g? Lecture 4: Linear Regression (Part 3)
‘/J, o,

- — CIS 4190/5190
Spring 2023

Administrivia

* Class roster is now stable, and add/drop deadline has passed.

HW1 due tonight 8 p.m., and HW2 will be posted tonight/tomorrow morning, on linear
regression.

= Class late policy reminder: 0.5% points for every late hour, up to a max of 48 hours.

TA office hours:

= Any changes will be posted to the TA office hours thread on EASTEM, at least 48 hours ahead
of time.

= \WWe are moving the 3 p.m. OH on Monday and Wed to 3.30 p.m. to avoid clashing. More news
on that soon.

Recitations tomorrow at 5 p.m. on Python, Numpy, Pandas, Scikit-Learn. See EASTEM post.

No quiz for week 1. We'll fix the webpage.

Last Lecture Summary

* The Train/Test Split Protocol for Measuring Underfitting / Overfitting

 Bias and variance as functions of a model class
* Tuning them by selecting hypothesis spaces / feature maps

" Tuning them by modifying the loss function
"Lnew(B52) = L(B;Z) + 4 - R(B)

* Today:
= Selecting hyperparameters like 4
" Finally unveil the mystery about how to find ,B(Z) = arg ming L(f3; Z)

Cross-Validation for Model
Selection

Hyperparameter Tuning, or “Model Selection”

* /1 is a hyperparameter that must be tuned (satisfies 1 = 0)

* Naive strategy: Try a few different candidates /; and choose the one
that minimizes the test loss

est Data Contamination

e Suppose you have tried 100 different hyperparameter values, that all haver
the same value of generalization MSE, if evaluated on the full data
distribution.

e But the test dataset is only a finite sample of this distribution, so test MSE is
a noisy estimate of true generalization MSE. For example

®
®
g2 e _
> (True generalization error)]]
2 o Note how, in selecting based on test MSE, you
2 have “overfit” your hyperparameter choice to
o< your test set!

Hyperparameter values

Hyperparameter Tuning, or “Model Selection”

* /1 is a hyperparameter that must be tuned (satisfies 1 = 0)

* Naive strategy: Try a few different candidates /; and choose the one
that minimizes the test loss

* Problem: We may overfit the test set!
" Major problem if we have more hyperparameters

* Solution: A new subset of data just for selecting hyperparameters

* Goal: Choose best hyperparameter /1
" Can also compare different model families, feature maps, etc.
 Solution: Optimize /4 on a held-out validation data
= Rule of thumb: 60/20/20 split (usually shuffle before splitting)

samples

rain/Val/Test Split Protocol for Model Selection

.,n—1,n

(Xl, 3’1) !_x

(x2,¥2) N

Given data Z

(X7, Yn)

>

Training data Ziy,in

Val data Z,,,;

Test data Ziagt

Basic Cross Validation Algorithm: “Holdout”

* Step 1: Split Z into Z i, Zyal, and Ziagt

Training data Zirain Val data Z,,,; || Test data Zieqt

* Step 2: Fort € {1, ..., h} hyperparameter choices:
= Step 2a: Run Imear regression with Z..;,, and A; to obtain

IB(Ztraln' At) A
= Step 2b: Evaluate validation loss L, = L(f (Z i ain, At); Zyal)

* Step 3: Use best 4;
= Choose t' = arg min, L., with lowest validation loss

= Re-run linear regression with Z,,.;,, and 4, to obtain 5 (Z ain, A7)

Cross Validation Hygiene

Training data Zirain Val data Zy) || Test data Zest

For training parameters For selecting For evaluation

hyperparameters only
* The moment that test data is used for hyperparameter selection or to iterate
on ML design choices, it should be treated as “contaminated”.

* Remember: Performance on contaminated test data is an overly optimistic
estimate of the “true” test performance.

Q: What about validation data performance then?

