Announcements

* Project Milestone 2 due tonight at 8pm

* Homework 6 released tonight
* Due Wednesday, April 19 at 8pm

Lecture 22: Reinforcement Learning

CIS 4190/5190
Spring 2023

Recap

e Qiteration: Compute optimal Q function when the transitions and
rewards are known

* Q learning: Compute optimal Q function when the transitions and
rewards are unknown

* Extensions
* Various strategies for exploring the state space during learning
* Handling large or continuous state spaces

Q Learning

* [teratively perform the following update:

Qisi(s,a) = (1= @) - Qi(s, @) +a - (R(s,a,5) +y - maxQi(s',a"))

Agenda

* Deep Q learning & actor-critic
* Multi-armed bandits
* Exploration in reinforcement learning

e Offline reinforcement learning

Curse of Dimensionality

* How large is the state space?
e Gridworld: One for each of the n cells

« Pacman: State is (player, ghosty, ..., ghosty,),
so there are n* states!

* Problem: Learning in one state does not
tell us anything about the other states!

* Many states = learn very slowly

State-Action Features

* Can we learn across state-action pairs?

* Yes, use features!
« ¢(s,a) € R?

* Then, learn to predict Q*(s,a) = Qg(s,a) = fy (qb(s, a))
* Enables generalization to similar states

Neural Network () Function

* Examples: Distance to closest ghost, distance to closest dot, etc.

e Can also use neural networks to learn features (e.g., represent Pacman game
state as an image and feed to CNN)!

Q

Convolution Convolution Fully connected Fully connecte
v v v v

QQ (Sr al)

| : QQ(Sr aZ)
/ i m

Poe=-0: o
‘oo] 0 Y/]
oE [\a

ANRAARNAI
td B4 EX B2 B2 BN B3 B3 1~ €« ¥ >1E
BBREERERARRACRARE:

Deep Q Learning

* Learning: Gradient descent with the squared Bellman error loss:

2
((R<s, a,s) +y - maxQo(s',a)) Qo a>)

- _/
h'd

“Label” vy

Based on slide by Sergey Levine

Deep Q Learning

* Iteratively perform the following:
* Take an action a; and observe (s;, a;, Sj+1,1;)
* Y1+ y-maxQp(siyq,a’)
a' €A

+ ¢~ b —a 25 (Qo(sia) = y)?
* Note: Pretend like y; is constant when taking the gradient

* For finite state setting, recover incremental update if the
“parameters” are the Q values for each state-action pair

Based on slide by Sergey Levine

Experience Replay Buffer

* Problem
e Sequences of states are highly correlated
* Tend to overfit to current states and forget older states

//\
* Solution _Svaumse)
» Keep a replay buffer of observations (as a priority queue) _(S3,03,73,53) ~

* Gradient updates on samples from replay buffer instead
of current state w

Priority Queue

* Advantages
* Breaks correlations between consecutive samples
e Can take multiple gradient steps on each observation

Based on slide by Sergey Levine

Deep Q Learning with Replay Buffer

* Iteratively perform the following:
* Take an action a; and add observation (s;, a;, s;+1,1;) to replay buffer D

* Fork €{1,..,K}:

y Sample (Si,kl ai,ki Si+1,kr ri,k) from D
!
* Vige < Tik +Y - max Qo(sit10a’)

cf<0—a- %(Qe(Si,k» ai,k) _ Yi,k)z

(s,a,s',r)

EE—

e

C——
(s)

- >

replay buffer

!/

Q learning
(off-policy)

Based on slide by Sergey Levine

Target Q Network

* Problem
* Q network occurs in the label y;!

