Lecture 4: Linear Regression (Part 3)

CIS 4190/5190
Spring 2023
Administrivia

• Class roster is now stable, and add/drop deadline has passed.

• HW1 due **tonight 8 p.m.**, and HW2 will be posted tonight/tomorrow morning, on linear regression.
 ▪ Class late policy reminder: 0.5% points for every late hour, up to a max of 48 hours.

• TA office hours:
 ▪ Any changes will be posted to the TA office hours thread on EdSTEM, at least 48 hours ahead of time.
 ▪ We are moving the 3 p.m. OH on Monday and Wed to 3.30 p.m. to avoid clashing. More news on that soon.

• Recitations tomorrow at 5 p.m. on Python, Numpy, Pandas, Scikit-Learn. See EdSTEM post.

• No quiz for week 1. We’ll fix the webpage.
Last Lecture Summary

• The Train/Test Split Protocol for Measuring Underfitting / Overfitting

• Bias and variance as functions of a model class
 ▪ Tuning them by selecting hypothesis spaces / feature maps
 ▪ Tuning them by modifying the loss function
 ▪ $L_{\text{new}}(\beta; Z) = L(\beta; Z) + \lambda \cdot R(\beta)$

• Today:
 ▪ Selecting hyperparameters like λ
 ▪ Finally unveil the mystery about how to find $\hat{\beta}(Z) = \arg \min_\beta L(\beta; Z)$
Cross-Validation for Model Selection
Hyperparameter Tuning, or “Model Selection”

• \(\lambda \) is a **hyperparameter** that must be tuned (satisfies \(\lambda \geq 0 \))

• **Naïve strategy:** Try a few different candidates \(\lambda_t \) and choose the one that minimizes the test loss
Test Data Contamination

• Suppose you have tried 100 different hyperparameter values, that all have the same value of generalization MSE, if evaluated on the full data distribution.

• But the test dataset is only a finite sample of this distribution, so test MSE is a noisy estimate of true generalization MSE. For example

Note how, in selecting based on test MSE, you have “overfit” your hyperparameter choice to your test set!
• λ is a **hyperparameter** that must be tuned (satisfies $\lambda \geq 0$)

• **Naïve strategy:** Try a few different candidates λ_t and choose the one that minimizes the test loss

• **Problem:** We may overfit the test set!
 ▪ Major problem if we have more hyperparameters

• **Solution:** A new subset of data just for selecting hyperparameters
Train/Val/Test Split Protocol for Model Selection

- **Goal:** Choose best hyperparameter λ
 - Can also compare different model families, feature maps, etc.
- **Solution:** Optimize λ on a **held-out validation data**
 - **Rule of thumb:** 60/20/20 split (usually shuffle before splitting)

Given data Z
- 1, 2, ..., samples
- \ldots, $n-1$, n

<table>
<thead>
<tr>
<th>x_1, y_1</th>
<th>x_2, y_2</th>
<th>\ldots</th>
<th>x_n, y_n</th>
</tr>
</thead>
</table>

- Training data Z_{train}
- Val data Z_{val}
- Test data Z_{test}
Basic Cross Validation Algorithm: “Holdout”

Step 1: Split Z into Z_{train}, Z_{val}, and Z_{test}

| Training data Z_{train} | Val data Z_{val} | Test data Z_{test} |

Step 2: For $t \in \{1, \ldots, h\}$ hyperparameter choices:

- **Step 2a:** Run linear regression with Z_{train} and λ_t to obtain $\hat{\beta}(Z_{\text{train}}, \lambda_t)$

- **Step 2b:** Evaluate validation loss $L_{\text{val}}^t = L(\hat{\beta}(Z_{\text{train}}, \lambda_t); Z_{\text{val}})$

Step 3: Use best λ_t

- Choose $t' = \arg\min_t L_{\text{val}}^t$ with lowest validation loss

- Re-run linear regression with Z_{train} and $\lambda_{t'}$ to obtain $\hat{\beta}(Z_{\text{train}}, \lambda_{t'})$
Cross Validation Hygiene

- The moment that test data is used for hyperparameter selection or to iterate on ML design choices, it should be treated as “contaminated”.
- Remember: Performance on contaminated test data is an overly **optimistic** estimate of the “true” test performance.

