
Announcements

• Project Milestone 2 due tonight at 8pm

• Homework 6 released tonight
• Due Wednesday, April 19 at 8pm



Lecture 22: Reinforcement Learning

CIS 4190/5190
Spring 2023



Recap

• Q iteration: Compute optimal Q function when the transitions and 
rewards are known

• Q learning: Compute optimal Q function when the transitions and 
rewards are unknown

• Extensions
• Various strategies for exploring the state space during learning
• Handling large or continuous state spaces



Q Learning

• Iteratively perform the following update:

𝑄!"# 𝑠, 𝑎 ← 1 − 𝛼 ⋅ 𝑄! 𝑠, 𝑎 + 𝛼 ⋅ 𝑅 𝑠, 𝑎, 𝑠$ + 𝛾 ⋅ max
%!∈'

𝑄! 𝑠$, 𝑎$



Agenda

• Deep Q learning & actor-critic

• Multi-armed bandits

• Exploration in reinforcement learning

• Offline reinforcement learning



Curse of Dimensionality

• How large is the state space?
• Gridworld: One for each of the 𝑛 cells
• Pacman: State is player, ghost!, … , ghost" , 

so there are 𝑛" states!

• Problem: Learning in one state does not 
tell us anything about the other states!

• Many states à learn very slowly



State-Action Features

• Can we learn across state-action pairs?

• Yes, use features!
• 𝜙 𝑠, 𝑎 ∈ ℝ#

• Then, learn to predict 𝑄∗ 𝑠, 𝑎 ≈ 𝑄% 𝑠, 𝑎 = 𝑓% 𝜙 𝑠, 𝑎
• Enables generalization to similar states



Neural Network 𝑄 Function

• Examples: Distance to closest ghost, distance to closest dot, etc.
• Can also use neural networks to learn features (e.g., represent Pacman game 

state as an image and feed to CNN)!

𝑄! 𝑠, 𝑎"
𝑄! 𝑠, 𝑎#

:
:

𝑠



Deep Q Learning

• Learning: Gradient descent with the squared Bellman error loss:

𝑅 𝑠, 𝑎, 𝑠+ + 𝛾 ⋅ max
,!

𝑄% 𝑠+, 𝑎+ − 𝑄% 𝑠, 𝑎
-

Based on slide by Sergey Levine

“Label” 𝑦



Deep Q Learning

• Iteratively perform the following:
• Take an action 𝑎. and observe 𝑠., 𝑎., 𝑠./!, 𝑟.
• 𝑦. ← 𝑟. + 𝛾 ⋅ max,!∈1

𝑄% 𝑠./!, 𝑎+

• 𝜙 ← 𝜙 − 𝛼 ⋅ ##% 𝑄% 𝑠., 𝑎. − 𝑦. -

• Note: Pretend like 𝑦! is constant when taking the gradient

• For finite state setting, recover incremental update if the 
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine



Experience Replay Buffer

• Problem
• Sequences of states are highly correlated
• Tend to overfit to current states and forget older states

• Solution
• Keep a replay buffer of observations (as a priority queue)
• Gradient updates on samples from replay buffer instead 

of current state

• Advantages
• Breaks correlations between consecutive samples
• Can take multiple gradient steps on each observation Based on slide by Sergey Levine

Replay Buffer

Priority Queue

𝑠!, 𝑎!, 𝑟!, 𝑠"

𝑠", 𝑎", 𝑟", 𝑠#

𝑠$, 𝑎$, 𝑟$, 𝑠$%!

⋯



Deep Q Learning with Replay Buffer

• Iteratively perform the following:
• Take an action 𝑎. and add observation 𝑠., 𝑎., 𝑠./!, 𝑟. to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠&,(, 𝑎&,(, 𝑠&%!,(, 𝑟&,( from 𝐷
• 𝑦&,( ← 𝑟&,( + 𝛾 ⋅ max)!∈+

𝑄, 𝑠&%!,(, 𝑎-

• 𝜃 ← 𝜃 − 𝛼 ⋅ .
.,

𝑄, 𝑠&,(, 𝑎&,( − 𝑦&,(
"

Based on slide by Sergey Levine

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠$, 𝑟

𝜋 𝑠



Target Q Network

• Problem
• Q network occurs in the label 𝑦.!