2
c0<0—a- _(QQ(SU a)—1i+y- max Q9(5i+1:a,))
* Thus, labels change as Q network changes (distribution shift)

* Solution
* Use a separate target Q network for the occurrence in y;
* Only update target network occasionally

2
cf<0—a- _(QQ(SU l) Ti +) 4 n}aXQQ’(Si+1'a’)
a’ eA \

Y Y
Original Q Network Target Q Network

Based on slide by Sergey Levine

Deep Q Learning with Target Q Network

* Iteratively perform the following:
 Take an action a; and add observation (s;, a;, s;41,1;) to replay buffer D

* Fork €{1,..,K}:
* Sample (si,k, A k> Si+1,k,7'i,k) from D
* Vi < T TV max Qg (Sia k@)
d 2
c0<0—-a- E(Qe (S @ik) = Vik)
* Every N steps, 8’ < 6

Based on slide by Sergey Levine

Deep Q Learning for Atari Games

Image Sources:
https://towardsdatascience.com/tutorial-double-deep-g-learning-with-dueling-network-architectures-4c1b3fb7f756

https://deepmind.com/blog/going-beyond-average-reinforcement-learning/
https://jaromiru.com/2016/11/07/lets-make-a-dgn-double-learning-and-prioritized-experience-replay/

https://towardsdatascience.com/tutorial-double-deep-q-learning-with-dueling-network-architectures-4c1b3fb7f756
https://deepmind.com/blog/going-beyond-average-reinforcement-learning/

Actor-Critic Policy Update

* Policy gradient:

0 «0+n- —Z(ZVglogﬂg(alt‘Slt)ZV rt')

Actor-Critic Policy Update

e Actor-critic policy gradient:

N T
1 R
0 04n -ﬁz(z 7o log o (ase]s.c) O (5.s. >)
=1 \t=1

* Important: Policy Q learning instead of optimal Q learning!
 Target is @¢(s’, n(s’)) instead of max Q¢(s’, a)
a

* Value is Vi (s) = Egn(.15)|Qp (s, @)] instead of Vy(s) = max Qyp (s, a)

* Exploration: Use policy to take actions

Actor-Critic Policy Update

* What about the baseline?
* The value function is a good baseline!

* Advantage actor-critic:

N T
1 ~ N
bptn Ty (Z o logma (asclsic) (0 (sicaie) — U (sl-,t)))
=1 \t=1

Actor-Critic Training Strategy
— =
Q learning

l

generate samples
(i.e. run the policy)
; ety
using Q estimate

Actor-Critic with Experience Replay

* Iteratively perform the following:
* Take an action a; ~ mg(s;) and add (s;, a;, S;+1, ;) to replay buffer D
* Fork €{1,..,K}:
* Sample (si,k, A k> Si+1,k,7'i,k) from D
*Yik <Tik TV max Qp(Si+1a’)
cpep—a-: %(Qcp(si,k; Ajx) —)’i,k)z
c 0 «60+1n-VyJ(O)

* Key intuition: Actor-critic can learn using past data, whereas policy
gradient can only learn using current data

* Reduces sample complexity in real-world interactions

Agenda

* Deep Q learning & actor-critic
* Multi-armed bandits
* Exploration in reinforcement learning

e Offline reinforcement learning

Multi-Armed Bandits

* State: None! (To be precise, a single state S = {s,})
e Action: Item to recommend (often called arms)
* Transitions: Just stay in the same state

* Rewards: Random payoff for each arm
* Denote R(a) = R(sy, a), where a is the chosen action

Example: Ad Targeting

* Setting
e Google wants to show the most popular ad for a search term (e.g., “lawyer”)

 There are a fixed number of ads to choose from

Click No Click Click No Click Click 7

Multi-Armed Bandits

* Many applications
* Cold-start for news/ad/movie recommendations
* A/B testing
* Flagging potentially harmful content on a social media platform
 Prioritizing medical tests

* Learning dynamically

* Many practical RL problems are multi-armed bandits

Exploration-Exploitation Tradeoff

Fort € {1,2,..,T}

t—1

, > 1ri-1(aj=a)

* Compute reward estimates r; , = ==+
P ta = "yl 1(a;=a)

* Choose action a; based on reward estimates

* Add (a¢, 1) to replay buffer

¢ QUEStiOh: How to choose actions?
* Exploration: Try actions to better estimate their rewards
* Exploitation: Use action with the best estimated reward to maximize payoff

Multi-Armed Bandit Algorithms

* Naive strategy: e-Greedy
 Choose action a; ~ Uniform(A) with probability €

* Choose action a; = arg maxr; , with probability 1 — €
acA

e Can we do better?

