CIS 419/519

Reinforcement Learning: ML For
Sequential Decision Making

Lecture 20
Mar 29, 2023

Instructor: Dinesh Jayaraman

Based on slides from Sergey Levine, Dan Klein, Eric Eaton



Recap: The Markov Decision Process Framework for RL

: : E I
An MDP (S,A,P,R,y) is defined by: Xampie
» Set of statess € S '
, Unknown to agent
» Set of actionsa € A
* Transition function P(s’ | s, a)
o Probability P(s’ | s,a) that a from s le
o Also “dynamics model” / just “model;

* Reward functionr, = R (s,a,s")

* Discount factor y < 1, expressing how much we
care about the future (vs. immediate rewards)

» “utility” = discounted future reward sum ¥, ¥" 1,14
* Goal: maximize expected utility

stos’

In RL , we assume no knowledge of the true functions P(-) or R(:)

Image: https://towardsdatascience.com/reinforcement- learning-

demystified-markov-decision-processes-part-1-bf00dda41690 2



https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Recap: RL vs SL

SL: Find h(x): X — Y, that minimizes a loss L over training (x, y) pairs

RL: Find (s): S — A that maximizes expected utility

Supervised Learning Reinforcement Learning
Target labels for h are directly . Optimal action labels a for states
available in the training data s are not given to us. No
Train to map (regress/classify) predefined solutions!
from x to y in the training data .- Train by trying various action

seguences in an environment,
and observing which ones

produce good rewards over time.
Key Problems Specific to RL:

* Credit assignment: Which actions in a sequence were the good/bad ones?
* Exploration vs Exploitation: Yes, trial-and-error, but smartly pick what to try?



Recap: The goal of RL

~@-
(s'|s,a)

y
Traject -
.aJe.C Or.y p@(sla al,...,ST, aT H at|St St+1|St, at)
distribution | : t=1
o (T)
Optlma| pO|ICV 0* = argmax [ET~7TQ(T) [Z]/ 7(S¢ at)]
parameters

Goal of RL is to learn a (s):S — A for acting in the environment

Can we solve reinforcement learning with gradient descent?



Policy Gradients



Recall: Behavioral Cloning for Imitation Learning

The BC gradient w.r.t. policy parameters 0 looked like:

1 N T
3 (Z Vo log g (ai,t|si,t>>
=1 \t=1

Demonstration data Expert
actions



“Policy Gradient” Methods

Update policy parameters with the gradients of the expected utility in an
episode by following policy g

01ew = Oo1a + avB]ETL'g [z rt]

t'=t

g induces a trajectory distribution, which induces a reward distribution.

Note: we will focus for

We will show, the gradient Vo[E [X.; 7] works out to:

now on “finite-horizon”
settings, i.e., T is finite.

T

1 N T
N Z (Z Vg log mo(a|si) Z r(Si i)
=1 \ =1

b=t

Note: we are ignoring discount factors for now, all formulae will easily generalize



Compare to the BC Gradient

Demonstration data Expert actions

BC Gradient: N T
1
N Vg log g (a;t|Si¢)
=1 \t=1
. Demenst-lﬁat-mﬂ—el-at-a Jéepe—lat—aet-bens
RL “Policy i
Gradient”:
N Ve logmg(a;clsit) r(Sit Qi)
i= Lt/ =t — i
Likelihood
trajectorles time gradient: “Change Critic: “how good
policy to make was this trajectory?”
these actions --- credit assignment
more likely”.

Recall: we start out with no data at all ... so where does this data come from?
Ans: We generate our own data during learning ... this is trial-and-error learning!






Preparing: Approximating Expectations

The formula for the expectation of a function y of a random variable x is:
ExyCol = | PGy@dx

And this can be approximated as the “sample mean”:

1

| Pey@ax=s >y

samples x~P(x)

Lesson: If you can make an integral look like an expectation, you may be
able to approximate it easily.



Evaluating the RL objective

6* = arg max Erpy(r) [Z r(s¢, at)

L sum over samples from 7y

(since expectations can be approximated by sample means)

Of course, we must go beyond just evaluating the objective to optimizing it.



