
Lecture 3: Linear Regression (Part 2)

CIS 4190/5190
Spring 2023



Administrivia
• Class currently full at 225 students (211 enrolled, 16 permits out) with about 180 students in the 

waitlist, many from 3 months ago. Limited movement expected. Unused permits will be revoked 
as announced earlier, unless you have informed us. 
§ If you’re on the waitlist, submitting HW1 early will increase priority, but no guarantees.

• HW1 due Wednesday 8 p.m., and HW2 will be posted that evening, on linear regression.
• In most cases, you should use EdSTEM to contact the course team, where you are much more 

likely to receive a fast response. But if your message must be kept private from TAs:
§ Always email both instructors together. 
§ Start subject line with “[CIS 4190 / 5190 Spring 2023]”. 

• Canvas link (for recordings) is on the class webpage > files: 
https://canvas.upenn.edu/courses/1704503 (video recordings posted on day of lecture/next day)

• If you’re on the waitlist and submitting HW1, submit directly to gradescope.
• If switching from CIS 4190 to CIS 5190, contact cis-undergrad-advising@seas.upenn.edu

§ More work, and possibly higher grade cutoffs for CIS 5190.
• TA office hours start today. No help for HW1, but you can ask for help with the course material. 
• Recitations on Thursday at 5 p.m. on Python, Numpy, Pandas, Scikit-Learn. See EdSTEM post.

https://canvas.upenn.edu/courses/1704503


Recap: Loss Minimization View of ML

• To design an ML algorithm:
§ Choose model family 𝐹 = 𝑓! !

(e.g., linear functions)

§ Choose loss function 𝐿 𝛽; 𝑍 (e.g., MSE loss)

• Resulting algorithm:

(𝛽 𝑍 = arg min
!

𝐿 𝛽; 𝑍



Recap: Linear Regression

• Input: Dataset 𝑍 = 𝑥", 𝑦" , … , 𝑥# , 𝑦#
• Compute

(𝛽 𝑍 = arg min
!∈ℝ!

"
#
∑&'"# 𝑦& − 𝛽(𝑥& )

• Output: 𝑓*! + 𝑥 = (𝛽 𝑍 (𝑥
• Discuss algorithm for computing the minimal 𝛽 later (next class)



Recall: Overfitting

Overfitting occurs when:
• The learned hypothesis fits the training set very well e.g. ℒ 𝜽 ≈ 0, but fails 

to generalize to new examples

𝑦
= 0.6𝑥! − 8.3𝑥" + 44𝑥#
− 117𝑥$ + 164𝑥%
− 114𝑥 + 32

𝑦 = 2.3𝑥 − 1.2

Underfitting Overfitting



Today’s Class

• Understanding, diagnosing, and combating overfitting:
§ Bias and Variance of hypothesis classes
§ Regularized linear regression
§ Cross-Validation

• Feature Selection and Preprocessing
§ Sparse linear regression





Assessing Overfitting



Training/Test Split

• Issue: How to detect overfitting vs. underfitting?
• Solution: Use held-out test data to estimate loss on new data

§ Typically, randomly shuffle data first

Given data 𝑍

Training data 𝑍!"#$% Test data 𝑍!&'!

1, 2, … … , 𝑛 − 1, 𝑛samples

(𝑥
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𝑦 &

)
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𝑦 %
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'
,𝑦
'
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⋮ ⋮



Training/Test Split Protocol for Machine Learning

• Step 1: Split 𝑍 into 𝑍,-./0 and 𝑍,12,

• Step 2: Run linear regression with 𝑍,-./0 to obtain (𝛽 𝑍,-./0

• Step 3: Evaluate
§ Training loss: 𝐿,-./0 = 𝐿 (𝛽 𝑍,-./0 ; 𝑍,-./0
§ Test (or generalization) loss: 𝐿,12, = 𝐿 (𝛽 𝑍,-./0 ; 𝑍,12, , (plus 

other performance metrics besides the loss function)

Training data 𝑍!"#$% Test data 𝑍!&'!