• 𝜃 ← 𝜃 − 𝛼 ⋅ #
#%

𝑄% 𝑠., 𝑎. − 𝑟. + 𝛾 ⋅ max,!∈1
𝑄% 𝑠./!, 𝑎+

-

• Thus, labels change as Q network changes (distribution shift)

• Solution
• Use a separate target Q network for the occurrence in 𝑦.
• Only update target network occasionally

• 𝜃 ← 𝜃 − 𝛼 ⋅ #
#%

𝑄% 𝑠., 𝑎. − 𝑟. + 𝛾 ⋅ max,!∈1
𝑄%! 𝑠./!, 𝑎+

-

Based on slide by Sergey Levine
Original Q Network Target Q Network



Deep Q Learning with Target Q Network

• Iteratively perform the following:
• Take an action 𝑎. and add observation 𝑠., 𝑎., 𝑠./!, 𝑟. to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠&,(, 𝑎&,(, 𝑠&%!,(, 𝑟&,( from 𝐷
• 𝑦&,( ← 𝑟&,( + 𝛾 ⋅ max)!∈+

𝑄,! 𝑠&%!,(, 𝑎-

• 𝜃 ← 𝜃 − 𝛼 ⋅ .
.,

𝑄, 𝑠&,(, 𝑎&,( − 𝑦&,(
"

• Every 𝑁 steps, 𝜃+ ← 𝜃

Based on slide by Sergey Levine



Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dqn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/


Actor-Critic Policy Update

• Policy gradient:

𝜃 ← 𝜃 + 𝜂 ⋅
1
𝑁
4
!:#

;

4
<:#

=

∇> log 𝜋> 𝑎!,< 𝑠!,< 4
<!:<

=

𝛾<!?<𝑟<!



Actor-Critic Policy Update

• Actor-critic policy gradient:

𝜃 ← 𝜃 + 𝜂 ⋅
1
𝑁
4
!:#

;

4
<:#

=

∇> log 𝜋> 𝑎!,< 𝑠!,< ;𝑄@ 𝑠!,< , 𝑎!,<

• Important: Policy Q learning instead of optimal Q learning!
• Target is I𝑄4 𝑠+, 𝜋 𝑠+ instead of max

,
I𝑄4 𝑠+, 𝑎

• Value is I𝑉4 𝑠 = 𝔼,∼6 ⋅ 𝑠 I𝑄4 𝑠, 𝑎 instead of I𝑉4 𝑠 = max
,

I𝑄4 𝑠, 𝑎

• Exploration: Use policy to take actions



Actor-Critic Policy Update

• What about the baseline?
• The value function is a good baseline!

• Advantage actor-critic:

𝜙 ← 𝜙 + 𝜂 ⋅
1
𝑁
4
!:#

;

4
<:#

=

∇> log 𝜋> 𝑎!,< 𝑠!,< ;𝑄@ 𝑠!,< , 𝑎!,< − ;𝑉@ 𝑠!,<



Actor-Critic Training Strategy

generate samples 
(i.e. run the policy)

fit Q-function using 
Q learning

policy gradient 
using Q estimate



Actor-Critic with Experience Replay

• Iteratively perform the following:
• Take an action 𝑎. ∼ 𝜋% 𝑠. and add 𝑠., 𝑎., 𝑠./!, 𝑟. to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠&,(, 𝑎&,(, 𝑠&%!,(, 𝑟&,( from 𝐷
• 𝑦&,( ← 𝑟&,( + 𝛾 ⋅ max)!∈+

𝑄/ 𝑠&%!,(, 𝑎-

• 𝜙 ← 𝜙 − 𝛼 ⋅ .
./

𝑄/ 𝑠&,(, 𝑎&,( − 𝑦&,(
"

• 𝜃 ← 𝜃 + 𝜂 ⋅ ∇%𝐽 𝜃

• Key intuition: Actor-critic can learn using past data, whereas policy 
gradient can only learn using current data
• Reduces sample complexity in real-world interactions



Agenda

• Deep Q learning & actor-critic

• Multi-armed bandits

• Exploration in reinforcement learning

• Offline reinforcement learning



Multi-Armed Bandits

• State: None! (To be precise, a single state 𝑆 = 𝑠B )

• Action: Item to recommend (often called arms)

• Transitions: Just stay in the same state

• Rewards: Random payoff for each arm
• Denote 𝑅 𝑎 = 𝑅 𝑠7, 𝑎 , where 𝑎 is the chosen action



Example: Ad Targeting

• Setting
• Google wants to show the most popular ad for a search term (e.g., “lawyer”)
• There are a fixed number of ads to choose from

Ad 3

Click

Ad 1

No Click

Ad 2

Click

Ad 3

No Click

Ad 2

Click

Ad 3

??



