
CIS 419/519

Reinforcement Learning: ML For
Sequential Decision Making

Lecture 20
Mar 29, 2023

Instructor: Dinesh Jayaraman

1Robot Image Credit: Viktoriya Sukhanova © 123RF.comBased on slides from Sergey Levine, Dan Klein, Eric Eaton

Recap: The Markov Decision Process Framework for RL

Image: https://towardsdatascience.com/reinforcement-learning-
demystified-markov-decision-processes-part-1-bf00dda41690

An MDP (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) is defined by:
• Set of states 𝑠 ∈ 𝑆
• Set of actions 𝑎 ∈ 𝐴
• Transition function 𝑃(𝑠’ | 𝑠, 𝑎)

oProbability 𝑃(𝑠’ | 𝑠, 𝑎) that 𝑎 from 𝑠 leads to 𝑠!

oAlso “dynamics model” / just “model”
• Reward function 𝑟! = 𝑅 (𝑠, 𝑎, 𝑠′)
• Discount factor 𝛾 < 1, expressing how much we

care about the future (vs. immediate rewards)
• “utility” = discounted future reward sum ∑! 𝛾

! 𝑟!"#
• Goal: maximize expected utility

In RL , we assume no knowledge of the true functions 𝑃(⋅) or 𝑅(⋅)
2

Example

Unknown to agent

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Recap: RL vs SL

Supervised Learning
• Target labels for ℎ are directly

available in the training data
• Train to map (regress/classify)

from 𝑥 to 𝑦 in the training data

Reinforcement Learning
• Optimal action labels 𝑎 for states
𝑠 are not given to us. No
predefined solutions!

• Train by trying various action
sequences in an environment,
and observing which ones
produce good rewards over time.

RL: Find 𝜋 𝑠 : 𝑆 → 𝐴 that maximizes expected utility

SL: Find ℎ 𝑥 : 𝑋 → 𝑌, that minimizes a loss 𝐿 over training (𝑥, 𝑦) pairs

Key Problems Specific to RL:
• Credit assignment: Which actions in a sequence were the good/bad ones?
• Exploration vs Exploitation: Yes, trial-and-error, but smartly pick what to try?

3

Recap: The goal of RL

Goal of RL is to learn a policy 𝜋 𝑠 : 𝑆 → 𝐴 for acting in the environment

𝜃∗ = argmax
"

𝔼#~%! # ,
&'(

)

𝛾&𝑟(𝑠&, 𝑎&)

Can we solve reinforcement learning with gradient descent?

Trajectory
distribution

Optimal policy
parameters

Policy Gradients

Recall: Behavioral Cloning for Imitation Learning

Expert
actions

Demonstration data

1
𝑁
?
45#

6

?
!5#

7

∇8 log 𝜋8(𝑎4,!|𝑠4,!)

The BC gradient w.r.t. policy parameters 𝜃 looked like:

“Policy Gradient” Methods
Update policy parameters with the gradients of the expected utility in an
episode by following policy 𝜋𝜽

𝜽"#$ = 𝜽%&' + 𝛼∇𝜽𝔼)𝜽 /
"+

𝑟*

𝜋𝜽 induces a trajectory distribution, which induces a reward distribution.

We will show, the gradient ∇𝜽𝔼:𝜽[∑! 𝑟!] works out to:

Note: we are ignoring discount factors for now, all formulae will easily generalize

Note: we will focus for
now on “finite-horizon”
settings, i.e., 𝑇 is finite.

Compare to the BC Gradient

Expert actionsDemonstration data

Recall: we start out with no data at all … so where does this data come from?
Ans: We generate our own data during learning … this is trial-and-error learning!

trajectories time
Likelihood
gradient: “Change
policy to make
these actions
more likely”.

Critic: “how good
was this trajectory?”
--- credit assignment

Expert actionsDemonstration data

1
𝑁
?
45#

6

?
!5#

7

∇8 log 𝜋8(𝑎4,!|𝑠4,!)