Training/Test Split Protocol for Machine Learning

• Overfitting
§ Fit the training data 𝑍 well
§ Fit new test data 𝑥, 𝑦 poorly

• Underfitting
§ Fit the training data 𝑍 poorly
§ (Necessarily fit new test data 𝑥, 𝑦

poorly)

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥



Training/Test Split Protocol for Machine Learning

• Overfitting
§ 𝐿()*+, is small
§ 𝐿(-.( is large

• Underfitting
§ Fit the training data 𝑍 poorly
§ (Necessarily fit new test data 𝑥, 𝑦

poorly)

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥



Training/Test Split Protocol for Machine Learning

• Overfitting
§ 𝐿()*+, is small
§ 𝐿(-.( is large

• Underfitting
§ 𝐿()*+, is large
§ 𝐿(-.( is large

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥



“Independent and Identically Distributed”

• The “IID” assumption
§ “Test” data 𝑍,12, are drawn IID from same data distribution 𝑃 𝑥, 𝑦 as 
𝑍,-./0

§ IID = independent and identically distributed
§ This is a strong (but common) assumption!

• Time series data
§ Particularly important failure case since data distribution may shift over 

time
§ Solution: Split along time (e.g., data before 9/1/20 vs. data after 9/1/20)





Underfitting & Overfitting 
↕

Bias & Variance



Recall

Data 𝑍 = 𝑥/, 𝑦/ /0&
' 3𝛽 𝑍 = arg min1 𝐿(𝛽; 𝑍)

𝐿 encodes 𝑦/ ≈ 𝑓1 𝑥/
Model 𝑓21 3

Reminder: we don’t yet know how to find 
the argmin. For the moment, we will 
continue to assume it will be found. 

We are still thinking about two main design choices that influence this box: 
Model class (linear regression, feature map etc.), and loss function (MSE)



Recall: Underfitting and Overfitting
𝑦
= 0.6𝑥! − 8.3𝑥" + 44𝑥#
− 117𝑥$ + 164𝑥%
− 114𝑥 + 32

𝑦 = 2.3𝑥 − 1.2

Underfitting Overfitting

We will understand these phenomena now through two properties of a 
model family, “bias”, and “variance”. 

Language for thinking about the ways in which model families can be bad.



How to Fix Underfitting/Overfitting?

Three main options:

• Improve the training dataset

• Choose the right model family

• Choose the right loss function

We will explore these in some detail over the next few slides.



Definitions: “Bias” and “Variance”

Imagine you draw 𝑘 training datasets 
from the same probability distribution 
over data, and each time fit your model 
𝑓! ":4

to it.

• “Variance”: how much do those fitted 
functions 𝑓! ":4

differ amongst each 
other, on average over the data 
distribution?
• “Bias” : how much does the average of 

all those fitted functions 𝑓! ":4
deviate 

from the “true” function over the data 
distribution?

Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html

http://scott.fortmann-roe.com/docs/BiasVariance.html


Drawing Multiple Training Datasets

Consider a linear “true function” 𝑓∗ 𝑥 = 𝑥 + 2 that generates labels 𝑦& for 
training data with uniform measurement noise in [-1, +1]. 
Let us draw 𝑘 → ∞ training sets of 𝑛 = 6 samples each, drawn from 𝑃(𝑋, 𝑌).
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Different Constant Fits

What if the hypothesis class was the constant function class 
𝑓𝜽 𝑥 = 𝜃7
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Different Constant Fits

What if the hypothesis class was the constant function class 
𝑓𝜽 𝑥 = 𝜃7

Almost identical fits
“low variance”

Average fit far from the true 
function

“high bias”

Theoretical result: Generalization MSE ≈ ``Bias44 + ``Variance′′
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Different 10th Degree Curve Fits

What if the hypothesis class was instead a 1089 degree monomial 
𝑓𝜽 𝑥 = 𝜃7 + 𝜃"𝑥 + 𝜃)𝑥) + 𝜃:𝑥: + 𝜃;𝑥; +⋯𝜃"7𝑥"7
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What if the hypothesis class was instead a 1089 degree monomial 
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Very different fits
“high variance”

Average fit close to the true 
function

“low bias”

Theoretical result: Generalization MSE ≈ ``Bias44 + ``Variance′′
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Different Linear Fits

Say, our hypothesis class is a line:
𝑓𝜽 𝑥 = 𝜃7 + 𝜃"𝑥"

Fit by minimizing MSE with any optimizer. What would the resulting line look 
like?

Slightly different fits
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Different Linear Fits

Say, our hypothesis class is a line:
𝑓𝜽 𝑥 = 𝜃7 + 𝜃"𝑥"

Fit by minimizing MSE with any optimizer. What would the resulting line look 
like?