Q: What about validation data performance then? (yes, this is also overly optimistic)
Alternative Cross-Validation Algorithms

• If \(Z \) is small, then splitting it can reduce performance
 - Can use \(Z_{\text{train}} \cup Z_{\text{val}} \) in Step 3

• Alternative more thorough CV strategy: “\(k \)-fold” cross-validation
 - Split \(Z \) into \(Z_{\text{train}} \) and \(Z_{\text{test}} \)
 - Split \(Z_{\text{train}} \) into \(k \) disjoint sets \(Z_{\text{val}}^s \), and let \(Z_{\text{train}}^s = \bigcup_{s' \neq s} Z_{\text{val}}^s \)
 - Use \(\lambda' \) that works best on average across \(s \in \{1, \ldots, k\} \) with \(Z_{\text{train}} \)
 - Chooses better \(\lambda' \) than above strategy
Example: \(k = 3 \)-Fold Cross Validation

<table>
<thead>
<tr>
<th>Training data (Z_{\text{train}}^3)</th>
<th>Val data (Z_{\text{val}}^3)</th>
<th>Test data (Z_{\text{test}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train data (Z_{\text{val}}^2)</td>
<td>Val data (Z_{\text{val}}^2)</td>
<td>Train data (Z_{\text{val}}^2)</td>
</tr>
<tr>
<td>Val data (Z_{\text{val}}^1)</td>
<td>Train data (Z_{\text{train}}^1)</td>
<td>Test data (Z_{\text{test}})</td>
</tr>
<tr>
<td>Train data (Z_{\text{train}})</td>
<td></td>
<td>Test data (Z_{\text{test}})</td>
</tr>
</tbody>
</table>

Compute vs. accuracy tradeoff: As \(k \to N \), model selection becomes more accurate, but algorithm becomes more computationally expensive.
Note: What Exactly Are “Hyperparameters”?

• Cross-Validation is a general, systematic trial-and-error procedure for selecting hyperparameters.

• Other hyperparameters too, not just the regularization λ.

• “Hyperparameters” are ML system properties / design choices that are not directly set in the optimization problem.

$$\hat{\beta}(Z) = \arg\min_{\beta} L(\beta; Z)$$

• Examples of other hyperparameters you could set with cross-validation:
 ▪ choice of feature maps in linear regression.
 ▪ data selection and other preprocessing procedures (coming up soon).
 ▪ linear regression versus another ML algorithm, altogether.
Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

\[L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 \]

• Closed-form solution: Compute a matrix expression derived using calculus

• Iterative Optimization-based solution: Search over candidate \(\beta \)
Vectorizing Linear Regression
Vectorizing Linear Regression

\[
\begin{bmatrix}
 f_\beta(x_1) \\
 \vdots \\
 f_\beta(x_n)
\end{bmatrix}
\]
Vectorizing Linear Regression

\[
\begin{bmatrix}
 f_\beta(x_1) \\
 \vdots \\
 f_\beta(x_n)
\end{bmatrix} =
\begin{bmatrix}
 \beta^T x_1 \\
 \vdots \\
 \beta^T x_n
\end{bmatrix}
\]
Vectorizing Linear Regression

\[
\begin{bmatrix}
 f_\beta(x_1) \\
 \vdots \\
 f_\beta(x_n)
\end{bmatrix} =
\begin{bmatrix}
 \beta^\top x_1 \\
 \vdots \\
 \beta^\top x_n
\end{bmatrix} =
\begin{bmatrix}
 \sum_{j=1}^{d} \beta_j x_{1,j} \\
 \vdots \\
 \sum_{j=1}^{d} \beta_j x_{n,j}
\end{bmatrix}
\]
Vectorizing Linear Regression

