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Administrivia
* Class currently full at 225 students (211 enrolled, 16 permits out) with about 180 students in the

waitlist, many from 3 months ago. Limited movement expected. Unused permits will be revoked
as announced earlier, unless you have informed us.

= |f you're on the waitlist, submitting HW1 early will increase priority, but no guarantees.
* HW1 due Wednesday 8 p.m., and HW2 will be posted that evening, on linear regression.

* In most cases, you should use EASTEM to contact the course team, where you are much more
likely to receive a fast response. But if your message must be kept private from TAs:

= Always email both instructors together.
= Start subject line with “[CIS 4190 / 5190 Spring 2023]".

e Canvas link (for recordings) is on the class webpage > files:
https://canvas.upenn.edu/courses/1704503 (video recordings posted on day of lecture/next day)

 If you're on the waitlist and submitting HW1, submit directly to gradescope.

* If switching from CIS 4190 to CIS 5190, contact cis-undergrad-advising@seas.upenn.edu
= More work, and possibly higher grade cutoffs for CIS 5190.

* TA office hours start today. No help for HW1, but you can ask for help with the course material.

e Recitations on Thursday at 5 p.m. on Python, Numpy, Pandas, Scikit-Learn. See EASTEM post.


https://canvas.upenn.edu/courses/1704503

Recap: Loss Minimization View of ML

* To design an ML algorithm:
" Choose model family F = {fﬁ}ﬁ (e.g., linear functions)

» Choose loss function L(f3; Z) (e.g., MSE loss)

* Resulting algorithm:

f(Z) = arg min L(f; Z)
B



Recap: Linear Regression

* Input: Dataset Z = { (x4, V1), ..., (%, Vo) }
* Compute

3 .1
p(Z) = arg min =3, (v = 1)
ER

* Output: [, (x) = (7)) x
* Discuss algorithm for computing the minimal [ later (next class)



Recall: Overfitting
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Overfitting occurs when:

* The learned hypothesis fits the training set very well e.g. £(0) = 0, but fails
to generalize to new examples



oday’s Class

e Understanding, diagnosing, and combating overfitting:
" Bias and Variance of hypothesis classes
" Regularized linear regression
" Cross-Validation

* Feature Selection and Preprocessing
" Sparse linear regression






Assessing Overfitting



* Issue: How to detect overfitting vs. underfitting?

raining/Test Split

e Solution: Use held-out test data to estimate loss on new data
" Typically, randomly shuffle data first

samples
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raining/Test Split Protocol for Machine Learning

* Step 1: Split Z into Z,,;,, and Z;ast

Training data Zirain Test data Ziegt

« Step 2: Run linear regression with 7., to obtain 5(Z,,.:,,)

* Step 3: Evaluate

" Training loss: Ly ,in = L(B (Ztrain); Ztraip)
» Test (or generalization) loss: L. = L(,B (Zirain); Ztest), (plus
other performance metrics besides the loss function)



raining/Test Split Protocol for Machine Learning

* Overfitting * Underfitting
= Fit the training data 7 well " Fit the training data Z poorly
= Fit new test data (x, y) poorly = (Necessarily fit new test data (x, y)

poorly)




raining/Test Split Protocol for Machine Learning

* Overfitting * Underfitting
" Lirain 1S small " Fit the training data Z poorly
" Liest IS large = (Necessarily fit new test data (x, y)

poorly)




Training/Test Split Protocol for Machine Learning

* Overfitting * Underfitting
" Lirain IS small " Lirain IS large
" Liest IS large " Liest IS large




“Independent and ldentically Distributed”

* The “lID” assumption
» “Test” data Z.s; are drawn IID from same data distribution P(x, y) as

Ztrain
" |ID = independent and identically distributed

" This is a strong (but common) assumption!

* Time series data
" Particularly important failure case since data distribution may shift over
time
= Solution: Split along time (e.g., data before 9/1/20 vs. data after 9/1/20)






Underfitting & Overfitting

+

Bias & Variance



Recall Reminder: we don’t yet know how to find
the argmin. For the moment, we will
continue to assume it will be found.

Yo E

Data Z = {(x;,y)}i=y | B(Z) = argming L(B; Z) Model /(7
L encodes y; = fz(x;)

We are still thinking about two main design choices that influence this box:
Model class (linear regression, feature map etc.), and loss function (MSE)



Recall: Underfitting and Overfitting
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We will understand these phenomena now through two properties of a
model family, “bias”, and “variance”.

Language for thinking about the ways in which model families can be bad.



How to Fix Underfitting/Overfitting?

Three main options:
* Improve the training dataset
* Choose the right model family

* Choose the right loss function

We will explore these in some detail over the next few slides.



Definitions: “Bias” and “Variance”

Imagine you draw k training datasets Low Variance High Variance
from the same probability distribution
over data, and each time fit your model

s}, toit

* “Variance”: how much do those fitted
functions {fﬁ}l_kdiffer amongst each

other, on average over the data
distribution?

e “Bias” : how much does the average of
all those fitted functions {fﬁ} deviate

from the “true” function over the data
distribution?

