
Announcements

• Project Milestone 2 due Wednesday, April 5 at 8pm

• Homework 6 released Wednesday, April 5
• Due Wednesday, April 19 at 8pm



Lecture 21: Reinforcement Learning

CIS 4190/5190
Spring 2023



Reinforcement Learning Problem

• At a high level, we need to specify the following:
• State space: What are the observations the agent may encounter?
• Action space: What are the actions the agent can take?
• Transitions/dynamics: How the state is updated when taking an action
• Rewards: What rewards the agent receives for taking an action in a state

• For most of today, assume state and action spaces are finite



Markov Decision Process (MDP)

• An MDP (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) is defined by:
• Set of states 𝑠 ∈ 𝑆
• Set of actions 𝑎 ∈ 𝐴
• Transition function 𝑃 𝑠! 𝑠, 𝑎 (also 

called “dynamics” or the “model”)
• Reward function 𝑅 𝑠, 𝑎, 𝑠!
• Discount factor 𝛾 < 1

• Also assume an initial state 
distribution 𝐷 𝑠
• Often omitted since optimal policy 

does not depend on 𝐷
Image: https://towardsdatascience.com/reinforcement-learning-
demystified-markov-decision-processes-part-1-bf00dda41690

https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690
https://towardsdatascience.com/reinforcement-learning-demystified-markov-decision-processes-part-1-bf00dda41690


Policy Gradient Algorithm
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Space of RL Algorithms

REINFORCEactor-critic
learning

Q-learning



Toy Example

• Grid map with solid/open cells

• State: An open grid cell

• Actions: Move North, East, 
South, West

Based on slide by Dan Klein



Toy Example

• Dynamics
• Move in chosen direction, but not 

deterministically!
• Succeeds 80% of the time
• 10% of the time, end up 90∘ off
• 10% of the time, end up −90∘ off
• The agent stays put if it tries to 

move into a solid cell or outside 
the world
• At terminal states, any action ends 

episode (or rollout)

Based on slide by Dan Klein



Toy Example

• Rewards
• At terminal state, agent receives 

the specified reward
• For each timestep outside terminal 

states , the agent pays a small cost, 
e.g., a “reward” of −0.03

Based on slide by Dan Klein



Optimal Policy

• Optimal policy: Following 𝜋∗
maximizes total reward received
• Discounted: Future rewards are 

downweighted
• In expectation: On average across 

randomness of environment and 
actions

Based on slide by Dan Klein



Markov Decision Process (MDP)

• Goal: Maximize cumulative expected discounted reward:

𝜋∗ = max
"
𝐽 𝜋 where 𝐽 𝜋 = 𝔼# 6

$%&

'

𝛾$ ⋅ 𝑟$

• Expectation over episodes 𝜁 = 𝑠&, 𝑎&, 𝑟&, 𝑠(, … , where
• 𝑠# ∼ 𝐷
• 𝑎$ = 𝜋 𝑠$
• 𝑠$%& ∼ 𝑃 ⋅ 𝑠$, 𝑎$
• 𝑟$ = 𝑅 𝑠$, 𝑎$, 𝑠$%&



Policy Value Function

• Policy Value Function: Expected reward if we start in 𝑠 and use 𝜋:

𝑉" 𝑠 = 𝔼 6
$%&

'

𝛾$ ⋅ 𝑟$ ∣ 𝑠& = 𝑠

• Bellman equation:

𝑉" 𝑠 = 6
)!∈+

𝑃 𝑠, 𝑠, 𝜋 𝑠 ⋅ 𝑅 𝑠, 𝜋 𝑠 , 𝑠, + 𝛾 ⋅ 𝑉" 𝑠,

expectation 
over next state

current reward + 
discounted future reward

current value



Optimal Value Function

• Optimal value function: Expected reward if we start in 𝑠 and use 𝜋∗:

𝑉∗ 𝑠 = 𝔼 6
$%&

'

𝛾$ ⋅ 𝑟$ ∣ 𝑠& = 𝑠

• Bellman equation:

𝑉∗ 𝑠 = max
-∈.

6
)!∈+

𝑃 𝑠, 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ 𝑉∗ 𝑠,

expectation 
over next state

current reward + 
discounted future reward

current value

Optimal policy selects action that maximizes 
future expected reward from state 𝑠



Optimal Value Function

• Bellman equation:

𝑉∗ 𝑠 = max
-∈.