(yes, this is also overly optimistic)

Alternative Cross-Validation Algorithms

 If Z is small, then splitting it can reduce performance
" Can use Zi ,in U Z,, in Step 3

 Alternative more thorough CV strategy: “k-fold” cross-validation
" Split Z into Z i, and Ziaqt
= Split Z;..i,, into k disjoint sets Z,,,;, and let Z; .;,, = Uy Za
= Use A’ that works best on average across s € {1, ..., k} with 7, ..; ,
» Chooses better A’ than above strategy

Example: k = 3-Fold Cross Validation

Training data Z;..; , Val data Z;

Test data Ziast

Train data Z2,, | Valdata ZZ,; || Train data ZZ

Test data Ziast

Val data Z ., Train data Z,

train

Test data Ziast

Train data Zirain

Test data Ziast

Compute vs. accuracy tradeoff: As k - N, model selection becomes more
accurate, but algorithm becomes more computationally expensive

Note: What Exactly Are “Hyperparameters”?

* Cross-Validation is a general, systematic trial-and-error procedure for
selecting hyperparameters.

* Other hyperparameters too, not just the regularization A.

* “Hyperparameters” are ML system properties / design choices that are not
directly set in the optimization problem.

f(Z) = arg min L(f; Z)
B

* Examples of other hyperparameters you could set with cross-validation:

" choice of feature maps in linear regression.
» data selection and other preprocessing procedures (coming up soon).

" linear regression versus another ML algorithm, altogether.

Minimizing the MSE Loss

* Recall that linear regression minimizes the loss
n
1 T. 32
L(B;7Z) = EZ(% — B x;)
i=1

* Closed-form solution: Compute a matrix expression derived using calculus

* [terative Optimization-based solution: Search over candidate [

Vectorizing Linear Regression

Vectorizing Linear Regression

fﬁ(x1)

f,B (.xn)

Vectorizing Linear Regression

fﬁ(x1) Blx;

f.B (;Cn) _IBT.Xn_

Vectorizing Linear Regression

feCeD)| 1871 |5

_f,B (xn) -,BTxn- d |
z IBjxn,j

Vectorizing Linear Regression

—d _
D b
=1

. .
D i
_j=1 i

feCe)] 18T

el LT

Vectorizing Linear Regression

- d _
D b
=1

- .
D i
_j=1 i

feCe)] 18T

el LT

Vectorizing Linear Regression

fﬁ(x1)

)

— d -
2, B
j=1

. .
D i
_j=1 i

18,

Xp

Vectorizing Linear Regression

z ﬁjxu_

fﬁ(x1)

)

2
i

Vn.

j=1

18,

Xp

Vectorizing Linear Regression

- d _
)) ﬁx ’.
fﬁ(xl) _IBT_X'l_]z=1 o X110 X147 ‘181'
fﬁ(xn) -IBTxn- d Xn1 Xnpallfgl
zlgjxn]
=1
U
Yy
|l =Y
Yn. Summary: Y = X[

Note: n equations, d variables

Vectorizing Linear Regression

Vi

Vn.

Y

By
Ba.

Vectorizing Mean Squared Error

Vectorizing Mean Squared Error

L(S;7)

Vectorizing Mean Squared Error

1 n
L(S;7) = 52()&' — B x;)?
i=1

Vectorizing Mean Squared Error _ _
J’1 fﬁ(x1)

Vn _f,B (.Xn)_

\/

1Y 1
LB 7)==) (i = BTx)? =— IV = X3
=1

/

lzll; =) z
=1

Intuition on Vectorized Linear Regression

* Rewriting the vectorized loss:

n-L(B;Z) =Y = XBI5 = IVII5 — 2V "XB + [|XBI5
=|IYll5 —2Y"XB+ BT (XTX)B

* Side note: Quadratic function of 5 with leading “coefficient” X ' X
* In one dimension, “width” of parabola ax? + bx +cisa™ '

= In multiple dimensions, “width” along direction v; is A; *, where v; is an
eigenvector of X ' X with eigenvalue 1,

" Large width (small /1;) along a direction v; implies that parameter
values along that direction affect the loss value less.

