Announcements

- Project Milestone 2 due Wednesday, April 5 at 8pm
- Homework 6 released Wednesday, April 5
- Due Wednesday, April 19 at 8pm

Lecture 21: Reinforcement Learning

CIS 4190/5190

Spring 2023

Reinforcement Learning Problem

- At a high level, we need to specify the following:
- State space: What are the observations the agent may encounter?
- Action space: What are the actions the agent can take?
- Transitions/dynamics: How the state is updated when taking an action
- Rewards: What rewards the agent receives for taking an action in a state
- For most of today, assume state and action spaces are finite

Markov Decision Process (MDP)

- An MDP (S, A, P, R, γ) is defined by:
- Set of states $s \in S$
- Set of actions $a \in A$
- Transition function $P\left(s^{\prime} \mid s, a\right)$ (also called "dynamics" or the "model")
- Reward function $R\left(s, a, s^{\prime}\right)$
- Discount factor $\gamma<1$
- Also assume an initial state distribution $D(s)$

- Often omitted since optimal policy does not depend on D

Policy Gradient Algorithm

1. sample $\left\{\tau^{i}\right\}$ from $\pi_{\theta}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)$ (run the policy)
2. $\nabla_{\theta} J(\theta) \approx \sum_{i}\left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{t}^{i} \mid \mathbf{s}_{t}^{i}\right)\right)\left(\sum_{t} r\left(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}\right)\right)$
3. $\theta \leftarrow \theta+\alpha \nabla_{\theta} J(\theta)$

Reward-to-Go Function

$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right) \underbrace{\sum_{t^{\prime}=t}^{T} r\left(\mathbf{s}_{i, t^{\prime}}, \mathbf{a}_{i, t^{\prime}}\right)}_{\text {"reward to go" } \hat{Q}_{i, t}})$
$\hat{Q}_{i, t}$: estimate of expected reward if we take action $\mathbf{a}_{i, t}$ in state $\mathbf{s}_{i, t}$ can we get a better estimate?

Reward-to-Go Function

$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right) \underbrace{\sum_{t^{\prime}=t}^{T} r\left(\mathbf{s}_{i, t^{\prime}}, \mathbf{a}_{i, t^{\prime}}\right)}_{\text {"reward to go" } \underbrace{}_{i, t}})$
$\hat{Q}_{i, t}$: estimate of expected reward if we take action $\mathbf{a}_{i, t}$ in state $\mathbf{s}_{i, t}$ can we get a better estimate?

Reward-to-Go Function

$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\mathbf{a}_{i, t} \mid \mathbf{s}_{i, t}\right)(\underbrace{\sum_{t^{\prime}=t}^{T} r\left(\mathbf{s}_{i, t^{\prime}}, \mathbf{a}_{i, t^{\prime}}\right)}_{\text {"reward to go" } \hat{Q}_{i, t}})$
$\hat{Q}_{i, t}$: estimate of expected reward if we take action $\mathbf{a}_{i, t}$ in state $\mathbf{s}_{i, t}$ can we get a better estimate?
$Q\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)=\sum_{t^{\prime}=t}^{T} E_{\pi_{\theta}}\left[r\left(\mathbf{s}_{t^{\prime}}, \mathbf{a}_{t^{\prime}}\right) \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right]:$ true expected reward-to-go

Space of RL Algorithms

Q-learning

Toy Example

- Grid map with solid/open cells
- State: An open grid cell
- Actions: Move North, East, South, West

Toy Example

- Dynamics

- Move in chosen direction, but not deterministically!
- Succeeds 80% of the time
- 10% of the time, end up 90° off
- 10% of the time, end up -90° off
- The agent stays put if it tries to move into a solid cell or outside the world
- At terminal states, any action ends episode (or rollout)

Toy Example

- Rewards
- At terminal state, agent receives the specified reward
- For each timestep outside terminal states, the agent pays a small cost, e.g., a "reward" of -0.03

Optimal Policy

- Optimal policy: Following π^{*} maximizes total reward received
- Discounted: Future rewards are downweighted
- In expectation: On average across randomness of environment and actions

Markov Decision Process (MDP)

- Goal: Maximize cumulative expected discounted reward:

$$
\pi^{*}=\max _{\pi} J(\pi) \quad \text { where } \quad J(\pi)=\mathbb{E}_{\zeta}\left[\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t}\right]
$$

- Expectation over episodes $\zeta=\left(s_{0}, a_{0}, r_{0}, s_{1}, \ldots\right)$, where
- $s_{0} \sim D$
- $a_{t}=\pi\left(s_{t}\right)$
- $s_{t+1} \sim P\left(\cdot \mid s_{t}, a_{t}\right)$
- $r_{t}=R\left(s_{t}, a_{t}, s_{t+1}\right)$