6
)!∈+

𝑃 𝑠, 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ 𝑉∗ 𝑠,

• Do not need to know the optimal policy 𝜋∗!

• Strategy: Compute 𝑉∗ and then use it to compute 𝜋∗
• Caveat: Latter step requires knowing 𝑃



Policy Action-Value Function

• Policy Action-Value Function (or Q function): Expected reward if we 
start in 𝑠, take action 𝑎, and then use 𝜋 thereafter:

𝑄" 𝑠, 𝑎 = 𝔼 6
$%&

'

𝛾$ ⋅ 𝑟$ ∣ 𝑠& = 𝑠, 𝑎& = 𝑎

• Bellman equation:

𝑄" 𝑠, 𝑎 = 6
)!∈+

𝑃 𝑠, 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ 𝑄" 𝑠,, 𝜋 𝑠,



Optimal Action-Value Function

• Optimal Action-Value Function (or Q function): Expected reward if 
we start in 𝑠, take action 𝑎, and then act optimally thereafter:

𝑄∗ 𝑠, 𝑎 = 𝔼 6
$%&

'

𝛾$ ⋅ 𝑟$ ∣ 𝑠& = 𝑠, 𝑎& = 𝑎

• Bellman equation:

𝑄∗ 𝑠, 𝑎 = 6
)!∈+

𝑃 𝑠, 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ max
-!∈.

𝑄∗ 𝑠,, 𝑎,



Relationship

• We have

𝑉" 𝑠 = 𝑄" 𝑠, 𝜋 𝑠

• Similarly, we have

𝑉∗ 𝑠 = max
-
𝑄∗(𝑠, 𝑎)



Q Iteration

• We have

𝜋∗ 𝑠 = max
-∈.

𝑄∗ 𝑠, 𝑎

• Strategy: Compute 𝑄∗ and then use it to compute 𝜋∗



Q Iteration

• Initialize 𝑄( 𝑠, 𝑎 ← 0 for all 𝑠, 𝑎
• For 𝑖 ∈ 1,2, … until convergence:

𝑄/0( 𝑠, 𝑎 ← 6
)!∈+

𝑃 𝑠, 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ max
-!∈.

𝑄/ 𝑠,, 𝑎,



0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Living cost 0 0.9



0

0

0

0

0

0

0

0

0

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x1]
+ 0.1x[0 + 0]
+0.1x[0+0]

=0.72

0 0.9



0

0

0

0

0

0

0

0

0.09

0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9



0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9



0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0]

=0

0 0.9



0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

-0.72

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x-1]
+ 0.1x[0+0]
+0.1x[0+0]

=-0.72

0 0.9



0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

0

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]

+0.1x[0+0.9x-1]
=-0.09

0 0.9



0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x-1]

+0.1x[0+0]
=-0.09

0 0.9



0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0]
+0.1x[0+0]

=0

0 0.9



0

0

0

0

0

0

0

0

0.09

0.72

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

Now we have 
𝑄&(𝑠, 𝑎) for all (𝑠, 𝑎)

0 0.9



0

0

0

0

0

0

0

0

0.09

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0.9x1]
+ 0.1x[0+0.9x0.72]

+0.1x[0+0]
=0.7848

0 0.9



0

0

0

0

0

0

0

0

0.09

0.78

0.09

0

-0.09

-0.72

-0.09

0

0

0

0

0

-0.72

-0.09

0

-0.09

0

0

0

0

0

0

0

0

0

0

0

0

0.8x[0+0]
+ 0.1x[0+0.9x1]

+0.1x[0+0]
=0.09

0 0.9



0.59

0.64

0.53

0.57

0.67

0.74

0.67

0.60

0.77

0.85

0.57

0.66

0.57

-0.60

0.30

0.53

0.48

0.29

0.41

0.40

-0.65

0.13

0.27

0.28

0.40

0.42

0.40

0.43

0.49

0.41

0.44

0.45

0.57

0.51

0.46

0.51

After 1000 iterations:
0 0.9



Q Iteration

• Information propagates outward from terminal states

• Eventually all state-action pairs converge to correct Q-value estimates



Aside: Value Iteration

• Analogous to Q-Policy iteration but for computing the value function

• Initialize 𝑉( 𝑠 ← 0 for all 𝑠
• For 𝑖 ∈ 1,2, … until convergence:

𝑉/0( 𝑠 ← max
-∈.