High Bias Low Bias

Scott Fortmann-Roe
http://scott.fortmann-roe.com/docs/BiasVariance.html



http://scott.fortmann-roe.com/docs/BiasVariance.html

O P N W & 1 O N

Drawing Multiple Training Datasets

Consider a linear “true function” f*(x) = x + 2 that generates labels y; for
training data with uniform measurement noise in [-1, +1].

Let us draw k — oo training sets of n = 6 samples each, drawn from P(X,Y).
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Different Constant Fits

What if the hypothesis class was the constant function class

fo(x) = 8,

Y
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Different Constant Fits

What if the hypothesis class was the constant function class

fo(x) = 8,

Average fit far from the true
function

“high bias”

l‘ o 1 2 3 a4 l’
X

Theoretical result: Generalization MSE =~ “'Bias’’ + ““Variance”

Almost identical fits
“low variance”
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Different 10t Degree Curve Fits

What if the hypothesis class was instead a 10" degree monomial
fo(x) =05+ 0,x + 0,x% + 93x3 + Q,x* + - 9109510
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Different 10" Degree Fits

What if the hypothesis class was instead a 10t"* degree monomial

fe(x) — 0() + Hlx + szz ‘I‘ 93x3 -|— H4x4 _I_ coo Hloxlo

; \
DN .
Very different fits ; ““,g,;ﬁ.“ Average ﬁ:ucr:g’fii;cmo the true
“high variance” g 4'1:!"3““' . o
: E‘.wl" low bias

l’ lb
X

Theoretical result: Generalization MSE =~ “'Bias’’ + ““Variance”




O P N W & 1 O N

Different Linear Fits

Say, our hypothesis class is a line:

fo(x) =6y + 01x,
Fit by minimizing MSE with any optimizer. What would the resulting line look
like?

8 8 8
7 7 7
6 6 6
5 5 5
> 4 > 4 > 4
3 3 3
2 2 2
1 1 1
0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
X X X X

Slightly different fits



Different Linear Fits

Say, our hypothesis class is a line:

fo(x) =6y + 01x,
Fit by minimizing MSE with any optimizer. What would the resulting line look
like?

Average fit close to the true

Quite similar fits ,
function

(lI b V24
OW Vvariance ,
“low bias”

. e

This is the type of model complexity you want to have

Y
O R, N W S U O N ®

Theoretical result: Generalization MSE =~ “'Bias’’ + ““Variance”



Bias-Variance Tradeoff

* Overfitting (high variance) * Underfitting (high bias)
® High capacity model capable of fitting = Low capacity model that can only fit
complex data simple data

" |Insufficient data to constrain it = Sufficient data but poor fit




Underfitting & Overfitting, Bias & Variancye

y

|

= 0.6x° — 8.3x° + 44x
— 117x3 + 164x?
— 114x + 32

y=23x—12 = 0.3x3 — 0.9x% + 1.3x
o +1.2
o
O ® °
Underfitting Correct fit

This hypothesis
space has high

bias

hypothesis class choices

are good/bad.

(Train/Test Split Protocol)

Overfitting

This hypothesis
The data decides which  gpace has high

variance



Under/Over -Fitting & Model Capacity

Expanding the hypothesis class usually leads to higher variance, lower bias.
(e.g. when adding new dimensions to the feature map)

 Underfitting Ideal Overfitting
High bias | | High
o variance
a
o
— ‘__—————””””””,,, Test loss
— » Training loss

Capacity

Slide by Padhraic Smyth, UClrvine



Bias-Variance Tradeoff For Linear Regression

* For linear regression with feature maps, increasing feature dimension d'...

" Tends to increase capacity
" Tends to decrease bias but increase variance

* Need to construct ¢ to balance tradeoff between bias and variance

= Rule of thumb: You will need n =~ d'logd’ samples, if your ¢ has
dimension d’

* A large fraction of data science work is data cleaning + feature engineering.
We will see some common rules of thumb for feature engineering soon.



he Effect of Dataset Size

Recall, we said:

Let us draw k — oo training sets offln = 6 |samp|es each, drawn from P(X,Y).

Q: What if we had drawn larger training sets? Would it impact:

* Bias?
Usually no. As k = oo, the average of fits {fﬁ}l_kto k training sets of finite
size n (for any n) approaches the fit to an n’ — oo-sized set.

Often convenient to think of bias as the lowest achievable error
corresponding to the “best model” within the hypothesis space.

e Variance?
Yes, as the dataset size grows, different i.i.d. datasets would induce similar

fits = lower variance.
Convenient to think of variance as average error w.r.t. the “best model”.



he Effect of Dataset Size

As dataset size grows:

* Generalization error (= “Bias’’ + “*Variance'') is dominated by bias.

 To reduce error, we select high capacity, low bias models.

Larger datasets have room for expanded hypothesis classes.






Regularization



How to Fix Underfitting/Overfitting?

Recall, three main options:

* Improve the training dataset (collect more data)

* Choose the right model family (not too complex, not too simple)

We will explore this

* Choose the right loss function third option now.