Policy Gradients Derivation Slide 1/2

0* = arg meax ETNpe (1) [Z ’I“(St, at)]




Policy Gradients Derivation Slide 2/2

T
0* = arg max J(0) mo(s1,a1,...,87,ar) = p(s1) H mo(as|st)p(Ser1/se, ar)
' / t=1
log of both{sides
T(0) = Brremy ) [r(7)] : mo(7) .
log mo(7) = log p(s1) + Zlog mo(at|st) + log p(Si41(st, ar)
V@J(Q) — ETNM(T) [Vg log W@(T)T(T)] t=1

A
[ |

T
log#t81) + ) log mo(ayls;) + 1%%)]
t=1

\Y’

VoJ(0) = Erry(r) [(Z Vo log mg(a¢|st) ) (Zr (s¢, a )]

t=1

And now, we have an expectation with all computable terms!
Approximated with sample average!



he basic policy gradients algorithm: REINFORCE

REINFORCE algorithm:

1. sample {7} from my(as|s;) (run the policy)
2. VoJ(0) = 32, (Zt Volog e (aylsi)) (2, 7 (Sg,ag))
3. 0+ 0+ OKVQJ

Evaluate the evaluate returns
samples St, at
generate samples
(i.e. run the policy)
improve the policy Rz NAVFYADPRJ(-I:13]



Reward function need not be differentiable!

REINFORCE algorithm:
E 1. sample {7} from my(as|s;) (run the policy)

2. VoJ(0) = 2, (X, Velog mg(ailsi)) (32, 7(si, al))
3.0« 6+ aVeJ(6)

In supervised learning, when we optimized an objective using gradient
descent, we needed the objective to be differentiable w.r.t. to the
parameters 6.

In RL, this is not true any more. See how the update term involves no
derivative of the reward function!

2. VoJ(8) = 32, (3, Velog me(ailsi)) (32, 7(si, al))






Example: Gaussian policies

N /T T
VoJ(0) = %Z (Z Vg log Wg(ai,tsi,t)> (Z r(si,t,ai,t)>

example: mg(a¢|s;) = N (fneural network (St); 2)

1
log mg(as|st) = —§||f(st) — a;||% + const
1. d
Vo log mg(at|st) = 5% H(f(st) - at)d_](;

REINFORCE algorithm:

1. sample {7'} from 7y(as|s;) (run it on the robot)
2. VoJ(0) = >, (>, Vologm(allst)) (3, (s, a}))
3. 0+ 0+aVyJ(0)



What did we just do?

N T
1
VoJ(0) =~ N Z (ng log mg (. ¢|si.¢) ) (Zr Si.t, it >
i=1 \t=1
VoJ(0) = N Z Vo log mg(1;)r (1) maximum likelihood:  VgJur(6) Z Vo log mg(7;)

=1

Z Vo logg mg(a; ¢|sit)
t=1

good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!

REINFORCE algorithm:

1. sample {7'} from 7y(as|s;) (run it on the robot)

2. Vo (0) =, (3, Vologmg(allsi)) (3, r(s, al))
3.0 0+ aVeJ(0)



Causal policy gradient

N T T
1
V@J(H)%N E (2 Vi log g ( aztszt> (2 rszt,azt>
i=1 \t=1 t—1

Causality: policy at time ¢’ cannot affect reward at time ¢ when ¢ < ¢/

N T
1
VoJ (0 o Z Z Vo log mg(a; ¢|sit) (t; W'((S@,,Mﬁ@,,ﬁ)))

=1 t=1

\ J
|

“reward to go”
often denoted @,;,t



“On-Policy” Learning

T
1
V@J N 1 v@ log Uy az tISz t (t/z:t T(Si,t’ ? ai,t’))

1=1 t=

* The policy gradient increases the likelihood of those past actions that
vielded good eventual utility when later actions were generated from the
current policy.

* This means you can only ever compute the policy gradient update on data
that is generated from the current policy.
" “On-policy” learning.
" Expensive in terms of amount of experience required in the

environment, because old experience, generated from old policies, is no
longer relevant. Need to keep generating fresh new experiences.



REINFORCE is On-Policy

0* = arg max J(0) * Neural networks change only a little bit with
each gradient step

J(0) = Errony()[r(7)]  On-policy learning can be extremely
inefficient!

VoJ(0) = Ery(r)|Volo . : : :
0 (0) Ve logmo(T)r(7)] * Off-policy variants using “importance

L sampling” are possible.
this is trouble...

can’t just skip this!
REINFORCE algorithm: /

1. sample {7} from 7y(as|s;) (run it on the robot)
2. VoJ(0) = 32, (32, Vologmo(ailsy)) (30, (s}, at))
3. 0+ 0+ (XV@J(@)



Whither Exploration?