6
)!∈+

𝑃 𝑠, 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ 𝑉/ 𝑠,



Example MDP V0 V1
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7
'!∈(

𝑃(𝑠)|𝑠, 𝑎) 𝑅 𝑠, 𝑎, 𝑠) + 𝛾𝑉!(𝑠′)

0 0.9



Example MDP V1
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Example MDP V2
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Reinforcement Learning

• Q iteration can be used to compute the optimal Q function when 𝑃
and 𝑅 are known

• How can we adapt it to the setting where these are unknown?
• Observation: Every time you take action 𝑎 from state 𝑠, you obtain one 

sample 𝑠! ∼ 𝑃 ⋅ 𝑠, 𝑎 and observe 𝑅 𝑠, 𝑎, 𝑠!
• Use single sample instead of full 𝑃



Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄/0( 𝑠, 𝑎 ← 6
)!∈+

𝑃 𝑠, 𝑠, 𝑎 ⋅ 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ max
-!∈.

𝑄/ 𝑠,, 𝑎,



Q Learning

• Can we learn 𝜋∗ without explicitly learning 𝑃 and 𝑅?

𝑄/0( 𝑠, 𝑎 ← 𝔼)!∼C ⋅ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ max
-!∈.

𝑄/ 𝑠,, 𝑎,



Q Learning

• Q Learning update:

𝑄/0( 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ max
-!∈.

𝑄/ 𝑠,, 𝑎,

• Q Iteration: Update for all 𝑠, 𝑎, 𝑠, at each step

• Q Learning: Update just for current 𝑠, 𝑎 , and approximate with the 
state 𝑠, we actually reached (i.e., a single sample 𝑠, ∼ 𝑃 ⋅ 𝑠, 𝑎 )



Q Learning

• Problem: Forget everything we learned before (i.e., 𝑄/ 𝑠, 𝑎 )

• Solution: Incremental update:

𝑄/0( 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄/ 𝑠, 𝑎 + 𝛼 ⋅ 𝑅 𝑠, 𝑎, 𝑠, + 𝛾 ⋅ max
-!∈.

𝑄/ 𝑠,, 𝑎,
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After 100,000 actions: 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
!"

𝑄 𝑠", 𝑎" − 𝑄(𝑠, 𝑎)



Policy for Gathering Data

• Strategy 1: Randomly explore all 𝑠, 𝑎 pairs
• Not obvious how to do so!
• E.g., if we act randomly, it may take a very long 

time to explore states that are difficult to reach

• Strategy 2: Use current best policy
• Can get stuck in local minima
• E.g., we may never discover a shortcut if it 

sticks to a known route to the goal



Policy for Gathering Data

• 𝝐-greedy:
• Play current best with probability 1 − 𝜖 and randomly with probability 𝜖
• Can reduce 𝜖 over time
• Works okay, but exploration is undirected

• Visitation counts:
• Maintain a count 𝑁 𝑠, 𝑎 of number of times we tried action 𝑎 in state 𝑠
• Choose 𝑎∗ = arg max9∈; 𝑄 𝑠, 𝑎 + &

< =,9 , i.e., inflate less visited states



Summary

• Q iteration: Compute optimal Q function when the transitions and 
rewards are known

• Q learning: Compute optimal Q function when the transitions and 
rewards are unknown

• Extensions
• Various strategies for exploring the state space during learning
• Handling large or continuous state spaces



Curse of Dimensionality

• How large is the state space?
• Gridworld: One for each of the 𝑛 cells
• Pacman: State is player, ghost&, … , ghost> , 

so there are 𝑛> states!

• Problem: Learning in one state does not 
tell us anything about the other states!

• Many states à learn very slowly



State-Action Features

• Can we learn across state-action pairs?

• Yes, use features!
• 𝜙 𝑠, 𝑎 ∈ ℝ?

• Then, learn to predict 𝑄∗ 𝑠, 𝑎 ≈ 𝑄@ 𝑠, 𝑎 = 𝑓@ 𝜙 𝑠, 𝑎
• Enables generalization to similar states