\[
\begin{bmatrix}
 f_\beta(x_1) \\
 \vdots \\
 f_\beta(x_n)
\end{bmatrix}
= \begin{bmatrix}
 \beta^\top x_1 \\
 \vdots \\
 \beta^\top x_n
\end{bmatrix}
= \begin{bmatrix}
 \sum_{j=1}^d \beta_j x_{1,j} \\
 \vdots \\
 \sum_{j=1}^d \beta_j x_{n,j}
\end{bmatrix}
= \begin{bmatrix}
 x_{1,1} & \cdots & x_{1,d} \\
 \vdots & \ddots & \vdots \\
 x_{n,1} & \cdots & x_{n,d}
\end{bmatrix}
\begin{bmatrix}
 \beta_1 \\
 \vdots \\
 \beta_d
\end{bmatrix}
\]
Vectorizing Linear Regression

\[
\begin{bmatrix}
f_\beta(x_1) \\
\vdots \\
f_\beta(x_n)
\end{bmatrix} = \begin{bmatrix}
\beta^\top x_1 \\
\vdots \\
\beta^\top x_n
\end{bmatrix} = \begin{bmatrix}
\sum_{j=1}^{d} \beta_j x_{1,j} \\
\vdots \\
\sum_{j=1}^{d} \beta_j x_{n,j}
\end{bmatrix} = \begin{bmatrix}
x_{1,1} & \cdots & x_{1,d} \\
\vdots & \ddots & \vdots \\
x_{n,1} & \cdots & x_{n,d}
\end{bmatrix} \begin{bmatrix}
\beta_1 \\
\vdots \\
\beta_d
\end{bmatrix}
\]
Vectorizing Linear Regression

$$
\begin{bmatrix}
 f_\beta(x_1) \\
 \vdots \\
 f_\beta(x_n)
\end{bmatrix} = \begin{bmatrix}
 \beta^\top x_1 \\
 \vdots \\
 \beta^\top x_n
\end{bmatrix} = \begin{bmatrix}
 \sum_{j=1}^{d} \beta_j x_{1,j} \\
 \vdots \\
 \sum_{j=1}^{d} \beta_j x_{n,j}
\end{bmatrix} = \begin{bmatrix}
 x_{1,1} & \cdots & x_{1,d} \\
 \vdots & \ddots & \vdots \\
 x_{n,1} & \cdots & x_{n,d}
\end{bmatrix} \begin{bmatrix}
 \beta_1 \\
 \vdots \\
 \beta_d
\end{bmatrix} = X\beta
$$
Vectorizing Linear Regression

\[
\begin{bmatrix}
 f_\beta(x_1) \\
 \vdots \\
 f_\beta(x_n)
\end{bmatrix} =
\begin{bmatrix}
 \beta^T x_1 \\
 \vdots \\
 \beta^T x_n
\end{bmatrix} =
\begin{bmatrix}
 \sum_{j=1}^{d} \beta_j x_{1,j} \\
 \vdots \\
 \sum_{j=1}^{d} \beta_j x_{n,j}
\end{bmatrix} =
\begin{bmatrix}
 x_{1,1} & \cdots & x_{1,d} \\
 \vdots & \ddots & \vdots \\
 x_{n,1} & \cdots & x_{n,d}
\end{bmatrix} \begin{bmatrix}
 \beta_1 \\
 \vdots \\
 \beta_d
\end{bmatrix} = X\beta
\]

\[\iff\]