" This will be interesting to us later in class (“PCA”)

Intuition on Vectorized Linear Regression

Minimizer £ (2)

b1

Directions/magnitudes are given by eigenvectors/eigenvalues of X ' X

Strategy 1: Closed-Form Solution

* Recall that linear regression minimizes the loss:
1 2
L(B; 2) = NI = XBII3

* Minimum solution has gradient equal to zero:

VoL(B(2);Z2) =0

Strategy 1: Closed-Form Solution

* Recall that linear regression minimizes the loss
1 2
L(B; 7) =~ IV = XBII3

* Minimum solution has gradient equal to zero:

VsL(B;Z) =0

Strategy 1: Closed-Form Solution

* The gradient is

VeL(B;7)

Strategy 1: Closed-Form Solution

* The gradient is

1
VgL(B;7) = Vg —IIY = XS5

Strategy 1: Closed-Form Solution

* The gradient is

VoL(B;7) = Vg~V = XBlI3 = Vs~ (¥ = XR)T(Y = X)

= 2 [Vs (v = XB)T](Y = XB)
= —ZXT(Y — XB)

n

= —2XTY +2XTXp
n n

Strategy 1: Closed-Form Solution

* The gradient is

1 2 2
VeL(B;7) = Ve —IlY — XBlI5 = —gXTY +;XTX,B

* Setting V;L(f;Z) = 0, we have X "X = XY

* Assuming X ' X is invertible, we have

Compare thisto: Y = X[

B(2) = ngX)—leY

This is called the

“pseudoinverse” of X

Strategy 1: Closed-Form Solution

* Setting V;L(f;Z) = 0, we have X "X = XY

* Assuming X ' X is invertible, we have

B(Z)=XTX)TXTY

Note on Invertibility

* Closed-form solution only unique if X ' X (size dxd) is invertible

= Otherwise, multiple solutions existto X "X = XV
" Intuition: Underconstrained system of linear equations

* Example:

| HEA

= In this case, any 5, = 2 — 3, is a solution

When Can this Happen?

* Casel
*" Fewer data examples than feature dimension (i.e., n < d)
" Remember: we are solving something like ¥ = X[
= Solution: Remove featuressod < n
= Solution: Collect more data untild < n

e Case 2: Some feature is a linear combination of the others
" Special case (duplicated feature): For some j and j', x; ; = x; ;s
forall i
= Solution: Remove linearly dependent features
= Solution: Use L, regularization (we will soon see why)

Shortcomings of Closed-Form Solution

e« Computing £(Z) = (X"X)"'X"Y can be challenging

» Computing (X" X)"1is 0(d?)
= d = 10* features > 0(10%%)
= Even storing X ' X requires a lot of memory

* Numerical accuracy issues due to “ill-conditioning”
= X' X is “barely” invertible
* Then, (X" X)~* has large variance along some dimension
= Regularization helps (more on this later)

Iterative Optimization Algorithms

* Recall that linear regression minimizes the loss
n
1 T \2
LG5 7)==) (v = T
i=1

* [teratively optimize [
= |nitialize f; < Init(...)
" For some number of iterations 7', update [, < Step(...)
" Return [+

Iterative Optimization Algorithms

* Global search: Try random values of /5 and choose the best
" |.e., [; independent of [5;_4

* Very unstructured, can take a long time (especially in high
dimension d)!

* Local search: Start from some initial / and make local changes
" |.e., [; is computed based on [;_;
" What is a “local change”, and how do we find good one?

Strategy 2: Gradient Descent

* Gradient descent: Update 5 based on gradient V;L(f; Z) of L(f; Z):
Biy1 < pr—a- VﬁL(ﬁtiZ)

* Intuition: The gradient is the direction along which L(/; Z) changes
most quickly as a function of

* o € Ris a hyperparameter called the learning rate
= More on this later

Strategy 2: Gradient Descent

* Choose initial value for 5

e Until we reach a minimum:
= Choose a new value for 8 to reduce L(f3; Z)

L(S;7)

Figure by Andrew Ng

Strategy 2: Gradient Descent

* Choose initial value for 5

* Until we reach a minimum:
= Choose a new value for 8 to reduce L(f; Z)

L(S;7)

Figure by Andrew Ng

Strategy 2: Gradient Descent

* Choose initial value for 5

* Until we reach a minimum:
= Choose a new value for 8 to reduce L(f; Z)

Linear regression loss is
convex, so no local minima

.......