Multi-Armed Bandits

• Many applications
• Cold-start for news/ad/movie recommendations
• A/B testing
• Flagging potentially harmful content on a social media platform
• Prioritizing medical tests

• Learning dynamically

• Many practical RL problems are multi-armed bandits



Exploration-Exploitation Tradeoff

• For 𝑡 ∈ 1,2, … , 𝑇
• Compute reward estimates 𝑟8,, =

∑"#$
%&$ :"⋅! ,"<,
∑"#$
%&$ ! ,"<,

• Choose action 𝑎8 based on reward estimates
• Add 𝑎8, 𝑟8 to replay buffer

• Question: How to choose actions?
• Exploration: Try actions to better estimate their rewards
• Exploitation: Use action with the best estimated reward to maximize payoff



Multi-Armed Bandit Algorithms

• Naïve strategy: 𝜖-Greedy
• Choose action 𝑎8 ∼ Uniform 𝐴 with probability 𝜖
• Choose action 𝑎8 = arg max

,∈1
𝑟8,, with probability 1 − 𝜖

• Can we do better?



Multi-Armed Bandit Algorithms

• Upper confidence bound (UCB)
• Choose action 𝑎8 = arg max

,∈1
𝑟8,, +

=>?@A
B% ,

• 𝑁8 𝑎 = ∑.<!8C!1 𝑎. = 𝑎 is the number of times action 𝑎 has been played

• Thompson sampling
• Choose action 𝑎8 = arg max

,∈1
𝑟8,, + 𝜖8,, , where 𝜖8,, ∼ 𝑁 0, =>?@A

B% ,

• Both come with theoretical guarantees



Application: Targeted COVID-19 Testing

Test Blue

Negative

Test Green

Positive

Test Green

Negative

Test Brown

Negative

H. Bastani, K. Drakopoulos, V. Gupta, et al. Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning.



EVA

PLF form 

EVA test
(6k-8k)

no test
Travelers report:
• Origin
• Demographics
• Destination
• Contact

Labs submit 
positive results to 
central database 
with ~2-day delay

QR code scanned to link 
sample with PLF info

30k-100k
passengers

24 hours prior
to travel

Use prior testing 
results to allocate 
tests efficiently at 

every point of entry



Why Bandits?

• Bandit feedback
• Only observe positive/negative if the traveler is tested
• Technically “semi-bandit feedback”

• Nonstationarity
• Infection rate for different passenger types changes over time
• Need to continue to explore and collect data over time



Cases Caught

• 1.85× improvement compared 
to random testing

• 1.25-1.45× improvement vs. 
targeting based on public data

Season

Peak

Improvement

Off−Peak

1.85x

1.36x
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Application: Content Moderation

• Problem
• Millions of pieces of content are posted on Meta platforms each day
• Too much to manually review all content
• How to moderate to make sure no harmful?

• Solution
• ML to prioritize potentially harmful content for manual review
• Featurize content and predict likelihood that it is harmful

V. Avadhanula, O. Baki, H. Bastani, O. Bastani, et al. Bandits for Online Calibration: An Application to 
Content Moderation on Social Media Platforms



Application: Content Moderation

Content Reported by 
Users

(Reactive)

Content Flagged by 
AI Systems

(Proactive)

Generating scores from 
different ML models 

+ 
Filtering, De-duping

Auto-delete

Unambiguously violating 
content with high-risk scores

Ambiguous content with low 
precision/uncertain risk scores

Enqueue for 
Human Review

Ranking to 
optimize reviewer 

capacity



Application: Content Moderation

• What about new “types” of content?
• E.g., new kind of racial slur
• Cold start problem!

• Use multi-armed bandits!



Application: Content Moderation

• Multi-armed bandit
• Each “step” corresponds to one piece of content

• Action: Whether to manually review content

• Reward: 1 if content is harmful, 0 otherwise
• Intuition: Goal is to maximize amount of harmful content caught
• Include an 𝛼 penalty for flagging content to avoid flagging everything



Application: Training ChatGPT

• Problem
• Language models are trained using unsupervised learning
• Generating from these models mimics training data rather than human 

preferences

• Solution
• Step 1: Predict human preferences over possible generations (the reward)
• Step 2: Finetune GPT using reinforcement learning, where it is rewarded for 

generating content preferred by humans



Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.



Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.



Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.



Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.