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
\]
Vectorizing Linear Regression

\[
\begin{bmatrix}
 f_\beta(x_1) \\
 \vdots \\
 f_\beta(x_n)
\end{bmatrix}
= \begin{bmatrix}
 \beta^\top x_1 \\
 \vdots \\
 \beta^\top x_n
\end{bmatrix}
= \begin{bmatrix}
 \sum_{j=1}^{d} \beta_j x_{1,j} \\
 \vdots \\
 \sum_{j=1}^{d} \beta_j x_{n,j}
\end{bmatrix}
= \begin{bmatrix}
 x_{1,1} & \cdots & x_{1,d} \\
 \vdots & \ddots & \vdots \\
 x_{n,1} & \cdots & x_{n,d}
\end{bmatrix}
\begin{bmatrix}
 \beta_1 \\
 \vdots \\
 \beta_d
\end{bmatrix}
= X\beta
\]

\[\leq\]

\[
\begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix} = Y
\]

Summary: \(Y \approx X\beta \)

Note: n equations, d variables
Vectorizing Linear Regression

\[Y \approx X \beta \]

\[Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \quad X = \begin{bmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{bmatrix} \quad \beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_d \end{bmatrix} \]
Vectorizing Mean Squared Error
Vectorizing Mean Squared Error

\[L(\beta; Z) \]
Vectorizing Mean Squared Error

\[L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^\top x_i)^2 \]
Vectorizing Mean Squared Error

$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 = \frac{1}{n} \|Y - X\beta\|_2^2$$

$$\|Z\|_2^2 = \sum_{i=1}^{n} z_i^2$$
Intuition on Vectorized Linear Regression

• Rewriting the vectorized loss:

\[n \cdot L(\beta; Z) = \|Y - X\beta\|_2^2 = \|Y\|_2^2 - 2Y^T X\beta + \|X\beta\|_2^2 \]
\[= \|Y\|_2^2 - 2Y^T X\beta + \beta^T (X^T X)\beta \]

• **Side note:** Quadratic function of \(\beta \) with leading “coefficient” \(X^T X \)

 ▪ In one dimension, “width” of parabola \(ax^2 + bx + c \) is \(a^{-1} \)

 ▪ In multiple dimensions, “width” along direction \(v_i \) is \(\lambda_i^{-1} \), where \(v_i \) is an eigenvector of \(X^T X \) with eigenvalue \(\lambda_i \)

 ▪ Large width (small \(\lambda_i \)) along a direction \(v_i \) implies that parameter values along that direction affect the loss value less.

 ▪ This will be interesting to us later in class (“PCA”)
Intuition on Vectorized Linear Regression

Directions/magnitudes are given by eigenvectors/eigenvalues of X^TX
Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss:

\[L(\beta; Z) = \frac{1}{n} \| Y - X\beta \|_2^2 \]

• Minimum solution has gradient equal to zero:

\[\nabla_\beta L(\hat{\beta}(Z); Z) = 0 \]
Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

\[L(\beta; Z) = \frac{1}{n} \| Y - X\beta \|_2^2 \]

• Minimum solution has gradient equal to zero:

\[\nabla_\beta L(\hat{\beta}; Z) = 0 \]
Strategy 1: Closed-Form Solution

• The gradient is

\[\nabla_{\beta} L(\beta; Z) \]
Strategy 1: Closed-Form Solution

• The gradient is

\[\nabla_\beta L(\beta; Z) = \nabla_\beta \frac{1}{n} \| Y - X\beta \|_2^2 \]
Strategy 1: Closed-Form Solution

The gradient is

\[
\nabla_\beta L(\beta; Z) = \nabla_\beta \frac{1}{n} \|Y - X\beta\|_2^2 = \nabla_\beta \frac{1}{n} (Y - X\beta)^\top (Y - X\beta)
= \frac{2}{n} \left[\nabla_\beta (Y - X\beta)^\top \right] (Y - X\beta)
= -\frac{2}{n} X^\top (Y - X\beta)
= -\frac{2}{n} X^\top Y + \frac{2}{n} X^\top X\beta
\]
Strategy 1: Closed-Form Solution

• The gradient is

$$
\nabla_\beta L(\beta; Z) = \nabla_\beta \frac{1}{n} \|Y - X\beta\|_2^2 = -\frac{2}{n} X^T Y + \frac{2}{n} X^T X \beta
$$

