Recommender Systems are Everywhere

What media to consume

prime video Disney+ NETFLIX apple MUSIC hulu pandora YouTube

Image: https://medium.com/@PhilAutelitano/pitching-your-idea-to-netflix-and-hulu-its-like-a-book-people-1e173430d0c
Recommender Systems are Everywhere

What news you see

Image: http://www.sapientis.co.za/services/profile-collage/
Recommender Systems are Everywhere

What products to buy

Recommender Systems are Everywhere

Who to date

match
coffee meets bagel
POF
PlentyOfFish
bumble
Hinge
okcupid
teinder
eharmony

Image: http://www.sapientis.co.za/services/profile-collage/
Real Impact

Recommendations account for:
• 75% of movies watched on Netflix ¹
• 60% YouTube video clicks ²
• 35% of Amazon sales ¹

Approximately 40% of committed relationships begin online ³

Sources:

Stores Group Products Based on Consumer Buying Habits

Products that are commonly purchased together are displayed together.

Image: https://fitsmallbusiness.com/visual-merchandising-guide/
Website Advertisements are Based on Our Online Activity

Users are tracked across websites to build consumer profiles
Popularity-Based Recommendations

• Just recommend whatever is currently popular
• Simple and often quite effective

• This uses no information at all about the user!
 ▪ Could improve by tailoring to the user: e.g. their geographical location, age, etc.

Image: https://thedatascientist.com/right-way-recommender-system-startup/
Collaborative Filtering
The Recommendation Problem

Predict a user’s rating for an item that they have not yet tried

Users rate/watch/buy items

Predict unknown utilities based on similar users
Collaborative Filtering Steps

1. Collect user-item utilities
2. Identify similar users
3. Predict unknown item utilities based on other similar users
Collaborative Filtering Steps

1. Collect user-item utilities
2. Identify similar users
3. Predict unknown item utilities based on other similar users
Measuring User-Item Utilities

Utilities can be based on:

• Explicit rating
• Implicit rating
 ▪ Inferred from user activity
 ▪ e.g., User stops watching movie after 15 minutes
 ▪ e.g., User repeatedly clicks on a particular dating profile

For now, we are not considering user or item attributes/content
Obtaining User Feedback

- Viewing profile, images, etc.
- Marking as a “favorite”
- “Liking” a profile
- “Winking” at a person
- Swiping left/right
- Messaging a person
- Conversation

Feedback Strength

Low

High

User-Item Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>Gossip Girl</th>
<th>The Office</th>
<th>The Mandalorian</th>
<th>Criminal Minds</th>
<th>The Good Place</th>
<th>Grey's Anatomy</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grace</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>Eric</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>Haren</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>Sai</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>Siyan</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>Nikhil</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
</tbody>
</table>
Let x_u be the item utilities for user u.

But of course, we don’t have all the ratings. We will return to this soon!
Collaborative Filtering

• Given:
 - User-Item Utility Matrix \(X_{i,k} = \begin{cases} \text{rating}_{i,k} & \text{if user}_i \text{ rated product}_k \\ N/A & \text{otherwise} \end{cases} \)
 - Assume fixed set of \(n \) users and \(m \) products
 - Not given any information about the products!

• Problem: Predict what \(X_{i,k} \) would be if it is observed
 - Not quite supervised or unsupervised learning!
Collaborative Filtering Steps

Collect user-item utilities

Identify similar users

Predict unknown item utilities based on other similar users
Correlations Between Users

<table>
<thead>
<tr>
<th></th>
<th>Gossip Girl</th>
<th>The Office</th>
<th>The Mandalorian</th>
<th>Criminal Minds</th>
<th>The Good Place</th>
<th>Grey’s Anatomy</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grace</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>Eric</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>Haren</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>Sai</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>Siyan</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>Nikhil</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
</tbody>
</table>
Correlations Between Users

<table>
<thead>
<tr>
<th></th>
<th>Gossip Girl</th>
<th>The Office</th>
<th>The Mandalorian</th>
<th>Criminal Minds</th>
<th>The Good Place</th>
<th>Grey's Anatomy</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grace</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>Eric</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>Haren</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>Sai</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>Siyan</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>Nikhil</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
</tbody>
</table>

Dissimilar users
Collaborative Filtering

We could then predict unknown item utilities for Grace based on other similar users.