BC Gradient:

RL “Policy
Gradient”: 1

𝑁
?
45#

6

?
!5#

7

∇8 log 𝜋8(𝑎4,!|𝑠4,!) ?
!"5!

7

𝑟(𝑠4,! , 𝑎4,!)

Preparing: Approximating Expectations
The formula for the expectation of a function y of a random variable x is:

𝔼; 𝑦(𝑥) = H 𝑃 𝑥 𝑦 𝑥 𝑑𝑥

And this can be approximated as the “sample mean”:

H 𝑃 𝑥 𝑦 𝑥 𝑑𝑥 ≈
1
𝑁

?
<=>?@A< B~D(B)

𝑦(𝑥)

Lesson: If you can make an integral look like an expectation, you may be
able to approximate it easily.

Evaluating the RL objective

(since expectations can be approximated by sample means)

Of course, we must go beyond just evaluating the objective to optimizing it.

Policy Gradients Derivation Slide 1/2

a convenient identity (log-gradient trick)

Policy Gradients Derivation Slide 2/2

And now, we have an expectation with all computable terms!
Approximated with sample average!

The basic policy gradients algorithm: REINFORCE

generate samples
(i.e. run the policy)

Evaluate the
samples

improve the policy

Reward function need not be differentiable!

In supervised learning, when we optimized an objective using gradient
descent, we needed the objective to be differentiable w.r.t. to the
parameters 𝜃.

In RL, this is not true any more. See how the update term involves no
derivative of the reward function!

Example: Gaussian policies

What did we just do?

good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!

Causal policy gradient

“reward to go”
often denoted 1𝑄-,*

“On-Policy” Learning

• The policy gradient increases the likelihood of those past actions that
yielded good eventual utility when later actions were generated from the
current policy.

• This means you can only ever compute the policy gradient update on data
that is generated from the current policy.
§ “On-policy” learning.
§ Expensive in terms of amount of experience required in the

environment, because old experience, generated from old policies, is no
longer relevant. Need to keep generating fresh new experiences.

REINFORCE is On-Policy

• Neural networks change only a little bit with
each gradient step
• On-policy learning can be extremely

inefficient!
• Off-policy variants using “importance

sampling” are possible.

Whither Exploration?

• Exploration in RL: Which actions to execute in the world to most efficiently
learn an optimal policy?
§ But with on-policy RL, do we really have a choice? Remember, our

updates can only be computed from trajectories sampled from the
current policy 𝜋8 at each stage of training!

• Two solutions:
§ 𝜋8 is inherently stochastic, because it is probabilistic, so it does

automatically perform different actions each time it is executed, and
therefore induces some exploration.

§ Explicitly add an “exploration bonus” to the reward, e.g. entropy
𝑟! ← 𝑟! + 𝜆𝐻 𝜋8 𝑎! 𝑠!

which incentivizes more uncertain policies, inducing more exploration.
𝜆 → 0 during training.

“Policy Gradient” with Discount Factor 𝜸

1
𝑁
?
45#

6

?
!5#

7

∇8 log 𝜋8(𝑎4,!|𝑠4,!) ?
!"5!

7

𝑟(𝑠4,! , 𝑎4,!)

1
𝑁
?
45#

6

?
!5#

7

∇8 log 𝜋8(𝑎4,!|𝑠4,!) ?
!"5!

7

𝛾!"E!𝑟(𝑠4,! , 𝑎4,!)

With non-trivial discount factors, the policy gradient simply changes to:

With discount factor set to 1, the policy gradient we have seen is:

Policy gradient with automatic differentiation

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood as in behavior cloning:
Given:
actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states
Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = softmax_cross_entropy_with_logits(labels=actions, logits=logits)
loss = reduce_mean(negative_likelihoods)
gradients = loss.gradients(loss, variables)

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:
Given:
actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states
q_values – (N*T) x 1 tensor of estimated state-action values
Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = multiply(negative_likelihoods, q_values)
loss = reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)

q_values

Policy gradient in practice
• Remember that the “policy gradient” of expected utility has high variance.