• Setting $\nabla_\beta L(\hat{\beta}; Z) = 0$, we have $X^T X \hat{\beta} = X^T Y$

• Assuming $X^T X$ is invertible, we have

$$
\hat{\beta}(Z) = (X^T X)^{-1} X^T Y
$$

Compare this to: $Y \approx X\beta$

This is called the “pseudoinverse” of X
Strategy 1: Closed-Form Solution

• Setting $\nabla_\beta L(\hat{\beta}; Z) = 0$, we have $X^T X \hat{\beta} = X^T Y$

• Assuming $X^T X$ is invertible, we have

$$\hat{\beta}(Z) = (X^T X)^{-1} X^T Y$$
Note on Invertibility

• Closed-form solution only **unique** if X^TX (size dxd) is invertible
 • Otherwise, **multiple solutions exist** to $X^TX\hat{\beta} = X^TY$
 • **Intuition**: Underconstrained system of linear equations

• Example:

\[
\begin{bmatrix}
1 & 1 \\
2 & 2
\end{bmatrix}
\begin{bmatrix}
\hat{\beta}_1 \\
\hat{\beta}_2
\end{bmatrix}
= \begin{bmatrix}
2 \\
4
\end{bmatrix}
\]

• In this case, any $\hat{\beta}_2 = 2 - \hat{\beta}_1$ is a solution
When Can this Happen?

• Case 1
 ▪ Fewer data examples than feature dimension (i.e., $n < d$)
 ▪ Remember: we are solving something like $Y \approx X\beta$
 ▪ **Solution**: Remove features so $d \leq n$
 ▪ **Solution**: Collect more data until $d \leq n$

• Case 2: Some feature is a linear combination of the others
 ▪ **Special case (duplicated feature)**: For some j and j', $x_{i,j} = x_{i,j'}$ for all i
 ▪ **Solution**: Remove linearly dependent features
 ▪ **Solution**: Use L_2 regularization (we will soon see why)
Shortcomings of Closed-Form Solution

• Computing $\hat{\beta}(Z) = (X^T X)^{-1} X^T Y$ can be challenging

• Computing $(X^T X)^{-1}$ is $O(d^3)$
 - $d = 10^4$ features $\rightarrow O(10^{12})$
 - Even storing $X^T X$ requires a lot of memory

• Numerical accuracy issues due to “ill-conditioning”
 - $X^T X$ is “barely” invertible
 - Then, $(X^T X)^{-1}$ has large variance along some dimension
 - Regularization helps (more on this later)
Iterative Optimization Algorithms

• Recall that linear regression minimizes the loss

\[L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 \]

• Iteratively optimize \(\beta \)
 - Initialize \(\beta_1 \leftarrow \text{Init}(...) \)
 - For some number of iterations \(T \), update \(\beta_t \leftarrow \text{Step}(...) \)
 - Return \(\beta_T \)
Iterative Optimization Algorithms

- **Global search**: Try random values of β and choose the best
 - I.e., β_t independent of β_{t-1}
 - Very unstructured, can take a long time (especially in high dimension d)!

- **Local search**: Start from some initial β and make local changes
 - I.e., β_t is computed based on β_{t-1}
 - What is a “local change”, and how do we find good one?
Strategy 2: Gradient Descent

- **Gradient descent:** Update β based on gradient $\nabla_\beta L(\beta; Z)$ of $L(\beta; Z)$:

 $$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; Z)$$

- **Intuition:** The gradient is the direction along which $L(\beta; Z)$ changes most quickly as a function of β

- $\alpha \in \mathbb{R}$ is a hyperparameter called the **learning rate**
 - More on this later
Strategy 2: Gradient Descent