Quite similar fits
“low variance”

Average fit close to the true 
function

“low bias”

Theoretical result: Generalization MSE ≈ ``Bias44 + ``Variance′′
This is the type of model complexity you want to have



Bias-Variance Tradeoff

• Overfitting (high variance)
§ High capacity model capable of fitting 

complex data
§ Insufficient data to constrain it

• Underfitting (high bias)
§ Low capacity model that can only fit 

simple data
§ Sufficient data but poor fit

𝑥

𝑦

𝑓! 𝑥

𝑥

𝑦

𝑓! 𝑥



Underfitting & Overfitting, Bias & Variance
𝑦
= 0.3𝑥$ − 0.9𝑥% + 1.3𝑥
+ 1.2

𝑦
= 0.6𝑥! − 8.3𝑥" + 44𝑥#
− 117𝑥$ + 164𝑥%
− 114𝑥 + 32

𝑦 = 2.3𝑥 − 1.2

Underfitting OverfittingCorrect fit

This hypothesis 
space has high 

bias

This hypothesis 
space has high 

variance
The data decides which 
hypothesis class choices 

are good/bad. 
(Train/Test Split Protocol)



Under/Over -Fitting & Model Capacity

Lo
ss

Capacity

Training loss

Test loss

Ideal OverfittingUnderfitting

Slide by Padhraic Smyth, UCIrvine

Expanding the hypothesis class usually leads to higher variance, lower bias.
(e.g. when adding new dimensions to the feature map)

High 
variance

High bias



Bias-Variance Tradeoff For Linear Regression

• For linear regression with feature maps, increasing feature dimension 𝑑′…
§ Tends to increase capacity
§ Tends to decrease bias but increase variance

• Need to construct 𝝓 to balance tradeoff between bias and variance
§ Rule of thumb: You will need 𝑛 ≈ 𝑑′ log 𝑑′ samples, if your 𝝓 has 

dimension 𝑑′

• A large fraction of data science work is data cleaning + feature engineering. 
We will see some common rules of thumb for feature engineering soon. 



The Effect of Dataset Size

Q: What if we had drawn larger training sets? Would it impact:
• Bias?

• Variance?

Usually no. As 𝑘 → ∞, the average of fits 𝑓! ":4
to 𝑘 training sets of finite 

size 𝑛 (for any 𝑛) approaches the fit to an 𝑛< → ∞-sized set. 

Yes, as the dataset size grows, different i.i.d. datasets would induce similar 
fits ⇒ lower variance.

Recall, we said:

Often convenient to think of bias as the lowest achievable error 
corresponding to the “best model” within the hypothesis space.

Convenient to think of variance as average error w.r.t. the “best model”.



The Effect of Dataset Size

As dataset size grows:
• Generalization error (≈ ``Bias<< + ``Variance′′) is dominated by bias.
• To reduce error, we select high capacity, low bias models.

Larger datasets have room for expanded hypothesis classes.





Regularization



How to Fix Underfitting/Overfitting?

Recall, three main options:

• Improve the training dataset (collect more data)

• Choose the right model family (not too complex, not too simple)

• Choose the right loss function We will explore this 
third option now.



Regularization: Modifying the Loss function
• Intuition: We only asked the ML algorithm to 

fit the training data as well as possible, so it 
produced overly complex fits → “Overfitting” 

𝐿 𝛽; 𝑍 = Train MSE

• Solution: we will ask the model to produce a 
“simple fit” to the training data.

𝐿 𝛽; 𝑍 = Train MSE + Fit complexity

𝑥

𝑦

𝑓! 𝑥

How to measure this?



Recall: Mean Squared Error Loss

• Mean squared error loss for linear regression:

𝐿 𝛽; 𝑍 =
1
𝑛
P
&'"

#

𝑦& − 𝛽(𝑥& )



Linear Regression with 𝑳𝟐 Regularization

• Original loss + regularization:

𝐿 𝛽; 𝑍 =
1
𝑛
P
&'"

#

𝑦& − 𝛽(𝑥& ) + 𝜆 ⋅ 𝛽 )
)

𝐿 𝛽; 𝑍 =
1
𝑛
P
&'"

#

𝑦& − 𝛽(𝑥& ) + 𝜆P
='"

>

𝛽=)

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0) 

One measure of fit complexity



Intuition on 𝑳𝟐 Regularization 

• A thought experiment.
§ Consider a feature map with 𝑑 = 10 features [𝑥", … , 𝑥>]
§ Suppose during linear regression that we forced 𝛽= = 0 for all 𝑗 > 5
§ This is exactly equal to choosing a smaller-capacity hypothesis class, 

induced by the smaller feature map with 𝑑 = 5

• Thus, forcing 𝛽=’s to be 0 induces a smaller-capacity hypothesis class. 
• The soft version of this: encouraging 𝛽=’s to have small magnitude also 

induces a smaller-capacity hypothesis class.
§ This is what 𝑳𝟐 regularization does: ∑='"> 𝛽=) = 𝛽 )

) = 𝛽 − 0 )
)

§ Pulls coefficients towards 0
§ As 𝜆 → ∞, it forces 𝛽 = 0



Parameter value for any 𝛽=

𝑃(𝛽=)

Intuition on 𝑳𝟐 Regularization: Gaussian Priors

L2 regularized linear regression amounts to preferring smaller weights 
according to a Gaussian pdf. 