* Exploration in RL: Which actions to execute in the world to most efficiently
learn an optimal policy?

= But with on-policy RL, do we really have a choice? Remember, our
updates can only be computed from trajectories sampled from the
current policy gy at each stage of training!

* Two solutions:

" 179 is inherently stochastic, because it is probabilistic, so it does
automatically perform different actions each time it is executed, and
therefore induces some exploration.

= Explicitly add an “exploration bonus” to the reward, e.g. entropy

Ty < 1y + /1H(7T9 (atlst))
which incentivizes more uncertain policies, inducing more exploration.
A — 0 during training.



“Policy Gradient” with Discount Factor y

With discount factor set to 1, the policy gradient we have seenis:

1 N T
3 (Z Vo log g (aselsi.)
=1 \t=1

- T

z T(Si,t: ai,t)

Lt/ =t

J

With non-trivial discount factors, the policy gradient simply changes to:

- T

N , T ]

1 =

Nz (Z Vg logmg (a;¢|si) z v (s air) )
i=1 \t=1 ]

Lt/ =t







Policy gradient with automatic differentiation

N T T
1
VoJ(0) = N Z Z Vo log mg(a; ¢|sit) (Z T(Si,t’aai,t’)>

=1 t=1 t'=t

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

Just implement “pseudo-loss” as a weighted maximum likelihood:

N T
- 1 .
J(0) ~ N Z Zlog To(@i,t[8i¢) Qi

1=1 t=1

cross entropy (discrete) or squared error (Gaussian)



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Maximum likelihood as in behavior cloning:

# Given:

# actions - (N*T) x Da tensor of actions

# states - (N*T) x Ds tensor of states

# Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = softmax_cross_entropy with logits(labels=actions, logits=logits)
loss = reduce_mean(negative likelihoods)

gradients = loss.gradients(loss, variables)



Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

# Given:

# actions - (N*T) x Da tensor of actions

# states - (N*T) x Ds tensor of states

# g _values - (N*T) x 1 tensor of estimated state-action values

# Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = softmax_cross_entropy with logits(labels=actions, logits=logits)
weighted negative likelihoods = multiply(negative likelihoods, g values)

loss = reduce_mean(weighted negative likelihoods)

gradients = loss.gradients(loss, variables)

| NI
J(0) ~ ~ Z Z log g (ai,t|s7;,
g_values

=1 t=1



Policy gradient in practice

* Remember that the “policy gradient” of expected utility has high variance.

= Expected utility is estimated by sampling a small number of trajectories
from the policy.

" This isn’t the same as supervised learning!
" Gradients are often very noisy!

* Consider using much larger batches to reduce the variance

* Tweaking learning rates is very hard
= Adaptive step size rules like ADAM can be OK-ish

= We’ll learn about policy gradient-specific learning rate adjustment
methods later!

* Popular policy gradient approaches today: PPO, TRPO ...

* RL implementation details can be hard to get right. Good to start with
popular repositories: OpenAl stable-baselines, CleanRL etc.



Sensitivity To Constant Reward Offsets

Consider what should happen if rewards for an MDP were all incremented

by a constant value r. Should the optimal policy change? Should a policy
gradient change?

No to both, but look at the current policy gradient!

Curves denote py (1)

N
1
Vo (0) ~ > Vo logmy(T)r(r)
=1

even worse: what if the two “good” samples have r(7) = 07




@« D

BaSE| | nes a convenient identity
7o(T)Vglog (1) = Veme(T)

VoJ (6 Z Vg log g (7)ptm) — 0]

N
1
=~ Zr but... are we allowed to do that??
1=1

E[Vglogme(T)b] = /W@(T)V@ log mg(T)bdr = /erg(T)de = bV@/Ti’Q(T)dT = bVl =0

subtracting a baseline is unbiased in expectation
- Keeps expectation fixed, but reduces the variance of the policy gradients!

average reward is not the best baseline, but it’s pretty good!