§ Expected utility is estimated by sampling a small number of trajectories
from the policy.

§ This isn’t the same as supervised learning!
§ Gradients are often very noisy!

• Consider using much larger batches to reduce the variance
• Tweaking learning rates is very hard

§ Adaptive step size rules like ADAM can be OK-ish
§ We’ll learn about policy gradient-specific learning rate adjustment

methods later!
• Popular policy gradient approaches today: PPO, TRPO …
• RL implementation details can be hard to get right. Good to start with

popular repositories: OpenAI stable-baselines, CleanRL etc.

Sensitivity To Constant Reward Offsets

Curves denote 𝑝! 𝜏

Consider what should happen if rewards for an MDP were all incremented
by a constant value 𝑟. Should the optimal policy change? Should a policy
gradient change?

No to both, but look at the current policy gradient!

Baselines

but… are we allowed to do that??

subtracting a baseline is unbiased in expectation
- Keeps expectation fixed, but reduces the variance of the policy gradients!

average reward is not the best baseline, but it’s pretty good!

a convenient identity

Other RL Algorithms

But policy gradients are among the most stable approaches that work most
broadly, and take limited wall clock time even though many samples.

Next week: Q learning and actor-critic approaches!

More efficient
(fewer samples)

Less efficient
(more samples)

on-policyoff-policy

evolutionary or
gradient-free
algorithms

on-policy policy
gradient
algorithms

actor-critic
style
methods

off-policy
Q-function
learning

model-based
deep RL

model-based
shallow RL

Next week

Applications of RL

Test Bed: Video Games and Board Games

37

Deep Q Learning (2013)

Image: Google via Getty Images

AlphaGo (2016).TD-Gammon (1992).

GT Sophy (2023)

Robotics
Robotics

Open AI Dactyl (2018) Reinforcement Learning for Robust Parameterized
Locomotion Control of Bipedal Robots, 2022

● Guiness world record in 100 meters by biped robots (Oregon State University)

● Learned quadrupedal locomotion in challenging environments (ETH Zurich)

● Autonomous Navigation of Stratospheric Balloons (Google AI), blog (was real, just Google canceled the whole project.. sadly..)

● Not yet perching (article), but soon? Just for inspiration..

● Video games; car racing in video games, competing with humans

● Vision-based autonomous drone racing (video, UZH RPG)

● Commanding robots using natural language to perform tasks (SayCan project, Google)

● behavioral cloning/imitation learning (not RL) is doing well with transformers in the kitchen (Google)

● Yet it is not enough to learn to drive well

● Quadruped learns to walk in the park in 20 minutes, model-free (UC Berkeley)

○ More of this

● Still, dexterous manipulation is not easy.. (Berkeley, Meta, UW)

● Visual Navigation (Berkeley)

● In the need for resets (Berkeley)

More RL for Robotics

Credit: Csaba Szepasvari

https://today.oregonstate.edu/news/bipedal-robot-developed-oregon-state-achieves-guinness-world-record-100-meters
https://www.youtube.com/@AgilityRobotics/videos
https://www.youtube.com/watch?v=9j2a1oAHDL8
https://www.nature.com/articles/s41586-020-2939-8.epdf?sharing_token=JYZ0ZlvEivoTq9RkGfWPQtRgN0jAjWel9jnR3ZoTv0Mh-6OgaxBwChMnw6EOI9v07nMOMJGBruSSDc8BFPfwkG1QQ0R-p9CwTuKA6ZO41aQ8e-Y-ffoWrsFX1cztOZfL5cL1mwXL8qU58Plz4GAzu_SLyawhPWS5QV6GieUEDig%3D
https://ai.googleblog.com/2022/02/the-balloon-learning-environment.html
https://www.youtube.com/watch?v=Kd04quryVPI
https://www.nature.com/articles/s41467-022-35356-5
https://www.wired.com/story/sony-ai-drives-race-car-champ/
https://www.gran-turismo.com/us/gran-turismo-sophy/race-together/
https://www.youtube.com/watch?v=nPlGR83bC0Q
https://say-can.github.io/
https://robotics-transformer.github.io/
https://arxiv.org/abs/2212.11419
https://sites.google.com/berkeley.edu/walk-in-the-park
https://sites.google.com/berkeley.edu/fine-tuning-locomotion
https://sites.google.com/view/dexterous-avail/
https://sites.google.com/view/revind
https://architsharma97.github.io/earl_benchmark/overview.html