0

0.2

0.1

L2 regularization says: before looking at the data fit term, it likes 
this value twice as much as this one, for 𝛽!. 

So the larger value is only selected for the 
model if it is *much* better for the data fit 
term (MSE)

Q: What happens to the shape of this plot if 
the value of 𝜆 increases? 

1
𝑛9
"#$

%

𝑦" − 𝛽&𝑥" ' + 𝜆 ⋅ 𝛽 '
'



Intuition on 𝑳𝟐 Regularization: Gaussian Priors

• Extending the gaussian pdf over each individual weight 𝛽= to the full 
parameter vector 𝛽, the hypothesis space is constrained.

𝛽)

𝛽"

𝛽)

𝛽"

Before regularization With L2 regularization

(uniform preference 
for any parameters)
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Intuition on 𝑳𝟐 Regularization 
• Why does it help?

§ Encourages “simple” functions
§ E.g., Use 𝜆 to tune bias-variance tradeoff. 

Q: How would you set 𝜆 to get higher bias / lower variance?

Training loss

Lo
ss

Capacity 1/𝜆

Test loss

Ideal OverfittingUnderfitting



𝛽)

𝛽"

• At this point, the 
gradients are equal
(with opposite sign)

• Tradeoff depends on 
choice of 𝜆

Intuition on 𝑳𝟐 Regularization 

𝐿 𝛽; 𝑍 =
1
𝑛
P
&'"

#

𝑦& − 𝛽(𝑥& ) + 𝜆P
='"

>

𝛽=)

Minimizes 
original loss
(or if 𝜆 = 0)

Minimizes 
regularization term

(or if 𝜆 → ∞)

Minimizes 
full loss



Regularization and Intercept Term / “Bias” Parameter

• Common convention: if using intercept term (𝜙 𝑥 = 1 𝑥" … 𝑥> (), 
no penalty on the “bias parameter” 𝛽":

𝐿 𝛽; 𝑍 =
1
𝑛
P
&'"

#

𝑦& − 𝛽(𝑥& ) + 𝜆P
=')

>

𝛽=)

• As 𝜆 → ∞, we have 𝛽) = ⋯ = 𝛽> = 0
§ I.e., only fit 𝛽" (which yields (𝛽" 𝑍 = mean 𝑦& &'"

# )

Sum from 𝑗 = 2



Effect of 𝜆 on Bias and Variance

Bishop, Pattern Recognition and Machine Learning

Fits to various datasets sampled 
from an underlying sinusoid

Mean fit compared to the “true 
function”

Illustrates variance Illustrates bias

*dataset size n set to 25, and feature map dimensionality d’ is 25 (gaussian feature map) 
With 𝜆 too high, the algorithm finds overly simple solutions.



Effect of 𝜆 on Bias and Variance

Bishop, Pattern Recognition and Machine Learning

Fits to various datasets sampled 
from an underlying sinusoid

Mean fit compared to the “true 
function”

Illustrates variance Illustrates bias

*dataset size n set to 25, and feature map dimensionality d’ is 25 (gaussian feature map) 



Effect of 𝜆 on Bias and Variance

Bishop, Pattern Recognition and Machine Learning

Fits to various datasets sampled 
from an underlying sinusoid

Mean fit compared to the “true 
function”

Illustrates variance Illustrates bias

*dataset size n set to 25, and feature map dimensionality d’ is 25 (gaussian feature map) 

With 𝜆 too low, the algorithm finds overly complex solutions.



General Regularization Strategy

• Original loss + regularization:

𝐿01@ 𝛽; 𝑍 = 𝐿 𝛽; 𝑍 + 𝜆 ⋅ 𝑅 𝛽

§ Offers a way to express a preference for “simpler” functions in family
§ Typically, regularization is independent of data

Q: For the new parameters 𝛽#AB∗ = min
!
𝐿#AB, would their corresponding 

value of 𝐿 𝛽; 𝑍 be smaller or larger than before regularization?


