} L(\beta; Z)$ Model $f_{\widehat{\beta}(Z)}$
 L encodes $y_i \approx f_{\beta}(x_i)$
MSE loss Model is a linear function $f_{\beta}(x) = \beta^{\mathsf{T}}$

 ${\mathcal X}$

Linear Regression

General strategy

- Model family $F = \{f_{\beta}\}_{\beta}$
- Loss function $L(\beta; \mathbb{Z})$

Linear regression strategy

• Linear functions $F = \{ f_{\beta}(x) = \beta^{\top} x \}$

• MSE
$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2$$

Linear regression algorithm

$$\hat{\beta}(Z) = \arg\min_{\beta} L(\beta; Z)$$

Linear Regression With Feature Maps

Linear Regression When Data is *Non-Linear*?

Example: Quadratic Function

Example: Quadratic Function

Can we get a better fit?

Feature Maps

General strategy

- Model family $F = \{f_{\beta}\}_{\beta}$
- Loss function $L(\beta; Z)$

Linear regression with feature map

• Linear functions over a given **feature** map $\phi: X \to \mathbb{R}^{d'}$

$$F = \left\{ f_{\beta}(x) = \beta^{\mathsf{T}} \phi(x) \right\}$$

• MSE
$$L(\boldsymbol{\beta}; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_i))^2$$

Quadratic Feature Map

• Consider the feature map $\phi \colon \mathbb{R} \to \mathbb{R}^2$ given by

$$\phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$

• Then, the model family is

$$f_{\beta}(x) = \beta_1 x + \beta_2 x^2$$

Quadratic Feature Map

Feature Maps

- Effectively changes the hypothesis space! This is a powerful strategy for encoding "prior knowledge" about the function we are looking to approximate.
- Terminology
 - x is the **input** and $\phi(x)$ is the **features**
 - Often used interchangeably

Examples of Feature Maps

- Polynomial features
 - $\boldsymbol{\phi}(x) = [1, x_1, x_2, x_1^2, x_1 x_2, x_2^2]$
 - $f_{\beta}(x) = \beta_1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_1^2 + \beta_5 x_1 x_2 + \beta_6 x_2^2 + \cdots$
 - Quadratic features are very common; capture "feature interactions"
 - Can use other nonlinearities (exponential, logarithm, square root, etc.
- Note the intercept term (in red)
 - $\bullet \phi(x) = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}^\top$
 - Almost always used; captures constant effect
- Encoding non-real inputs
 - E.g. Education level $x \in \{\text{``high school'', ``college'', ``masters'', ``doctoral''}\} \phi(x)$ maps to $\{1, 2, 3, 4\}$

Examples of Feature Maps

- Feature maps can also help handle very complex data like text and images
 - E.g., x = "the food was good" and y = 4 stars
 - $\phi(x) = [1(\text{``good''} \in x) \quad 1(\text{``bad''} \in x) \quad ...]^{\top}$

• More on features for text and images later in the course!

Algorithm for Non-Linear Regression

First, select an appropriate feature map:

$$\boldsymbol{\phi}(x) = \begin{bmatrix} \phi_1(x) \\ \vdots \\ \phi_{d'}(x) \end{bmatrix}$$

Then, non-linear regression reduces to linear regression!

• Step 1: Compute $\boldsymbol{\phi}_i = \boldsymbol{\phi}(x_i)$ for each x_i in Z

• Step 2: Run linear regression with $Z' = \{(\boldsymbol{\phi}_1, y_1), \dots, (\boldsymbol{\phi}_n, y_n)\}$

Question

- Why not always throw in lots of features?
 - After all, more features => more expressive hypothesis space!
 - For example, if $\phi(x) = [1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, ...]$
 - Can fit any *n* points using an n-th degree polynomial $f(x) = \beta_1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_1^2 + \beta_5 x_1 x_2 + \beta_6 x_2^2 + \cdots$

Generalization To Unseen Inputs

- Issue: The goal in machine learning is generalization
 - Given a **new** input x, predict the label $\hat{y} = f_{\beta}(x)$

Generalization To Unseen Inputs

• Issue: The goal in machine learning is generalization

• Given a **new** input x, predict the label $\hat{y} = f_{\beta}(x)$

Vanilla linear regression actually works better!

Training vs. Test Data

- Training data: Examples $Z = \{(x, y)\}$ used to fit our model
- Test data: New inputs x whose labels y we want to predict

Overfitting vs. Underfitting

- Overfitting
 - Fit the **training data** *Z* well
 - Fit new test data (x, y) poorly

Underfitting

- Fit the **training data** *Z* poorly
- (Necessarily also fit new test data
 (x, y) poorly)

Hypothesis Space, Overfitting, and Underfitting

Overfitting Too many hypotheses in $\mathcal H$ that all fit the data well, Too little data, Noisy data

Underfitting

Inexpressive hypothesis space, i.e., no function in F that can approximate f^* on the data

"Noisy" Data

- Noise in labels y_i
 - True data generating process is more complex than we can capture
 - May depend on unobserved features
- Noise in features x_i
 - Measurement error in the feature values
 - Errors due to preprocessing
 - Some features might be irrelevant to the decision function

