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Recommender Systems are
Everywhere

What media to consume
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Recommender Systems are

Everywhere

What news you see
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Recommender Systems are
Everywhere

What products to buy
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Real Impact

Recommendations account for:
* 75% of movies watched on Netflix 1
* 60% YouTube video clicks 2

* 35% of Amazon sales !

Approximately 40% of committed relationships begin online 3

Sources:

1. McKinsey & Company (Oct 2013): https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-
keep-up-with-consumers [Note: non-authoritative source; estimates only]

2. J. Davidson, et al. (2010). The YouTube video recommendation system. Proc. of the 4th ACM Conference on
Recommender systems (RecSys). doi.org/10.1145/1864708.1864770

3. M. Rosenfeld, et al. (2019). Disintermediating your friends: How online dating in the United States RN

2R N\
displaces other ways of meeting. Proc. National Academy of Sciences 116(36). L 19)))
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N J
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Stores Group Products Based on Consumer Buying
Habits
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Website Advertisements are Based on
Our Online Activity
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Popularity-Based Recommendations

* Just recommend whatever is currently popular

e Simple and often quite effective

* This uses no information at all about the user!
= Could improve by tailoring to the user: e.g. their geographical location,
age, etc. ~15))
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he Recommendation Problem

Predict a user’s rating for an item that they have not yet tried
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Collaborative Filtering Steps

Collect user-item utilities

¥

|dentify similar users

9

Predict unknown item utilities O—
based on other similar users 'O —




Collaborative Filtering Steps
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Collect user-item utilities @ 8—
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|dentify similar users

Predict unknown item utilities
based on other similar users




Measuring User-Item Utilities

Utilities can be based on: NETFLIX O FBizabeth choosesyoulike.

CONTINUE

* Explicit rating

* Implicit rating
" Inferred from user activity

= e.g., User stops watching movie
after 15 minutes

= e.g., User repeatedly clicks on a
particular dating profile
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For now, we are not considering user or item attributes/content
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Obtaining User Feedback

Feedback Strength

Viewing profile, Marking as
images, etc. a “favorite”

STOW VIR, USA
Seeking womemthin 100 miles of Stow, MA

Mode ﬁ ﬁatchphone { - ) Match me

sag e/Email

humor, hugs, intimacy, a good dog, music and interesting movies. |

Conversation

¢ Swiping left/right

¢ Messaging a person

¢ “Liking” a profile

* “Winking” at a person
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User-ltem Ut|I|ty Matrlx

e e
Girl | Office | Mandalorian | Minds Place Anatomy
' Grace
¥ Eric 1 4 5 1 5 3
! Haren 5 5 5 1 3 4
Sai 1 2 5 4 3 5
! Siyan 3 1 1 3 4 5
Nikhil 2 3 4 2 2 2
! Felix 1 1 1 5 2 2



User-ltem Utility Matrix
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Girl | Office | Mandalorian | Minds Place Anatomy

' Grace
¥ Eric 1 4 5 1 5 %
i Haren 5 5 5 i -

Sai 1 5 5 Let x, be the item utilities for user u
! Siyan 3 1 1 3 4 5

Nikhil 2 3 4 2 2 2
! Felix 1 1 1 5 2 2

But of course, we don’t have all the ratings. We will return to this soon!
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Collaborative Filtering

* Given:

rating; , if user; rated product,
N/A otherwise

" Assume fixed set of n users and m products

" Not given any information about the products!

= User-Item Utility Matrix X; ,, = {

* Problem: Predict what X; , would be if it is observed
" Not quite supervised or unsupervised learning!






Collaborative Filtering Steps

Collect user-item utilities

¥

Identify similar users
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Correlations Between Users

' " the oftice MANI]I\L[IRIAN y °"‘
Girl Office | Mandalorian Minds Place Anatomy

Grace
¥ \Eric 1 4 5 1 5 3
| Haren 5 5 5 1 3 4
Sai 1 2 5 4 3 5
! Siyan 3 1 1 3 4 5
Nikhil 2 3 4 2 2 2
| Felix 1 1 1 5 2 2



Correlations Between Users

' " the oftice MANI]I\L[IRIAN y °"‘
Girl Office | Mandalorian Minds Place Anatomy

Grace
Eric 1 4 5 1 5 3
Haren 5 5 5 1 3 4
Sai 1 2 5 4 3 5
P\| Siyan 3 1 1 3 4 5
Nikhil 2 3 4 2 2 2
| Felix 1 1 1 5 2 2



Collaborative Filtering

User-ltem Utility Matrix User Similarities

Gossip | The The Criminal | The Good Grey'’s
Girl | Office | Mandalorian | Minds Place Anatomy
4 5 4 1 5 3

Grace

Grace

Eric 054 0.60 Felix

Eric 1 4 5 1 5 3 .