Other RL Algorithms

off-policy <

More efficient

(fewer samples) Next week

» on-policy

Less efficient
(more samples)

—

model-based model-based off-policy actor-critic
shallow RL deep RL Q-function style
learning methods

on-policy policy  evolutionary or
gradient gradient-free
algorithms algorithms

But policy gradients are among the most stable approaches that work most
broadly, and take limited wall clock time even though many samples.

Next week: Q learning and actor-critic approaches!



Applications of RL
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Robotics

Robotics

FINGER PIVOTING SLIDING FINGER GAITING

Robustness Test

Perturbation Rejection

Open Al Dactyl (2018) Reinforcement Learning for Robust Parameterized

Locomotion Control of Bipedal Robots, 2022



More RL for Robotics

Guiness world record in 100 meters by biped robots (Oregon State University)

Learned quadrupedal locomotion in challenging environments (ETH Zurich)

Autonomous Navigation of Stratospheric Balloons (Google Al), blog (was real, just Google canceled the whole project.. sadly..)

Not yet perching (article), but soon? Just for inspiration..

Video games; car racing in video games, competing with humans

e Vision-based autonomous drone racing (video, UZH RPG)

Commanding robots using natural language to perform tasks (SayCan project, Google)

behavioral cloning/imitation learning (not RL) is doing well with transformers in the kitchen (Google)

Yet it is not enough to learn to drive well

Quadruped learns to walk in the park in 20 minutes, model-free (UC Berkeley)

o More of this
Still, dexterous manipulation is not easy.. (Berkeley, Meta, UW)
Visual Navigation (Berkeley)

In the need for resets (Berkeley)

Credit: Csaba Szepasvari


https://today.oregonstate.edu/news/bipedal-robot-developed-oregon-state-achieves-guinness-world-record-100-meters
https://www.youtube.com/@AgilityRobotics/videos
https://www.youtube.com/watch?v=9j2a1oAHDL8
https://www.nature.com/articles/s41586-020-2939-8.epdf?sharing_token=JYZ0ZlvEivoTq9RkGfWPQtRgN0jAjWel9jnR3ZoTv0Mh-6OgaxBwChMnw6EOI9v07nMOMJGBruSSDc8BFPfwkG1QQ0R-p9CwTuKA6ZO41aQ8e-Y-ffoWrsFX1cztOZfL5cL1mwXL8qU58Plz4GAzu_SLyawhPWS5QV6GieUEDig%3D
https://ai.googleblog.com/2022/02/the-balloon-learning-environment.html
https://www.youtube.com/watch?v=Kd04quryVPI
https://www.nature.com/articles/s41467-022-35356-5
https://www.wired.com/story/sony-ai-drives-race-car-champ/
https://www.gran-turismo.com/us/gran-turismo-sophy/race-together/
https://www.youtube.com/watch?v=nPlGR83bC0Q
https://say-can.github.io/
https://robotics-transformer.github.io/
https://arxiv.org/abs/2212.11419
https://sites.google.com/berkeley.edu/walk-in-the-park
https://sites.google.com/berkeley.edu/fine-tuning-locomotion
https://sites.google.com/view/dexterous-avail/
https://sites.google.com/view/revind
https://architsharma97.github.io/earl_benchmark/overview.html

Subtractive Manufacturing

Microscopy
(steering a microscope to separate molecules)
A D

Bond broken\‘ ~Formed
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network

Episode 1
g 40 (Sg» @, 11, 84)
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o
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[v4 0 ‘ .
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Tip height z (A)

https://www.science.org/doi/10.1126/sciadv.abb6987



https://www.science.org/doi/10.1126/sciadv.abb6987

Finetuning Conversational Agents

Briefly explain chatGPT using a metaphor that
would resonate with an audience of stock-
market investors and avoiding Al jargon.

One way to explain chatGPT to stock-
market investors is to compare it to a
financial advisor who uses past
performance data and market trends to
make predictions about future
investments. Just like a skilled financial
advisor, chatGPT uses large amounts of
training data to generate intelligent and
informed responses to questions,
providing valuable insights and

suggestions to users.

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain gravity.

Moon is natural
satellite of... the moon..

U

Explain the moon

landing to a 6 year old

0 o
o o

Explain war..

People went to

> 4

.
Q

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

https://openai.com/research/instruction-following



https://openai.com/research/instruction-following

e Like ChatGPT, can also use RL to finetune other
models to maximize some performance score.

Aside: Why would these models not have been
trained directly to maximize the performance
scores in the first place?