Multi-Armed Bandit Algorithms

* Upper confidence bound (UCB)
* Choose action a; = arg max {rta + Lmt}
acA ' VN(a)
* N.(a) = YiZ1 1(a; = a) is the number of times action a has been played

* Thompson sampling

const
* Choose action a; = arg maxiry 4 + €t 4, Where e, ~ N (0, r_)
%EA {)a’)a}’)a Nt(a)

* Both come with theoretical guarantees

Application: Targeted COVID-19 Testing

O

Test Blue Test Green Test Green Test Brown

Negative Positive Negative Negative

H. Bastani, K. Drakopoulos, V. Gupta, et al. Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning.

Use prior testing Labs submit

positive results to
EVA results to allocate central database
tests efficiently at)
every point of entry with ~2-day delay
30k-100k 24 hours prior

passengers . totravel (
EVA

test

(6k-8k) C%%

QR code scanned to link
sample with PLF info

PLF form

no test

" Travelers report:
* Origin
 Demographics
* Destination
* Contact

Why Bandits?

 Bandit feedback

* Only observe positive/negative if the traveler is tested
e Technically “semi-bandit feedback”

* Nonstationarity
* Infection rate for different passenger types changes over time
* Need to continue to explore and collect data over time

Cases Caught

* 1.85X improvement compared
to random testing

e 1.25-1.45X improvement vs.
targeting based on public data

No. Infections Caught (Anonymized)

Season
Peak
Off-Peak

Improvement
1.85x
1.36x

Application: Content Moderation

* Problem
* Millions of pieces of content are posted on Meta platforms each day
* Too much to manually review all content
* How to moderate to make sure no harmful?

* Solution
* ML to prioritize potentially harmful content for manual review
* Featurize content and predict likelihood that it is harmful

V. Avadhanula, O. Baki, H. Bastani, O. Bastani, et al. Bandits for Online Calibration: An Application to
Content Moderation on Social Media Platforms

Application: Content Moderation

f

Content Reported by
Users

(Reactive)

Content Flagged by
Al Systems

(Proactive)

Unambiguously violating
content with high-risk scores

Generating scores from
different ML. models
+

Filtering, De-duping

Ambiguous content with low
precision/uncertain risk scores

Auto-delete

Enqueue for
Human Review

Ranking to
optimize reviewer
capacity

Application: Content Moderation

* What about new “types” of content?
* E.g., new kind of racial slur
e Cold start problem!

e Use multi-armed bandits!

Application: Content Moderation

* Multi-armed bandit
* Each “step” corresponds to one piece of content

* Action: Whether to manually review content

 Reward: 1 if content is harmful, O otherwise
* Intuition: Goal is to maximize amount of harmful content caught
* Include an a penalty for flagging content to avoid flagging everything

Application: Training ChatGPT

* Problem
* Language models are trained using unsupervised learning

* Generating from these models mimics training data rather than human
preferences

 Solution
e Step 1: Predict human preferences over possible generations (the reward)

* Step 2: Finetune GPT using reinforcement learning, where it is rewarded for
generating content preferred by humans

Application: Training ChatGPT

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Application: Training ChatGPT

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our e

Explain the moon
prompt dataset. landing to a 6 year old

A labeler
demonstrates the @
desired output ;
behavior. Some pec;ple went
to the moon...
|
Y
This data is used e
to fine-tune GPT-3 058,
. : R o
with supervised \.\52{/
learning. 2

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Application: Training ChatGPT

Step1 Step 2
Collect demonstration data, Collect comparison data,
and train a supervised policy. and train a reward model.
A promptis A prompt and
sampled from our Exolai ° several model e
xplain the moon Explain the moon
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old
sampled.
' 0o o
' Explain gravity. Explain war.
A labeler
demonstrates the @ (c) (D)
des'red Output 2 satellite of. the moon.
. ~ N\ . . J
behavior. Some people went “
o the moon.. A labeler ranks
‘ the outputs from @
This data is used - best to worst. 0-6-0-0
to fine-tune GPT-3 258
o
with supervised \.\52{/ |
learning. . . \
g 2 This data is used v
to train our 25
@@@ o/omo
reward model. \}52{/
0-0-0-0

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Source: Ouyang et al., Training language models to follow instructions with human feedback.

Explain the moon
landing to a 6 year old

J
Y

o)

2

Some people went
to the moon...