Haren 5 5 5 1 3 4 distance ' '

Sai 1 2 5 4 3 5 metric

Siyan 3 1 1 3 4 5 096

Nikhil 2 3 4 2 2 2 ' 0.93

el ——— . . 2 2 Haren 979 0.79 Nikhil
We could then predict unknown item utilities %

for Grace based on other similar users Sai Siyan
Open issues:

* Choice of distance metric
* Dealing with sparse data
* How to combine known user utilities to do the prediction ~159)
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Distance Metrics: Measuring Similarity Between Users

T

nere are many ways to measure user similarity:

Euclidean similarity

Cosine similarity

Pearson correlation

Pros:

« Straightforward to use as a similarity metric

o Euclidean similarity: .

ilarit _ |
similarity (user,,, user,) TR PE—— e (0,1]
o Cosine similarity:
similarity (user,, user,) = H;'BUH HZU ] e [0,1]
u (%

Cons:

 Assumes utilities are calibrated across users

than others N>

o I.e., some users might give overall higher ratlngT
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Distance Metrics: Measuring Similarity Between Users

There are many ways to measure user similarity:

* Euclidean similarity
* Cosine similarity

* Pearson correlation

Measures the linear correlation between two
users’ utilities; value € [—1,1]

* Recall, this is formally defined as:

covariance(Ty, ,)  El(Tuwi — Tu)(Tvi — To)]

- stdev(x,) x stdev(x,)  stdev(x,) x stdev(z,)
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Distance Metrics: Measuring Similarity Between Users

There are many ways to measure user similarity:

* Euclidean similarity
e Cosine similarity

* Pearson correlation

Pearson correlation

coefficient p is:

« 1 if there is a perfect linear
relationship with pos. slope

* O if no linear relationship
exists

-1 if perfect linear
relationship with neg. slope

Measures the linear correlation between two

users’ utilities; value € [—1,1]

« Measuring correlations between users’ utilities
allows it to handle different scale calibrations

« Related to the slope (+/-) and quality of linear

egression fit to the paired points
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he Utility Matrix is Sparse

Let’s now deal with the fact that we don’t actually
have access to all the entries of the utility matrix



he Utility I\/Iatrlx IS Sparse

In practice, the
matrix would be
much sparser

Blanks indicate
the user has not

rated the item

' Grace

i Eric 4 5 5 3

' Haren 5 5 3 4
Sai 2

i Siyan 3 1 3 5
Nikhil 2 2

i Felix 1 1 2

The goal of collaborative filtering is to predict values for blanks in the utility matig
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Measuring User Similarity with Sparse Jtility Data

‘nTHcACH=a=AMENCH KN R2R|
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|

Can only measure similarity
between users using their
overlapping items

Grace .
: Eric 4 5 5 3 4—"?
i Haren 5 5 3 4

Sai 2
! Sivan 3 1 3 5

Nikhil 2 2

Felix 1 1 2
f
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Collaborative Filtering Steps

Collect user-item utilities

¥

|dentify similar users

)

Predict unknown item utilities o—
based on other similar users ‘o —
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Nearest-Neighbor Collaborative Filtering

* A type of user-to-user collaborative filtering °

* Very simple, yet effective - @
®e

Idea: predict utility of item i based on the most- ®

similar users who recorded a utility for that item
* Let Vbe the neighborhood set: the most similar users to user u who have rated i

* Let w,, be a weight € [0,1] based on the similarity of users u and v

_— X ._:)_C
* Predict user u’s utility foritemias X;; = Xy + Oy (Z”EN( WU . 8 2 Wuzv )
vieN uv/

1%
i ———
Offsetto Scaleto mean-center normalize weights

this user’s this user’s and n’orm.a.li.ze tosumto 1
mean range other’s utilities
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Nearest-Neighbor Collaborative Filtering

Ways to select the neighborhood set V.
* Based on a threshold of similarity
* Choose top-k neighbors by similarity

* Cluster users (e.g. using k-means clustering), and
choose the entire cluster

Combining utilities:
* Mean-centering
e Standardize by user’s stdev
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Matrix Factorization-Based Collaborative Filtering

realistic

MANDALORIAN

sci-fi / fantasy

Idea:
* Represent each item as a vector g; € R¢
* Represent each user as a vector p, € R¢