(a) Optimize mAP: 39 — 54, results in a much high recall and
learns box prediction confidences.

a —
s 2
Q < :
|

(b) Optimize PQ: 43.1 — 46.1, removes many incoherent predic-
tions, especially for small-scale objects.

(c) Optimize “colorfulness” score: 0.41 — 1.79, improves color
diversity and saturation.

Figure 1. By tuning a strong, pretrained model with a reward that
relates to the task, we can significantly improve the model’s align-
ment with the intended usage.

https://arxiv.org/pdf/2302.08242.pdf



https://arxiv.org/pdf/2302.08242.pdf

Web Assistants

Web navigation
(e.g. navigating a flight-booking website to make a purchase)

Number of passengers
To
Last Name
ast Namx
Fiest Na=e
= E=TTTE]
ASIross
Full rame Usemamu
Password
Password
Paymant
Remembet =e
ot cu Stay logged in
Dedit Card 0 Sy oo
From
[ cwm
L. (0)bic feaining (c) Late training (d) Test

Gur et al 2021, Environment Generation for Zero-Shot Compositional Reinforcement Learning



Real-world applications using RL: Already working

* Applications to algorithms:
» Video compression on Youtube using nuzero (DeepMind)
= Faster matrix multiplication (blog, article) (DeepMind)
= Faster std::sort in the LLVM compiler toolchain, background:, the new
part (DeepMind)
= Chip design applied to Google TPUs (Google Al)

* Industrial automation:

* Cooling the interior of large commercial buildings (DeepMind),
(Vector&Telus, prelim)

" Amazon “deep” inventory management

Credit: Csaba Szepasvari


https://www.deepmind.com/blog/muzeros-first-step-from-research-into-the-real-world
https://www.nature.com/articles/d41586-022-03166-w
https://www.nature.com/articles/s41586-022-05172-4
https://danlark.org/2022/04/20/changing-stdsort-at-googles-scale-and-beyond
https://reviews.llvm.org/D118029
https://reviews.llvm.org/D118029
https://www.nature.com/articles/s41586-021-03544-w
https://arxiv.org/abs/2211.07357
https://www.telus.com/en/about/news-and-events/media-releases/using-ai-for-good-telus-and-vector-institute-partner-to-reduce-climate-impacts-from-data-centres
https://arxiv.org/abs/2210.03137

Real-world applications using RL: In the works

e Control: Nuclear fusion (DeepMind)

e Education (2021 paper)
* Healthcare (2020 survey)

* Power grids: Reinforcement learning for demand response: A review of
algorithms and modeling technigues José R. Vazquez-Canteli, Z. Nagy

* Recommender systems: https://github.com/google-research/recsim
» Automated stock trading: https://github.com/Al4Finance-LLC/FinRL-Library

* And many other “real-world” applications
" https://arxiv.org/abs/1904.12901
= https://arxiv.org/abs/2202.11296

RL is not yet “just working”, but there is hope. Several important open

problems with potential for impact in large numbers of applications!
Credit: Csaba Szepasvari



https://www.nature.com/articles/s41586-021-04301-9
https://arxiv.org/pdf/2107.08828.pdf
https://arxiv.org/abs/1908.08796
https://www.semanticscholar.org/paper/648ea87fe7f99ca8ea5090cb1ba40242299ef4c4
https://www.semanticscholar.org/paper/648ea87fe7f99ca8ea5090cb1ba40242299ef4c4
https://github.com/google-research/recsim
https://github.com/AI4Finance-LLC/FinRL-Library
https://arxiv.org/abs/1904.12901
https://arxiv.org/abs/2202.11296

Initial applications of reinforcement learning span most, if not all, industries.

@ Optimizing product development cycles @ Optimizing complex operations @ Informing next best action for

(Al-assisted design)

Industry

Advanced electronics
and semiconductors

Agriculture

Aerospace and
defense

Automotive

Financial services

Mining

Oil and gas

Pharmaceuticals

Retail

Telecom

Transport and
logistics

each customer

Sample reinforcement learning applications

@ Optimize silicon and chip design to increase performance and reduce manufacturing costs
@ Optimize fabrication manufacturing process for improved yield and throughput

@ Solve scheduling and production allocation challenges to increase yield
. Optimize network and warehouse logistics for reduced waste and costs

