Announcements

* Project Milestone 2 due Wednesday, April 5 at 8pm

* Homework 6 released Wednesday, April 5
* Due Wednesday, April 19 at 8pm

Lecture 21: Reinforcement Learning

CIS 4190/5190
Spring 2023

Reinforcement Learning Problem

* At a high level, we need to specify the following:
 State space: What are the observations the agent may encounter?
* Action space: What are the actions the agent can take?
 Transitions/dynamics: How the state is updated when taking an action
* Rewards: What rewards the agent receives for taking an action in a state

* For most of today, assume state and action spaces are finite

Markov Decision Process (MDP)

* An MDP (S5,A,P,R,y) is defined by: +5
e Set of statess € S
 Set of actionsa € A

* Transition function P(s' | s,a) (also
called “dynamics” or the “model”)

e Reward function R(s,a,s’)
e Discount factory <1

* Also assume an initial state .
distribution D(s)

* Often omitted since optimal policy
does not depend on D

Image: https://towardsdatascience.com/reinforcement-learning-

demystified-markov-decision-processes-part-1-bf00dda41690

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690

Policy Gradient Algorithm

1. sample {7} from my(as|s;) (run the policy)

2. VoJ(0) = 32, (32, Vologme(ajls))) (32, r(si, a}))
3. 0+ 0 OngJ(@)

Reward-to-Go Function

i=1 t=1 t/'=t
L

N T
1
Vol (0) ~ < >) Vglogmo(ailsi) (Z ACTR ai,t’))
J

Y
“reward to go” Qi

Qi+ estimate of expected reward if we take action a;; in state s;

can we get a better estimate?

Reward-to-Go Function

i=1 t=1 t/'=t
L

N T
1
Vol (0) ~ < >) Vglogmo(ailsi) (Z ACTR ai,t’))
J

Y
“reward to go” Qi

Qi+ estimate of expected reward if we take action a;; in state s;

can we get a better estimate?

Reward-to-Go Function

i=1 t=1 t/'=t
L

N T
1
VoJ(0 N sze log o (at[8it) (Z (Si,t’aai,t’)>
J

Y
“reward to go” Qi

Qi+ estimate of expected reward if we take action a;; in state s;

can we get a better estimate?

Q(st,a;) = Zfzt Er, [r(sy,ay)|st, at]: true expected reward-to-go

Space of RL Algorithms

—
Q-learning actor-critic REINFORCE

learning

Toy Example

* Grid map with solid/open cells

 State: An open grid cell

e Actions: Move North, East,
South, West B

Based on slide by Dan Klein

Toy Example

* Dynamics
* Move in chosen direction, but not
deterministically!

e Succeeds 80% of the time

* 10% of the time, end up 90° off 2 =
* 10% of the time, end up —90° off A .
* The agent stays put if it tries to

move into a solid cell or outside 1 2 3 4

the world

0.8
At terminal states, any action ends o1 o1
episode (or rollout)

Based on slide by Dan Klein

Toy Example

e Rewards

* At terminal state, agent receives
the specified reward

* For each timestep outside terminal
states, the agent pays a small cost,
e.g., a “reward” of —0.03

3
2 [£7]
1 START

1 2 3 4

0.8

0.1 0.1

Based on slide by Dan Klein

Optimal Policy

* Optimal policy: Following "
maximizes total reward received

* Discounted: Future rewards are
downweighted

 In expectation: On average across
randomness of environment and
actions

11

E

Based on slide by Dan Klein

Markov Decision Process (MDP)

* Goal: Maximize cumulative expected discounted reward:

n* = maxJ(m) where J(m)=E; E vyt
T
L t=0

Policy Value Function

* Policy Value Function: Expected reward if we start in s and use m:

VT(s) =]E(Zyt 1y | Sp = S)
t=0

* Bellman equation:

V(s) = z P(s"15,m()) - (R(s,m(s),5) + - V(s")
—

current value expectatlon current reward +
over next state discounted future reward

Optimal Value Function

e Optimal value function: Expected reward if we startin s and use "

Vi(s) =E zyt°rt|50 =S
t=0

 Bellman equation: Optimal policy selects action that maximizes
future expected reward from state s

V*(s) = max P(s’ |S,a)-(R(S,a,s’)+)/-V*(S’))
\) acA - W — U - /
current value S’ €5 expectation current reward +
over next state discounted future reward

Optimal Value Function

* Bellman equation:

V*(s) = rcrllez%z P(s'|s,a)- (R(S, as')+y- V*(S’))

s'es

* Do not need to know the optimal policy ™!

 Strategy: Compute V* and then use it to compute T~
e Caveat: Latter step requires knowing P

Policy Action-Value Function

* Policy Action-Value Function (or Q function): Expected reward if we
start in s, take action a, and then use m thereafter:

QTC(S’a) —]E(zyt 'rt | SO — S,ao — a>
t=0

* Bellman equation:

Q" (s,a) = z P(s'|s,a)- (R(S, a,s')+y- Q”(S’,n(s’)))

s'es

Optimal Action-Value Function

* Optimal Action-Value Function (or Q function): Expected reward if
we start in s, take action a, and then act optimally thereafter:

Q*(S,a) — IE(Z)/t 'Tt | SO —_ S,ao — a)
t=0

* Bellman equation:

Q*(s,a) = z P(s'|s,a) - (R(S, as')+y- gr,lgﬁQ*(s’,a’))

s'es

Relationship
* We have
V(s) = Q"(s,m(s))

* Similarly, we have

Vi(s) = max Q*(s,a)

Q Iteration

* We have

T (s) = max Q*(s,a)

 Strategy: Compute Q" and then use it to compute t*

Q Iteration

* Initialize Q;(s,a) « O forall s,a
* Fori € {1,2, ...} until convergence:

0ii(5,0) «) P(s'15,0) - (R(s,a,8) +7 - maxy(s',a))

s'es

r—

S{CIEI)
R
N
o D

o

™ N

1
“]
XO]
N o

o

™ N

1
—
]X]
o 9 O
+

o

™ N

1
—
]X]
o 9 O
+

D &

™ N

1
— O O
o
7 +

o

™ N

1
ﬂ]]
x O O

o

™ N

1
<
]]X
S
+ O A~

o

™ N

-
<

X
(@)

o O
+

D &

™ N

1
— O O
o
7 +

o B

™ N

1
~
S
)
—

v
>
©
<

Q:(s"a)|

E1EINE
S (0 O
D &

+ 0.1x[0+0.9x0.72]
+0.1x[0+0]
0.7848

0.8x[0+0.9x1]

o

™ N

1
—
]X]
o 9 O
+

0 0.9
i A

After 1000 iterations:

Qi+1(s,a) « E P(s'|s, a) [R(s, a,s') +y/maxQ;(s’, a’)
a
S’

Q Iteration

* Information propagates outward from terminal states

* Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value lteration

* Analogous to Q-Policy iteration but for computing the value function

* Initialize VV;(s) « O forall s
* Fori € {1,2, ...} until convergence:

Viii1(s) « max z P(s'Is,a) (R(s,as")+vy-Vi(s))

s'es

Example MDP

0 0.9

/ /
Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]

s'es

+1

0 0.9

/ /
Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]
s’'es
Example MDP Vi V

ik 31 Ol O] O ([(+1] =] O

V,({(4,3)) < 1 V,((4,2)) « —1

Example MDP

0 0.9

/ /

Vii1(s) « max 2 P(s'|s,a)[R(s,a,s") + yV;(s")]

+1

Vs
O [O |0.72] +1
0 O [-1
O[O0 01O

Reinforcement Learning

e Q iteration can be used to compute the optimal Q function when P
and R are known

* How can we adapt it to the setting where these are unknown?

* Observation: Every time you take action a from state s, you obtain one
sample s’ ~ P(-] s,a) and observe R(s,a,s’)

* Use single sample instead of full P

Q Learning

* Can we learn ™ without explicitly learning P and R?

0ini(5,@) =) P(s"15,0)- (R(s,0,5) +7 - maxQi(s',a")

s'es

Q Learning

* Can we learn ™ without explicitly learning P and R?

Qi+1(s,a) « Eg p(.is, a) [R(S, a,s’) +y - maxQ(s’, a’)]

Q Learning

* Q Learning update:
Qi+1(5,@) = R(s5,0,5") + - maxQi(s',a’)
a €
 Q Iteration: Update for all (s, a, s’) at each step

* Q Learning: Update just for current (s, a), and approximate with the
state s’ we actually reached (i.e., a single sample s’ ~ P(:| s,a))

Q Learning

* Problem: Forget everything we learned before (i.e., Q;(s, a))

* Solution: Incremental update:

Qis1(s,a) = (1) - Qi(s,@) + - (R(s,a,8) +y - maxQi(s',a"))

0.1 0.9

Q(s,a) « Q(s,a) + a|R(s,a,s") + yn}la,le(s’, a) —Q(s, a))

3 o 0| 00]:072

\ 0 o ;

2 0 e 0~ [Z1] 3
1 2 3 4

Sample R + ymaxQ =
0+0.9x0.78 =0.702 2

New Q =
0.09+0.1X(0.702-0.09)
=(0.1512

Policy for Gathering Data

* Strategy 1: Randomly explore all (s, a) pairs
* Not obvious how to do so!

e E.g., if we act randomly, it may take a very long
time to explore states that are difficult to reach

 Strategy 2: Use current best policy
e Can get stuck in local minima

* E.g., we may never discover a shortcut if it
sticks to a known route to the goal

Policy for Gathering Data

* e-greedy:
* Play current best with probability 1 — € and randomly with probability €
e Can reduce € over time
* Works okay, but exploration is undirected

* Visitation counts:
* Maintain a count N (s, a) of number of times we tried action a in state s

. 1). . -
e Choose a* = arg max ey {Q(s, a) + m}, i.e., inflate less visited states

Summary

e Qiteration: Compute optimal Q function when the transitions and
rewards are known

* Q learning: Compute optimal Q function when the transitions and
rewards are unknown

* Extensions
* Various strategies for exploring the state space during learning
* Handling large or continuous state spaces

Curse of Dimensionality

* How large is the state space?
e Gridworld: One for each of the n cells

« Pacman: State is (player, ghosty, ..., ghosty,),
so there are n* states!

* Problem: Learning in one state does not
tell us anything about the other states!

* Many states = learn very slowly

State-Action Features

* Can we learn across state-action pairs?

* Yes, use features!
« ¢(s,a) € R?

* Then, learn to predict Q*(s,a) = Qg(s,a) = fy (qb(s, a))
* Enables generalization to similar states