• Choose initial value for β

• Until we reach a minimum:
 ▪ Choose a new value for β to reduce $L(\beta; Z)$

$L(\beta; Z)$

Figure by Andrew Ng
Strategy 2: Gradient Descent

- Choose initial value for β
- Until we reach a minimum:
 - Choose a new value for β to reduce $L(\beta; Z)$
Strategy 2: Gradient Descent

• Choose initial value for β
• Until we reach a minimum:
 ▪ Choose a new value for β to reduce $L(\beta; Z)$

Linear regression loss is convex, so no local minima

Figure by Andrew Ng
Strategy 2: Gradient Descent

- Initialize $\beta_1 = \vec{0}$
- Repeat until convergence:
 $$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla \beta L(\beta_t; Z)$$
- For linear regression, know the gradient from strategy 1

For in-place updates $\beta \leftarrow \beta - \alpha \cdot \nabla \beta L(\beta; Z)$, compute all components of $\nabla \beta L(\beta; Z)$ before modifying β.
Strategy 2: Gradient Descent

- Initialize $\beta_1 = \overrightarrow{0}$
- Repeat until convergence:

\[
\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; Z)
\]

- For linear regression, know the gradient from strategy 1
Strategy 2: Gradient Descent

- Initialize $\beta_1 = \vec{0}$
- Repeat until $\|\beta_t - \beta_{t+1}\|_2 \leq \epsilon$:

 $$\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; Z)$$

- For linear regression, know the gradient from strategy 1

Hyperparameter defining convergence
Aside: Gradient As Sum of Sample-Wise Gradients

(Equivalent to our earlier matrix expression of gradient)

• By linearity of the gradient, we have

\[
\nabla_\beta L(\beta; Z) = \sum_{i=1}^{n} \nabla_\beta (y_i - \beta^T x_i)^2 = \sum_{i=1}^{n} 2(y_i - \beta^T x_i)x_i
\]

• The gradient term induced by a single training data sample is:

\[
\nabla_\beta (y_i - \beta^T x_i)^2 = 2(y_i - \beta^T x_i)x_i
\]

• I.e., the current error \(y_i - \beta^T x_i\) times the feature vector \(x_i\)

“Large error samples induce large changes to \(\beta\), proportional to their feature values.”
Strategy 2: Gradient Descent

\[h(x) = -900 - 0.1x \]

\[f_\beta(x) \quad \text{and} \quad L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]
Strategy 2: Gradient Descent

\[f_\beta(x) \]

\[L(\beta; Z) \]

Minimizer of loss function
Choice of Learning Rate α

Problem: α too small
- $L(\beta; Z)$ decreases slowly

Problem: α too large
- $L(\beta; Z)$ increases!

Plot $L(\beta_t; Z_{\text{train}})$ vs. t to diagnose these problems
Choice of Learning Rate α

- α is a hyperparameter for gradient descent that we need to choose
 - Can set just based on training data

- Rule of thumb
 - α too small: Loss decreases slowly
 - α too large: Loss increases!

- Try rates $\alpha \in \{1.0, 0.1, 0.01, \ldots\}$ (can tune further once one works)
Comparison of Strategies

• Closed-form solution
 ▪ No hyperparameters
 ▪ Slow if \(n \) or \(d \) are large

• Gradient descent
 ▪ Need to tune \(\alpha \)
 ▪ Scales to large \(n \) and \(d \)

• For linear regression, there are better optimization algorithms, but gradient descent is very general
 ▪ Accelerated gradient descent is an important tweak that improves performance in practice (and in theory)
Loss Minimization View of ML

• Two design decisions
 ▪ **Model family**: What are the candidate models f? (E.g., linear functions)
 ▪ **Loss function**: How to define “approximating”? (E.g., MSE loss)
Loss Minimization View of ML

• **Three design decisions**
 - **Model family:** What are the candidate models f? (E.g., linear functions)
 - **Loss function:** How to define “approximating”? (E.g., MSE loss)
 - **Optimizer:** How do we minimize the loss? (E.g., gradient descent)