Policy Value Function

- Policy Value Function: Expected reward if we start in s and use π :

$$
V^{\pi}(s)=\mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s_{0}=s\right)
$$

- Bellman equation:

$$
\underbrace{V^{\pi}(s)}_{\text {current value }}=\sum_{s^{\prime} \in S} \underbrace{P\left(s^{\prime} \mid s, \pi(s)\right)}_{\begin{array}{c}
\text { expectation } \\
\text { over next state }
\end{array}} \cdot \underbrace{\left(R\left(s, \pi(s), s^{\prime}\right)+\gamma \cdot V^{\pi}\left(s^{\prime}\right)\right)}_{\begin{array}{c}
\text { current reward }+ \\
\text { discounted future reward }
\end{array}}
$$

Optimal Value Function

- Optimal value function: Expected reward if we start in s and use π^{*} :

$$
V^{*}(s)=\mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s_{0}=s\right)
$$

- Bellman equation:

Optimal policy selects action that maximizes future expected reward from state s

Optimal Value Function

- Bellman equation:

$$
V^{*}(s)=\max _{a \in A} \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot V^{*}\left(s^{\prime}\right)\right)
$$

- Do not need to know the optimal policy π^{*} !
- Strategy: Compute V^{*} and then use it to compute π^{*}
- Caveat: Latter step requires knowing P

Policy Action-Value Function

- Policy Action-Value Function (or Q function): Expected reward if we start in s, take action a, and then use π thereafter:

$$
Q^{\pi}(s, a)=\mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s_{0}=s, a_{0}=a\right)
$$

- Bellman equation:

$$
Q^{\pi}(s, a)=\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot Q^{\pi}\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)\right)
$$

Optimal Action-Value Function

- Optimal Action-Value Function (or \mathbf{Q} function): Expected reward if we start in s, take action a, and then act optimally thereafter:

$$
Q^{*}(s, a)=\mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s_{0}=s, a_{0}=a\right)
$$

- Bellman equation:

$$
Q^{*}(s, a)=\sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right)
$$

Relationship

- We have

$$
V^{\pi}(s)=Q^{\pi}(s, \pi(s))
$$

- Similarly, we have

$$
V^{*}(s)=\max _{a} Q^{*}(s, a)
$$

Q Iteration

- We have

$$
\pi^{*}(s)=\max _{a \in A} Q^{*}(s, a)
$$

- Strategy: Compute Q^{*} and then use it to compute π^{*}

Q Iteration

- Initialize $Q_{1}(s, a) \leftarrow 0$ for all s, a
- For $i \in\{1,2, \ldots\}$ until convergence:

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)
$$

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]
$$

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)[R\left(s, a, s^{\prime}\right)+\gamma{\left.\underset{a^{\prime}}{\max _{a^{\prime}}\left(s^{\prime}, a^{\prime}\right)}\right]}_{0.9}^{\overbrace{}^{\circ o s}}
$$

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)[R\left(s, a, s^{\prime}\right)+\gamma{\left.\underset{a^{\prime}}{\max _{i}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]}_{0.9}^{\overbrace{}^{\circ o s}}
$$

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma{\underset{a^{\prime}}{\max _{i}} Q_{i}\left(s^{\prime}, a^{\prime}\right)}_{0.9}\right.
$$

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma{\underset{a^{\prime}}{\max _{i}} Q_{i}\left(s^{\prime}, a^{\prime}\right)}_{0.9}\right.
$$

	3	Coses)		0.09	$+1$
$0.8 x[0+0]$	2	Coses)			-1
$\begin{gathered} +0.1 x[0+0.9 x-1] \\ +0.1 x[0+0] \\ =-0.09 \end{gathered}$	1	0			
		1	2	3	4

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)[R\left(s, a, s^{\prime}\right)+\gamma{\left.\underset{a^{\prime}}{\max _{a^{\prime}}\left(s^{\prime}, a^{\prime}\right)}\right]}_{0.9}^{\overbrace{}^{\circ o s}}
$$

	3	Coses)	Coses)	0.09	$+1$
$0.8 x[0+0]$	2	Cosele			-1
$\begin{gathered} +0.1 x[0+0] \\ +0.1 \times[0+0] \\ =0 \end{gathered}$	1				
		1	2	3	4

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma{\left.\underset{a^{\prime}}{\max _{i}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]}^{0.9}\right.
$$

Now we have $Q_{1}(s, a)$ for all (s, a)

1
(20.09

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma{\left.\underset{a^{\prime}}{\max _{i}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]}_{0.9}\right.
$$

After 1000 iterations:

$Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]$

Q Iteration

- Information propagates outward from terminal states
- Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value Iteration

- Analogous to Q-Policy iteration but for computing the value function
- Initialize $V_{1}(s) \leftarrow 0$ for all s
- For $i \in\{1,2, \ldots\}$ until convergence:

$$
V_{i+1}(s) \leftarrow \max _{a \in A} \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot V_{i}\left(s^{\prime}\right)\right)
$$

$$
V_{i+1}(s) \leftarrow \max _{a \in A} \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right]
$$

$$
V_{i+1}(s) \leftarrow \max _{a \in A} \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right]
$$

$$
V_{i+1}(s) \leftarrow \max _{a \in A} \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right]
$$

Reinforcement Learning

- Q iteration can be used to compute the optimal Q function when P and R are known
- How can we adapt it to the setting where these are unknown?
- Observation: Every time you take action a from state s, you obtain one sample $s^{\prime} \sim P(\cdot \mid s, a)$ and observe $R\left(s, a, s^{\prime}\right)$
- Use single sample instead of full P

Q Learning

- Can we learn π^{*} without explicitly learning P and R ?

$$
Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime} \in S} P\left(s^{\prime} \mid s, a\right) \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)
$$

Q Learning

- Can we learn π^{*} without explicitly learning P and R ?

$$
Q_{i+1}(s, a) \leftarrow \mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a)}\left[R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Q Learning

- Q Learning update:

$$
Q_{i+1}(s, a) \leftarrow R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)
$$

- Q Iteration: Update for all (s, a, s^{\prime}) at each step
- Q Learning: Update just for current (s, a), and approximate with the state s^{\prime} we actually reached (i.e., a single sample $s^{\prime} \sim P(\cdot \mid s, a)$)

Q Learning

- Problem: Forget everything we learned before (i.e., $Q_{i}(s, a)$)
- Solution: Incremental update:

$$
Q_{i+1}(s, a) \leftarrow(1-\alpha) \cdot Q_{i}(s, a)+\alpha \cdot\left(R\left(s, a, s^{\prime}\right)+\gamma \cdot \max _{a^{\prime} \in A} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)
$$

$$
Q(s, a) \leftarrow Q(s, a)+\alpha\left(R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)
$$

3	0°	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0.09 \\ 00.72 .72 \\ 0.09 \end{gathered}$	+1
2			$\begin{gathered} { }^{-0.09} \\ 0 \\ 0^{-0.09} \\ \\ \hline 0.72 \end{gathered}$	-1
1	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	00	${ }^{\circ} \mathrm{O}$	${ }_{-0.09} 0^{-0.72}{ }^{-0.09}$
	1	2	3	4

Sample $R+\gamma \max Q=$ $0+0.9 \times 0.78=0.702$

New $Q=$
$0.09+0.1 \times(0.702-0.09)$

$$
=0.1512
$$

After 100,000 actions: $\quad Q(s, a) \leftarrow Q(s, a)+\alpha\left(R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)-Q(s, a)\right)$

Policy for Gathering Data

- Strategy 1: Randomly explore all (s, a) pairs
- Not obvious how to do so!
- E.g., if we act randomly, it may take a very long time to explore states that are difficult to reach
- Strategy 2: Use current best policy
- Can get stuck in local minima
- E.g., we may never discover a shortcut if it sticks to a known route to the goal

Policy for Gathering Data

- ϵ-greedy:
- Play current best with probability $1-\epsilon$ and randomly with probability ϵ
- Can reduce ϵ over time
- Works okay, but exploration is undirected
- Visitation counts:
- Maintain a count $N(s, a)$ of number of times we tried action a in state s
- Choose $a^{*}=\arg \max _{a \in A}\left\{Q(s, a)+\frac{1}{N(s, a)}\right\}$, i.e., inflate less visited states

Summary

- Q iteration: Compute optimal Q function when the transitions and rewards are known
- Q learning: Compute optimal Q function when the transitions and rewards are unknown
- Extensions
- Various strategies for exploring the state space during learning
- Handling large or continuous state spaces

Curse of Dimensionality

- How large is the state space?
- Gridworld: One for each of the n cells
- Pacman: State is (player, ghost $_{1}, \ldots$, ghost $_{k}$), so there are n^{k} states!
- Problem: Learning in one state does not tell us anything about the other states!
- Many states \rightarrow learn very slowly

State-Action Features

- Can we learn across state-action pairs?
- Yes, use features!
- $\phi(s, a) \in \mathbb{R}^{d}$
- Then, learn to predict $Q^{*}(s, a) \approx Q_{\theta}(s, a)=f_{\theta}(\phi(s, a))$
- Enables generalization to similar states

