Announcements

- Project Milestone 2 due Wednesday, April 5 at 8pm
- Homework 6 released Wednesday, April 5
 - Due Wednesday, April 19 at 8pm

Lecture 21: Reinforcement Learning

CIS 4190/5190 Spring 2023

Reinforcement Learning Problem

- At a high level, we need to specify the following:
 - **State space:** What are the observations the agent may encounter?
 - Action space: What are the actions the agent can take?
 - Transitions/dynamics: How the state is updated when taking an action
 - **Rewards:** What rewards the agent receives for taking an action in a state
- For most of today, assume state and action spaces are finite

Markov Decision Process (MDP)

- An MDP (S, A, P, R, γ) is defined by:
 - Set of states $s \in S$
 - Set of actions $a \in A$
 - Transition function P(s' | s, a) (also called "dynamics" or the "model")
 - Reward function R(s, a, s')
 - Discount factor $\gamma < 1$
- Also assume an initial state distribution D(s)
 - Often omitted since optimal policy does not depend on *D*

Policy Gradient Algorithm

1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ (run the policy) 2. $\nabla_{\theta} J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^i | \mathbf{s}_t^i) \right) \left(\sum_t r(\mathbf{s}_t^i, \mathbf{a}_t^i) \right)$ 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Reward-to-Go Function

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\underbrace{\sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})}_{\text{reward to go"}} \right)$$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$

can we get a better estimate?

Reward-to-Go Function

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\underbrace{\sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})}_{\text{reward to go"}} \right)$$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$

can we get a better estimate?

Reward-to-Go Function

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\underbrace{\sum_{t'=t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'})}_{\text{reward to go"}} \right)$$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$

can we get a better estimate?

 $Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$: true expected reward-to-go

Space of RL Algorithms

actor-critic learning

Toy Example

- Grid map with solid/open cells
- State: An open grid cell
- Actions: Move North, East, South, West

Toy Example

• Dynamics

- Move in chosen direction, but not deterministically!
- Succeeds 80% of the time
- 10% of the time, end up 90° off
- 10% of the time, end up -90° off
- The agent stays put if it tries to move into a solid cell or outside the world
- At terminal states, any action ends episode (or rollout)

Toy Example

• Rewards

- At terminal state, agent receives the specified reward
- For each timestep outside terminal states , the agent pays a small cost, e.g., a "reward" of -0.03

Optimal Policy

- Optimal policy: Following π^* maximizes total reward received
 - **Discounted:** Future rewards are downweighted
 - In expectation: On average across randomness of environment and actions

Markov Decision Process (MDP)

Goal: Maximize cumulative expected discounted reward:

$$\pi^* = \max_{\pi} J(\pi)$$
 where $J(\pi) = \mathbb{E}_{\zeta} \left[\sum_{t=0}^{\infty} \gamma^t \cdot r_t \right]$

- Expectation over **episodes** $\zeta = (s_0, a_0, r_0, s_1, ...)$, where
 - $s_0 \sim D$
 - $a_t = \pi(s_t)$
 - $s_{t+1} \sim P(\cdot | s_t, a_t)$
 - $r_t = R(s_t, a_t, s_{t+1})$

Policy Value Function

• Policy Value Function: Expected reward if we start in s and use π :

$$V^{\pi}(s) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s_{0} = s\right)$$

$$V^{\pi}(s) = \sum_{s' \in S} \underbrace{P(s' \mid s, \pi(s))}_{\text{expectation}} \cdot \underbrace{\left(R(s, \pi(s), s') + \gamma \cdot V^{\pi}(s')\right)}_{\text{current reward + discounted future reward + discounted future reward}}$$

Optimal Value Function

• Optimal value function: Expected reward if we start in s and use π^* :

$$V^*(s) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot r_t \mid s_0 = s\right)$$

• Bellman equation: $V^{*}(s) = \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot (R(s, a, s') + \gamma \cdot V^{*}(s'))$ current value $V^{*}(s) = \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot (R(s, a, s') + \gamma \cdot V^{*}(s'))$ current reward + discounted future reward + discounted future reward

Optimal Value Function

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot (R(s, a, s') + \gamma \cdot V^*(s'))$$

- Do not need to know the optimal policy π^* !
- Strategy: Compute V^* and then use it to compute π^*
 - **Caveat:** Latter step requires knowing *P*

Policy Action-Value Function

Policy Action-Value Function (or Q function): Expected reward if we start in s, take action a, and then use π thereafter:

$$Q^{\pi}(s,a) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s_{0} = s, a_{0} = a\right)$$

$$Q^{\pi}(s, \boldsymbol{a}) = \sum_{s' \in S} P(s' \mid s, \boldsymbol{a}) \cdot \left(R(s, \boldsymbol{a}, s') + \gamma \cdot Q^{\pi}(s', \boldsymbol{\pi}(s')) \right)$$

Optimal Action-Value Function

 Optimal Action-Value Function (or Q function): Expected reward if we start in s, take action a, and then act optimally thereafter:

$$Q^*(s,a) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot r_t \mid s_0 = s, a_0 = a\right)$$

$$Q^*(s,a) = \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q^*(s',a') \right)$$