Subtractive Manufacturing
Microscopy

(steering a microscope to separate molecules)

https://www.science.org/doi/10.1126/sciadv.abb6987

https://www.science.org/doi/10.1126/sciadv.abb6987

Finetuning Conversational Agents

https://openai.com/research/instruction-following

https://openai.com/research/instruction-following

Finetuning Other Pretrained ML Models

• Like ChatGPT, can also use RL to finetune other
models to maximize some performance score.

Aside: Why would these models not have been
trained directly to maximize the performance
scores in the first place?

https://arxiv.org/pdf/2302.08242.pdf

https://arxiv.org/pdf/2302.08242.pdf

Web Assistants
Web navigation

(e.g. navigating a flight-booking website to make a purchase)

Gur et al 2021, Environment Generation for Zero-Shot Compositional Reinforcement Learning

Real-world applications using RL: Already working

• Applications to algorithms:
§ Video compression on Youtube using nuzero (DeepMind)
§ Faster matrix multiplication (blog, article) (DeepMind)
§ Faster std::sort in the LLVM compiler toolchain, background:, the new

part (DeepMind)
§ Chip design applied to Google TPUs (Google AI)

• Industrial automation:
§ Cooling the interior of large commercial buildings (DeepMind),

(Vector&Telus, prelim)
§ Amazon “deep” inventory management

Credit: Csaba Szepasvari

https://www.deepmind.com/blog/muzeros-first-step-from-research-into-the-real-world
https://www.nature.com/articles/d41586-022-03166-w
https://www.nature.com/articles/s41586-022-05172-4
https://danlark.org/2022/04/20/changing-stdsort-at-googles-scale-and-beyond
https://reviews.llvm.org/D118029
https://reviews.llvm.org/D118029
https://www.nature.com/articles/s41586-021-03544-w
https://arxiv.org/abs/2211.07357
https://www.telus.com/en/about/news-and-events/media-releases/using-ai-for-good-telus-and-vector-institute-partner-to-reduce-climate-impacts-from-data-centres
https://arxiv.org/abs/2210.03137

Real-world applications using RL: In the works
• Control: Nuclear fusion (DeepMind)
• Education (2021 paper)
• Healthcare (2020 survey)
• Power grids: Reinforcement learning for demand response: A review of

algorithms and modeling techniques José R. Vázquez-Canteli, Z. Nagy
• Recommender systems: https://github.com/google-research/recsim
• Automated stock trading: https://github.com/AI4Finance-LLC/FinRL-Library
• And many other “real-world” applications

§ https://arxiv.org/abs/1904.12901
§ https://arxiv.org/abs/2202.11296
RL is not yet “just working”, but there is hope. Several important open
problems with potential for impact in large numbers of applications!

Credit: Csaba Szepasvari

https://www.nature.com/articles/s41586-021-04301-9
https://arxiv.org/pdf/2107.08828.pdf
https://arxiv.org/abs/1908.08796
https://www.semanticscholar.org/paper/648ea87fe7f99ca8ea5090cb1ba40242299ef4c4
https://www.semanticscholar.org/paper/648ea87fe7f99ca8ea5090cb1ba40242299ef4c4
https://github.com/google-research/recsim
https://github.com/AI4Finance-LLC/FinRL-Library
https://arxiv.org/abs/1904.12901
https://arxiv.org/abs/2202.11296

McKinsey HBR

Credit: Yuxi Li