* Approximate user u’s utility for item i as
e
Tuwi = 4; Pu

These vectors factorize the utility matrix

—
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Matrix Factorization-Based Collaborative Filtering

Determining the factors:
* Just factorize the user-item utility matrix U directly via singular value
decomposition (SVD)?
" This will only work if we knew the full matrix, which we don’t

* A better way is to directly fit the model with regularization
. 2
min Y (ru—a'pa) + ) N3+ ) lIpull?
qgx*,p*
Tui €U [ u
= Solve via stochastic gradient descent or alternating least squares

= For details, see:
" Koren, et al. (2009) Matrix factorization techniques for recommender

systems. Computer 42 (8), ACM. https://datajobs.com/data-science-" -
repo/Recommender-Systems-%5BNetflix%5D.pdf 4
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Assessment of Collaborative Filtering

Advantages:

* No domain knowledge needed

" |[tem details are irrelevant, only user
behavior matters

* Heterogeneous preferences

= Captures that users may have diverse
preferences

Disadvantages:

e Suffers when data is sparse

® Cannot generalize across items

" Does not consider item
content, and so cannot
generalize to similar items

" e.g. New items have no user
feedback, and so the system
cannot make

recommendations for them
» Cannot generalize across users
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Content-Based Methods

* Collaborative filtering doesn’t consider user or item attributes/content

 Content-based methods do:

Users
rate/watch/buy
items

2

Recommend

‘ [ ] [ ] [ ]
* > similar items
L
L )
®

Works fine for some items:




Content-Based Methods

Steps:

1. Content analysis: Characterize item as feature vector PSS [ ontent q
[} [] ] ,vy"-‘). 4,“/. i
= e.g., TF-IDF features of description, image features, etc. S5 analyzer

profile >
learner P.

3. Filtering module: Learns a classification/regression filtering )
model for predicting user’s utility for an item module

training
data

AU

Q: What happens with a new item or new user?

2. Profile learning: Characterize user as feature vector

= e.g., true/predicted ratings for representative items

" Train model on items each user has rated




Assessment of Content-Based Methods

Advantages: Disadvantages:
* Incorporates external sources of * Requires domain knowledge to
data on items / users identify key features

= Allow easy generalization  Narrow recommendations

* Explainable

= Recommendations are based on
concrete interacting features
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Hybrid Recommenders

Idea: Combine multiple recommenders to improve performance

& Combining separate recommenders
D@ . Can use any ensemble technique: linear weighting, stacking, etc.

" Recall —the Netflix prize winner was a blend of over 800+

recommenders

Adding content-based aspects to collaborative models

4-@ " e.g., content-based user profiles to help build collaborator
neighborhoods

Adding collaborative-based aspects to content-based models

Models combining content and collaboration C 19)

51



Hybrid Recommenders

Most systems that we use nowadays are hybrid recommenders:

NETFLIX

amazoncom

okcupid

Shows other similar users are watching
Shows similar to others the user has rated/viewed

ltems other similar users have purchased
ltems that are similar to user’s past purchases

Profiles that other similar users have liked/viewed
Profiles selected based on user’s personal preferences
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Deep Learning

Deep recommendation systems are an active area of work, in both academia
and industry

Deep representations for users and items can improve recommendations
e Captures non-linear relationships
* Shown useful for both collaborative and content-based filtering

Neural architectures can also be used to combine different recommendation
methods in a hybrid system
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Challenges with Measuring Utility

Ratings can be misleading
* Sometimes users more likely to rate if experience is especially good or bad

e Users may have different scales
= Can normalize user ratings, but their “scaling” might not even be linear.

* May need to consider credibility of individual raters (history of ratings)

* Bot farms may skew results through adversarial behavior
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Handling Time-Varying Preferences

Aspects of recommendations change over time:

MAAATEALA S

1958 1967 1972 1974 1978 1980 1985 1997 2000

» User preferences change

* Popularity of items change

Potential solution: weight more recent measurements over the past

* Could use an exponentially weighted moving average
" Decay old utilities. For example:

" |f user u has not newly rated item i at time ¢: xt+1 < 0.95 x
= (Otherwise, set x,, ; to the new rating, of course.)

Image: https://finalfashion.ca/the-indefinable-decades/ 56
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Evaluation

Offline: Train and test sets
* Split users into training/test sets

* Validate recommendation system on
different data than used for training

Online: A/B testing

 Split users into two subsets that get
different recommendation methods

 Measure and compare difference

CONTROL VARIATION

/ A
/ '\\\.
[ N )l
N\ &
Y
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