Agenda

• Deep Q learning & actor-critic

• Multi-armed bandits

• Exploration in reinforcement learning

• Offline reinforcement learning



Exploration in Reinforcement Learning

• 𝜖-greedy suffers additional 
issues due to state space

• Policy learning is an effective 
practical solution
• No theoretical guarantees due to 

local minima



Exploration in Finite MDPs

• Upper confidence bound (UCB)
• Choose action 𝑎8 = arg max

,∈1
𝑄8 𝑠, 𝑎 + =>?@A

B% D,,

• 𝑁8 𝑠, 𝑎 = ∑.<!8C!1 𝑠. = 𝑠, 𝑎. = 𝑎 is the number of times action 𝑎 has been 
played in state 𝑠

• Thompson sampling
• Choose action 𝑎8 = arg max

,∈1
𝑄8 𝑠, 𝑎 + 𝜖8,D,, , where 𝜖8,D,, ∼ 𝑁 0, =>?@A

B% D,,

• Both come with theoretical guarantees



Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Bootstrap DQN
• Train ensemble of 𝑘 different 𝑄-function estimates 𝑄%$ , … , 𝑄%' in parallel
• Original idea was to use online bootstrap, but training from different random 

initial 𝜃’s worked as well
• In each episode, act optimally according to 𝑄%" for 𝑖 ∼ Uniform 1,… , 𝑘



Exploration in Continuous MDPs

• Can we adapt these ideas to continuous MDPs?
• Thompson sampling is more suitable

• Soft Q-learning
• Sample actions according to 𝑎 ∼ Softmax 𝛽 ⋅ I𝑄% 𝑠, 𝑎 ,∈1



Curiosity

• Intuition: Rather than focus on optimism with respect to reward, 
focus on exploring where we are uncertain

• How to determine uncertainty?

• Candidate strategy
• Train a dynamics model to predict 𝑠+ = 𝑓 𝑠, 𝑎
• Take actions where 𝑓 𝑠, 𝑎 has high variance (e.g., use bootstrap)

• Problems?
• What if 𝑠+ includes spurious components, like a TV screen playing a movie?



Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝC

• Model 1: Train a model to predict state transitions:

;𝜙 𝑠$ = 𝑓> 𝜙 𝑠 , 𝑎

• Feature map lets the model “ignore” spurious components of 𝑠 such as a TV
• Problem: We could just learn 𝜙 𝑠 = 0?



Curiosity

• Learn a feature map 𝜙 𝑠 ∈ ℝC

• Model 1: Train a model to predict state transitions:

;𝜙 𝑠$ = 𝑓> 𝜙 𝑠 , 𝑎

• Model 2: Train a model to predict action to achieve a transition:

M𝑎 = 𝑔> 𝜙 𝑠 , 𝜙 𝑠$

• “Inverse dynamics model” that avoids collapsing 𝜙



Curiosity

• Curiosity reward is

𝑅 𝑠, 𝑎, 𝑠$ = ;𝜙 𝑠$ − 𝜙 𝑠$
D
D

• In other words, reward agent for exercising transitions that 𝑓 cannot 
yet predict accurately



Agenda

• Deep Q learning & actor-critic

• Multi-armed bandits

• Exploration in reinforcement learning

• Offline reinforcement learning



Offline Reinforcement Learning

• Offline reinforcement learning: How can we learn without actively 
gathering new data?
• E.g., learn how to perform a task from videos of humans performing the task
• Also known as off-policy or batch reinforcement learning

• Recall: Drawback of Q learning was we need an exploration strategy

• However, this also enables us to use Q learning with offline data!



Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎. and add observation 𝑠., 𝑎., 𝑠./!, 𝑟. to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠!,#, 𝑎!,#, 𝑠!$%,#, 𝑟!,# from 𝐷
• 𝑦!,# ← 𝑟!,# + 𝛾 ⋅ max&!∈(

𝑄) 𝑠!$%,#, 𝑎*

• 𝜙 ← 𝜙 − 𝛼 ⋅ +
+)

𝑄) 𝑠!,#, 𝑎!,# − 𝑦!,#
,

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠$, 𝑟

𝜋 𝑠



Offline Reinforcement Learning

• Iteratively perform the following:
• Take an action 𝑎. and add observation 𝑠., 𝑎., 𝑠./!, 𝑟. to replay buffer 𝐷
• For 𝑘 ∈ 1,… , 𝐾 :

• Sample 𝑠!,#, 𝑎!,#, 𝑠!$%,#, 𝑟!,# from 𝐷
• 𝑦!,# ← 𝑟!,# + 𝛾 ⋅ max&!∈(

𝑄) 𝑠!$%,#, 𝑎*

• 𝜙 ← 𝜙 − 𝛼 ⋅ +
+)

𝑄) 𝑠!,#, 𝑎!,# − 𝑦!,#
,

replay buffer

Q learning
(off-policy)

𝑠, 𝑎, 𝑠$, 𝑟

𝜋 𝑠



Summary

Policy 
gradient

Actor-critic
learning

Q-learning