Relationship

• We have

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

• Similarly, we have

$$V^*(s) = \max_a Q^*(s,a)$$

Q Iteration

• We have

$$\pi^*(s) = \max_{a \in A} Q^*(s, a)$$

• Strategy: Compute Q^* and then use it to compute π^*

Q Iteration

- Initialize $Q_1(s, a) \leftarrow 0$ for all s, a
- For $i \in \{1, 2, ...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right)$$

0.8x[0+0.9x1]+ 0.1x[0 + 0] +0.1x[0+0] =0.72

0.8x[0+0]+ 0.1x[0+0.9x1] +0.1x[0+0] =0.09

0.8x[0+0] + 0.1x[0+0.9x1] +0.1x[0+0] =0.09

0.8x[0+0] + 0.1x[0+0] +0.1x[0+0] =0

0.8x[0+0.9x-1] + 0.1x[0+0] +0.1x[0+0] =-0.72

0.8x[0+0] + 0.1x[0+0] +0.1x[0+0.9x-1] =-0.09

0.8x[0+0]+ 0.1x[0+0.9x-1] +0.1x[0+0] =-0.09

0.8x[0+0] + 0.1x[0+0] +0.1x[0+0] =0

0.8x[0+0.9x1]+ 0.1x[0+0.9x0.72]+0.1x[0+0]=0.7848

0.8x[0+0] + 0.1x[0+0.9x1] +0.1x[0+0] =0.09

After 1000 iterations:

0.59 0.77 0.67 3 0.57 0.64 0.66 0.85 0.60 0.74 0.53 0.57 0.67 0.57 0.57 2 0.51 0.51 0.53 -0.60 0.46 0.30 -0.65 0.49 0.40 0.48 1 0.28 0.13 0.42 0.45 0.41 0.43 0.40 0.29 0.27 0.40 0.44 0.41

Q Iteration

- Information propagates outward from terminal states
- Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value Iteration

- Analogous to Q-Policy iteration but for computing the value function
- Initialize $V_1(s) \leftarrow 0$ for all s
- For $i \in \{1, 2, ...\}$ until convergence:

$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot (R(s, a, s') + \gamma \cdot V_i(s'))$$

 $V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s'|s,a)[R(s,a,s') + \gamma V_i(s')]$

 $V_2(\langle 4,3\rangle) \leftarrow 1$

0.9 0 $V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s'|s,a) [R(s,a,s') + \gamma V_i(s')]$

Reinforcement Learning

- Q iteration can be used to compute the optimal Q function when *P* and *R* are **known**
- How can we adapt it to the setting where these are unknown?
 - Observation: Every time you take action a from state s, you obtain one sample s' ~ P(·| s, a) and observe R(s, a, s')
 - Use single sample instead of full P

• Can we learn π^* without explicitly learning *P* and *R*?

$$Q_{i+1}(s,a) \leftarrow \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right)$$

• Can we learn π^* without explicitly learning *P* and *R*?

$$Q_{i+1}(s,a) \leftarrow \mathbb{E}_{s' \sim P(\cdot|S,a)} \left[R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right]$$

• Q Learning update:

$$Q_{i+1}(s,a) \leftarrow R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')$$

- **Q Iteration:** Update for all (*s*, *a*, *s'*) at each step
- **Q Learning:** Update just for current (s, a), and approximate with the state s' we actually reached (i.e., a single sample $s' \sim P(\cdot | s, a)$)

- **Problem:** Forget everything we learned before (i.e., $Q_i(s, a)$)
- Solution: Incremental update:

$$Q_{i+1}(s,a) \leftarrow (1-\alpha) \cdot Q_i(s,a) + \alpha \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')\right)$$

 $0.1 \qquad 0.9$ $Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$

Sample $R + \gamma \max Q = 0+0.9 \times 0.78 = 0.702$ **2**

New Q = 0.09+0.1X(0.702-0.09) = 0.1512

After 100,000 actions: $Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$

Policy for Gathering Data

- Strategy 1: Randomly explore all (*s*, *a*) pairs
 - Not obvious how to do so!
 - E.g., if we act randomly, it may take a very long time to explore states that are difficult to reach
- Strategy 2: Use current best policy
 - Can get stuck in local minima
 - E.g., we may never discover a shortcut if it sticks to a known route to the goal

Policy for Gathering Data

• *c*-greedy:

- Play current best with probability $1-\epsilon$ and randomly with probability ϵ
- Can reduce ϵ over time
- Works okay, but exploration is undirected

Visitation counts:

- Maintain a count N(s, a) of number of times we tried action a in state s
- Choose $a^* = \arg \max_{a \in A} \left\{ Q(s, a) + \frac{1}{N(s, a)} \right\}$, i.e., inflate less visited states

Summary

- **Q iteration:** Compute optimal Q function when the transitions and rewards are known
- **Q learning:** Compute optimal Q function when the transitions and rewards are unknown

• Extensions

- Various strategies for exploring the state space during learning
- Handling large or continuous state spaces

Curse of Dimensionality

- How large is the state space?
 - Gridworld: One for each of the n cells
 - Pacman: State is (player, ghost₁, ..., ghost_k), so there are n^k states!
- **Problem:** Learning in one state does not tell us anything about the other states!
- Many states \rightarrow learn very slowly

State-Action Features

- Can we learn **across** state-action pairs?
- Yes, use features!
 - $\phi(s,a) \in \mathbb{R}^d$
 - Then, learn to predict $Q^*(s, a) \approx Q_{\theta}(s, a) = f_{\theta}(\phi(s, a))$
 - Enables generalization to similar states