Open issues:
- Choice of distance metric
- Dealing with sparse data
- How to combine known user utilities to do the prediction
There are many ways to measure user similarity:

- **Euclidean similarity**
- **Cosine similarity**
- **Pearson correlation**

Pros:
- Straightforward to use as a similarity metric
 - Euclidean similarity:
 \[
 \text{similarity}(user_u, user_v) = \frac{1}{1 + \|x_u - x_v\|_2} \in (0, 1]
 \]
 - Cosine similarity:
 \[
 \text{similarity}(user_u, user_v) = \frac{x_u \cdot x_v}{\|x_u\|\|x_v\|} \in [0, 1]
 \]

Cons:
- Assumes utilities are calibrated across users
 - i.e., some users might give overall higher ratings than others
There are many ways to measure user similarity:

- **Euclidean similarity**
- **Cosine similarity**
- **Pearson correlation**

Measures the linear correlation between two users’ utilities; value $\in [-1,1]$

Recall, this is formally defined as:

$$
\rho = \frac{\text{covariance}(x_u, x_v)}{\text{stdev}(x_u) \times \text{stdev}(x_v)} = \frac{E[(x_{ui} - \bar{x}_u)(x_{vi} - \bar{x}_v)]}{\text{stdev}(x_u) \times \text{stdev}(x_v)}
$$
There are many ways to measure user similarity:

• Euclidean similarity
• Cosine similarity
• **Pearson correlation**

Pearson correlation coefficient ρ is:

• 1 if there is a perfect linear relationship with pos. slope
• 0 if no linear relationship exists
• -1 if perfect linear relationship with neg. slope

Measures the linear correlation between two users’ utilities; value $\in [-1,1]$

• Measuring correlations between users’ utilities allows it to handle different scale calibrations
• Related to the slope (+/-) and quality of linear regression fit to the paired points
The Utility Matrix is Sparse

Let’s now deal with the fact that we don’t actually have access to all the entries of the utility matrix.
The Utility Matrix is Sparse

<table>
<thead>
<tr>
<th></th>
<th>Gossip Girl</th>
<th>The Office</th>
<th>The Mandalorian</th>
<th>Criminal Minds</th>
<th>The Good Place</th>
<th>Grey’s Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grace</td>
<td>5</td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Eric</td>
<td>4</td>
<td>5</td>
<td></td>
<td>5</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>Haren</td>
<td>5</td>
<td></td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>Sai</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Siyan</td>
<td>3</td>
<td>1</td>
<td></td>
<td>3</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>Nikhil</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Blanks indicate the user has not rated the item.

In practice, the matrix would be much sparser.

The goal of collaborative filtering is to predict values for blanks in the utility matrix.
Measuring User Similarity with Sparse Utility Data

<table>
<thead>
<tr>
<th></th>
<th>Gossip Girl</th>
<th>The Office</th>
<th>The Mandalorian</th>
<th>Criminal Minds</th>
<th>The Good Place</th>
<th>Grey’s Anatomy</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grace</td>
<td>5</td>
<td></td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eric</td>
<td>4</td>
<td>5</td>
<td></td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haren</td>
<td>5</td>
<td></td>
<td>5</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sai</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siyan</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikhil</td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felix</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can only measure similarity between users using their overlapping items.
Collaborative Filtering Steps

1. Collect user-item utilities
2. Identify similar users
3. Predict unknown item utilities based on other similar users
Nearest-Neighbor Collaborative Filtering

- A type of user-to-user collaborative filtering
- Very simple, yet effective

Idea: predict utility of item i based on the most-similar users who recorded a utility for that item

- Let \mathcal{N} be the neighborhood set: the most similar users to user u who have rated i
- Let w_{uv} be a weight $\in [0,1]$ based on the similarity of users u and v
- Predict user u's utility for item i as
 \[
 \hat{x}_{ui} = \bar{x}_u + \sigma_u \left(\sum_{v \in \mathcal{N}} \frac{x_{vi} - \bar{x}_v}{\sigma_v} \times \frac{w_{uv}}{\sum_{v' \in \mathcal{N}} w_{uv'}} \right)
 \]

Offset to this user's mean
Scale to this user's range
mean-center and normalize other's utilities
normalize weights to sum to 1
Nearest-Neighbor Collaborative Filtering

Ways to select the neighborhood set \mathcal{N}:

• Based on a threshold of similarity
• Choose top-k neighbors by similarity
• Cluster users (e.g. using k-means clustering), and choose the entire cluster

Combining utilities:

• Mean-centering
• Standardize by user’s stdev

$k = 3 \rightarrow$ orange

$k = 5 \rightarrow$ green
Matrix Factorization-Based Collaborative Filtering

Idea:

- Represent each item as a vector $q_i \in \mathbb{R}^d$
- Represent each user as a vector $p_u \in \mathbb{R}^d$
- Approximate user u's utility for item i as:
 $$\hat{r}_{ui} = q_i^T p_u$$

These vectors factorize the utility matrix.
Matrix Factorization-Based Collaborative Filtering

Determining the factors:

• Just factorize the user-item utility matrix U directly via singular value decomposition (SVD)?
 ▪ This will only work if we knew the full matrix, which we don’t

• A better way is to directly fit the model with regularization

$$\min_{q^*, p^*} \sum_{r_{ui} \in U} (r_{ui} - q_i^T p_u)^2 + \sum_i ||q_i||_2^2 + \sum_u ||p_u||_2^2$$

 ▪ Solve via stochastic gradient descent or alternating least squares

 ▪ For details, see:
Assessment of Collaborative Filtering

Advantages:

• No domain knowledge needed
 - Item details are irrelevant, only user behavior matters

• Heterogeneous preferences
 - Captures that users may have diverse preferences

Disadvantages:

• Suffers when data is sparse
 - Cannot generalize across items
 - Does not consider item content, and so cannot generalize to similar items
 - e.g. New items have no user feedback, and so the system cannot make recommendations for them
 - Cannot generalize across users
Content-Based Methods
Content-Based Methods

- Collaborative filtering doesn’t consider user or item attributes/content
- Content-based methods do:

 - Users rate/watch/buy items
 - Recommend similar items

Works fine for some items:

Less so for others:
Content-Based Methods

Steps:

1. Content analysis: Characterize item as feature vector
 - e.g., TF-IDF features of description, image features, etc.

2. Profile learning: Characterize user as feature vector
 - e.g., true/predicted ratings for representative items

3. Filtering module: Learns a classification/regression model for predicting user’s utility for an item
 - Train model on items each user has rated

Q: What happens with a new item or new user?
Assessment of Content-Based Methods

Advantages:
• Incorporates external sources of data on items/users
 ▪ Allow easy generalization
• Explainable
 ▪ Recommendations are based on concrete interacting features

Disadvantages:
• Requires domain knowledge to identify key features
• Narrow recommendations
Hybrid Approaches
Hybrid Recommenders

Idea: Combine multiple recommenders to improve performance

Combining separate recommenders
- Can use any ensemble technique: linear weighting, stacking, etc.
- Recall – the Netflix prize winner was a blend of over 800+ recommenders

Adding content-based aspects to collaborative models
- e.g., content-based user profiles to help build collaborator neighborhoods

Adding collaborative-based aspects to content-based models

Models combining content and collaboration
Hybrid Recommenders

Most systems that we use nowadays are hybrid recommenders:

- **Netflix**
 - Shows other similar users are watching
 - Shows similar to others the user has rated/viewed

- **Amazon.com**
 - Items other similar users have purchased
 - Items that are similar to user’s past purchases

- **OkCupid**
 - Profiles that other similar users have liked/viewed
 - Profiles selected based on user’s personal preferences
Deep Learning

Deep recommendation systems are an active area of work, in both academia and industry

Deep representations for users and items can improve recommendations
• Captures non-linear relationships
• Shown useful for both collaborative and content-based filtering

Neural architectures can also be used to combine different recommendation methods in a hybrid system
Other Considerations
Challenges with Measuring Utility

Ratings can be misleading

• Sometimes users more likely to rate if experience is especially good or bad
• Users may have different scales
 ▪ Can normalize user ratings, but their “scaling” might not even be linear.
• May need to consider credibility of individual raters (history of ratings)
• Bot farms may skew results through adversarial behavior
Handling Time-Varying Preferences

Aspects of recommendations change over time:
• User preferences change
• Popularity of items change

Potential solution: weight more recent measurements over the past
• Could use an exponentially weighted moving average
 ▪ Decay old utilities. For example:
 ▪ If user u has not newly rated item i at time t: $x_{u,i}^{t+1} \leftarrow 0.95 \times_{u,i}^t$
 ▪ (Otherwise, set $x_{u,i}$ to the new rating, of course.)
Evaluation

Offline: Train and test sets
- Split users into training/test sets
- Validate recommendation system on different data than used for training

Online: A/B testing
- Split users into two subsets that get different recommendation methods
- Measure and compare difference

Image: https://www.optimizely.com/optimization-glossary/ab-testing/