(6] Apply advanced pricing and promotion to improve product margins

o Optimize engineering design processes to reduce time to market for new systems and
improve quality

[ Optimize design processes to shorten development cycle for new cars and features and
improve quality

@ Deploy advanced predictive maintenance to prevent rare failures and unplanned outages

@ Deliver real-time production monitoring and controls to increase manufacturing yield

@ Apply real-time trading and pricing strategies for greater agility and revenue
@ Optimize ATM replenishment and allocation strategies to reduce costs and improve the
customer experience

@ Deliver advanced personalization capabilities that adapt promotions, offers, and
recommendations daily for increased customer satisfaction and sales

® Optimize design process so teams can explore a greater range of mine designs for
improving mine yield

@ Useintelligent process controls for managing power generation and bore milling to increase
yield and reduce costs

® Apply holistic logistics scheduling to optimize mine-to-shipping operations and reduce costs

@ Enable real-time well monitoring and precision drilling for increased yield

@ Optimize tanker routing to reduce costs and ensure on-time delivery

@ Enable advanced predictive maintenance to prevent rare equipment failures and unplanned
outages

@ Optimize drug discovery, identifying molecules of interest faster to reduce the time and
cost of research and bring new therapies to market faster

@ Automate chemistry, manufacturing, and controls (CMC) to maximize batch yield and
quality

=] Optimize biological methods to reach peak production output

@ Optimize routing, logistics network planning, and warehouse operations to reduce costs
and keep shelves stocked

@ Implement advanced inventory modeling and digitize supply-chain planning to prevent
out-of-stocks and waste

@ Deliver advanced personalization capabilities that adapt promotions, offers, and recommen-
dations daily for increased customer satisfaction and sales

O Optimize network layout to maximize coverage and minimize power consumption

@ Manage networks in real time to optimize service quality and reduce downtime

@ Apply advanced personalization to increase cross-sell and upsell revenue

@ Optimize routing, logistics network planning, and warehouse op:
costs and improve customer satisfaction

associated costs

L]
@ Optimize inbound and outbound delivery networks to minimize s IVI C K I n S ey

Reinforcement Learning at Work

How top companies are using this breed of Al to solve tough problems.

Company

Royal
Bank of
Canada

Netflix

Spotify

JPMorgan
Chase

Google

DiDi

Application

Trade execution
platform for
multiple
strategies

Test schedules
for business
partner devices

Recommendation
engine

Financial
derivatives risk
and pricing
calculations

Data center
cooling

Order
dispatching

Sector

Financial
services

Technology

Entertainment

Financial

services

Technology

Ride hailing

Inputs

200-plus market-
related data
inputs

Historical test
and device
performance
information

Previous songs
liked/disliked/not
played

Historical market
data

Temperature/air
pressure

Number of idle
vehicles, number
of orders,
location,
destination

Actions

Sell, buy,
hold
stocks

Which
test to do
next

Which
songs to
putin
your
playlist

Price and
sell a
financial
product

Turnon
fan; add
water to
air unit

Match
driver to
passenger

Note: Details for use cases can be found in published papers, but we could not verify if they are used in

production applications.

Objective

To trade as
close as
possible to
VWAP, a
common
price metric

Minimize
device
failure

Maximize
user
listening
time

Maximize
future cash
flows of an
investment
portfolio

Control
temperature
and reduce
energy
usage

Minimize
pickup time
and
maximize
revenue

HBR



traffic signal VRP,AGV  smart grid scheduling
order matching  inventory = power mgmt  process ctrl
auto driving  disruptions nuclear fusion maintenance

pricing, trading supply recommender
portfolio opt. b ks chain kil manufacture advertisement
risk mgmt e-commerce
policy design customer mgmt
finance business
economics management
reinforcement learning
computer ensg‘i:‘:::r?ng
systems
i arts
resource mgmt maths, physics
neural arch. games robotics education | | healthcare | _ Chemistry. bio
computer vision psych., neural sci.
NLP optimal ctrl, OR
ML/RL/AI  Atari, Go, poker perception recommendation ~DTRs  €conomic sectors
applications Starcraft planning  personalization mobile music, drawing
software content navigation  adaptation testng dance, poetry
hardware  design, testing locomotion  sequencing  scheduling SiM-. digital twins
networks gamification  sim-to-real motivation epidemic metaverse

Credit: Yuxi Li