Regularization: Modifying the Loss function

* Intuition: We only asked the ML algorithm to
fit the training data as well as possible, so it
produced overly complex fits = “Overfitting”

L(B;Z) = Train MSE "

* Solution: we will ask the model to produce a
“simple fit” to the training data.

L(B;Z) = Train MSE + Fit complexity

|
|

0
\
\

How to measure this?



Recall: Mean Squared Error Loss

* Mean squared error loss for linear regression:

1 n
LB Z) = ) 0= BTx)?



Linear Regression with L, Regularization

* Original loss + regularization: One measure of fit complexity

|

1 n
LB 2) == i =BT + - B3

Ll d
1
==X 0= BTx)? 42 ) B
i=1 j=1

1 is a hyperparameter that must be tuned (satisfies 1 = 0)



Intuition on L, Regularization

* A thought experiment.
= Consider a feature map with d = 10 features [xq, ..., X4]
" Suppose during linear regression that we forced f; = O forall j > 5

" This is exactly equal to choosing a smaller-capacity hypothesis class,
induced by the smaller feature map withd = 5

* Thus, forcing f;’s to be 0 induces a smaller-capacity hypothesis class.
* The soft version of this: encouraging [5;’s to have small magnitude also
induces a smaller-capacity hypothesis class.
= This is what L, regularization does: Z?zlﬁjz = IB1l5 = IIB — 0|5
" Pulls coefficients towards O
"As 1 — oo, itforces f = 0



Intuition on L, Regularization: Gaussian Priors

L2 regularized linear regression amounts to preferring smaller weights
according to a Gaussian pdf.

P(5;)

L2 regularization says: before looking at the data fit term, it likes
this value twice as much as this one, for f;.

0.2
So the larger value is only selected for the
model if it is *much* better for the data fit
0.1 term (MSE)

Q: What happens to the shape of this plot if

() the value of 1 increases?

Parameter value for any f5; lz(yi BT 40 B2
n
=1




Intuition on L, Regularization: Gaussian Priors

* Extending the gaussian pdf over each individual weight f; to the full
parameter vector 5, the hypothesis space is constrained.

Before regularization

(uniform preference

for any parameters)

0.1

0.08

0.06

0.04

0.02

With L2 regularization

oris
-
—

b2 o

0.1

0.08

0.06

0.04

0.02



Intuition on L, Regularization

* Why does it help?
" Encourages “simple” functions
" E.g., Use / to tune bias-variance tradeoff.

Q: How would you set A to get higher bias / lower variance?

Underfitting Ideal Overfitting

Loss

/ festloss

— » Training loss

Capaecity 1/1




Intuition on L, Regularization

b> Minimizes
original loss
(orif A = 0)
L e At this point, the
Minimizes :
gradients are equal
full loss . L
(with opposite sign)
* Tradeoff depends on
b1 choice of /1

Minimizes
regularization term
(orif A —» o)

n d
1
L) =) (= BTx)? + 1 ) B
=1 ]:1



Regularization and Intercept Term / “Bias” Parameter

« Common convention: if using intercept term (¢(x) = [1 x; - Xg]7),
no penalty on the “bias parameter” f;:

n d
1
L(B;Z) = EZ(%' —Bx;)? + /12,3]'2
=1 j=2

Sum from j = 2
*As 1 > oo,wehavef, = =[,; =0

= |.e., only fit 8, (which yields ;(Z) = mean({y;}-,))




Effect of A on Bias and Variance

Fits to various datasets sampled Mean fit compared to the
from an underlying sinusoid

In\=2.6

0’/\/‘

0 . 1
l ‘ Illustrates variance Illustrates bias l ’

With A too high, the algorithm finds overly simple solutions.

*dataset size n set to 25, and feature map dimensionality d’ is 25 (gaussian feature map)

Bishop, Pattern Recognition and Machine Learning



Effect of A on Bias and Variance

Fits to various datasets sampled Mean fit compared to the
from an underlying sinusoid

InA=-031

Or |
N A/
-1t 7| :
0 § 1 0 x 1

‘ [llustrates variance Illustrates bias

*dataset size n set to 25, and feature map dimensionality d’ is 25 (gaussian feature map)

Bishop, Pattern Recognition and Machine Learning



Effect of A on Bias and Variance

Fits to various datasets sampled Mean fit compared to the
from an underlying sinusoid

= /
VRS Va72%'
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K
0 i s, 1
l ’ Illustrates variance Illustrates bias l ‘

With A too low, the algorithm finds overly complex solutions.

*dataset size n set to 25, and feature map dimensionality d’ is 25 (gaussian feature map)
Bishop, Pattern Recognition and Machine Learning



General Regularization Strategy

 Original loss + regularization:

Lnew(ﬁiz) — L(,B;Z) + /1 R(,B)

= Offers a way to express a preference for “simpler” functions in family
" Typically, regularization is independent of data

Q: For the new parameters (,,,,, = mﬁin L., ., Wwould their corresponding
value of L(f; Z) be smaller or larger than before regularization?