Step 2

Application: Training ChatGPT

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

0 o

Explain gravity. Explain war.

o o

Moon is natural People went to
satellite of. the moon.

-
O

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Agenda

* Deep Q learning & actor-critic
* Multi-armed bandits
* Exploration in reinforcement learning

e Offline reinforcement learning

Exploration in Reinforcement Learning

e e-greedy suffers additional
issues due to state space

* Policy learning is an effective
practical solution

* No theoretical guarantees due to
local minima

Exploration in Finite MDPs

* Upper confidence bound (UCB)

t
* Choose action a; = ar max{ s,a) + = }
‘ %EA Qe(s,a) VNe(s,a)

* Ne(s,a) = Y21 1(s; = s,a; = a) is the number of times action a has been
played in state s

* Thompson sampling

t
* Choose action a; = arg max s,a) + € , Where € ~ N (0, cons)
t %EA {Qt() t;S;a} t,s,a \/m

* Both come with theoretical guarantees

Exploration in Continuous MDPs

e Can we adapt these ideas to continuous MDPs?
 Thompson sampling is more suitable

* Bootstrap DQN
* Train ensemble of k different Q-function estimates Qg_, ..., Qg, in parallel

* Original idea was to use online bootstrap, but training from different random
initial 8’s worked as well

* In each episode, act optimally according to (g, for i ~ Uniform({1, ..., k})

Exploration in Continuous MDPs

e Can we adapt these ideas to continuous MDPs?
 Thompson sampling is more suitable

* Soft Q-learning
e Sample actions according to a ~ Softmax ([,B ‘ Qe (s, a)]aeA)

Curiosity

* Intuition: Rather than focus on optimism with respect to reward,
focus on exploring where we are uncertain

* How to determine uncertainty?

e Candidate strategy
* Train a dynamics model to predict s’ = f(s,a)
* Take actions where f (s, a) has high variance (e.g., use bootstrap)

* Problems?
* What if s’ includes spurious components, like a TV screen playing a movie?

Curiosity

* Learn a feature map ¢(s) € R%

* Model 1: Train a model to predict state transitions:

d(s") = fo(¢(s), a)

* Feature map lets the model “ignore” spurious components of s suchasa TV
* Problem: We could just learn ¢p(s) = 0?

Curiosity

* Learn a feature map ¢(s) € R%

* Model 1: Train a model to predict state transitions:
¢(s’) = fo(@(s), a)
* Model 2: Train a model to predict action to achieve a transition:

a= 9o (¢(S), d)(S,))

* “Inverse dynamics model” that avoids collapsing ¢

Curiosity
* Curiosity reward is
R(s,a,5") = [|$(s") — ¢ (s

* In other words, reward agent for exercising transitions that f cannot
yet predict accurately

Agenda

* Deep Q learning & actor-critic
* Multi-armed bandits
* Exploration in reinforcement learning

e Offline reinforcement learning

Offline Reinforcement Learning

» Offline reinforcement learning: How can we learn without actively
gathering new data?
* E.g., learn how to perform a task from videos of humans performing the task
* Also known as off-policy or batch reinforcement learning

* Recall: Drawback of Q learning was we need an exploration strategy

* However, this also enables us to use Q learning with offline data!

Offline Reinforcement Learning

* Iteratively perform the following:
 Take an action a; and add observation (s;, a;, s;+1,1;) to replay buffer D
* Fork €{1,..,K}:
* Sample (Si,k, A k> si+1’k,ri,k) from D

*Vik <Tig TV 2}22((o (5i+1,k» a’)

*pecp-a- C%(QB(Si,k: Qi) = Vi)

(s,a,s',r) C
k

— replay buffer
)

Q learning
(off-policy)

Offline Reinforcement Learning

* Iteratively perform the following:

1

* Fork €{1,..,K}:

1)) RE?

 Sample (Si,k, A k> si+1’k,ri,k) from D
4
*Vik < Tig TtV 2}2,)4(Qo (Si+1,k» a)

*pecp-a- C%(QB(Si,k: Qi) = Vi)

(s,a,s',r)

EE—

e

C——
(s)

- >

replay buffer

¥//

Q learning
(off-policy)

Summary

—

Q-learning Actor-critic Policy
learning gradient