Figure by Andrew Ng

Strategy 2: Gradient Descent

Indexing iteration now, rather than parameter vector element

/ =

* Initialize f{ =0
* Repeat until convergence:

3 -
Biy1 < B —a- VﬁL(ﬁtiZ) L(,B;Z)z T Be
| Bess
* For linear regression, know t
gradient from strategy 1 0 : : : (,':l
0 05 1 15 2

p

For in-place updates f « [— a - V3 L(f; Z), compute
all components of Vs L(f3; Z) before modifying /3

Strategy 2: Gradient Descent

- Initialize B, = 0

* Repeat until convergence:
Biy1 < Br—a- VBL(,BtJZ)

* For linear regression, know the
gradient from strategy 1

LB) T

0.5

1.5

bt
Br+1

Strategy 2: Gradient Descent

Hyperparameter defining

* Initialize f; = 0 / convergence
< €:

* Repeat until || B — Briqll2 <

fii1 < fr—a- VBL(,BtJZ) 3 -
. . 2 4 b
* For linear regression, know the L(B;7)
gradient from strategy 1 u Be+1
0 ——t—t+—1

0 0.5 1 1.5 2

p

Aside: Gradient As Sum of Sample-Wise Gradients

~2xTy +2XTxB
n n

(Equivalent to our earlier matrix expression of gradient)

* By linearity of the gradient, we have /‘
n n
VeL(B;7) = z Ve(vi =B x)* = Z 2(yi = B x)x;
i=1 i=1

* The gradient term induced by a single training data sample is:
Ve(vi — BT x)? = 2(y; — BT x)x;
* |.e., the current error y; — B " x; times the feature vector x;

“Large error samples induce large changes to 3, proportional to their
feature values.”

Strategy 2: Gradient Descent

700 0.5
600! | 0.4
0.3
-~ 5001]
S 0.2
(]
= 400t N 0.1
: @)= =900~ 01X
% 300t x X S . X .
k! X XS -0.1
& 200" . -0.2
-0.3
100f * Training data
— Current hypothesis -0.4
_0.5 1 1 1 1
1000 2000 5000 4000 Y000 -500 0 500 1000 1500 2000
Size (feet®) 0

fp(x) L(B;7)

Slide by Andrew Ng

Strategy 2: Gradient Descent

700 0.5
0.
600" *
0.3
—~ 500}
3 0.2
o
= 4007 0-1
g =" 4
& 300f
o 0.1
& 200(0.2
-0.3
100f * Training data
— Current hypothesis 0.4
0.5 ‘ ‘ | ‘
1000 2000 23000 4000 1000 -500 0 500 1000 1500 2000
Size (feet®) 0o

/5 (x) L(G;7)

Slide by Andrew Ng

Strategy 2: Gradient Descent

700 . . 0.5
0.
600 1 X
0.3
~ 500 1
3 0.2
o
S 400 . 0-1
g =" 4
& 300 1
o 0.1
& 200] 0.2
0.3
1007 » Training data I
— Current hypothesis | 0.4
_0.5 | I I !
1000 2000 23000 4000 1000 -500 0 500 1000 1500 2000
Size (feet®) 0o

/5 (x) L(G;7)

Slide by Andrew Ng

Strategy 2: Gradient Descent

700 ' ' A 0.5
s00L) | 0.4
. < 0.3
25500 0.2
o
S 400 0.1
g S
& 300
3 -0.1
& 200 -0.2
-0.3
100f * Training data
— Current hypothesis 0.4

1 | -0.5 | L 1
1000 2000 3000 4000 %900 -500 0 500 1500 2000

Size (feetz) 0o

fp(x) L(B;7)

1000

Slide by Andrew Ng

Strategy 2: Gradient Descent

700 . ' 0.5
0.4
600k ><>< % i
" Cox 0.3
~ 500"]
2 0.2
o
= 400 0-1
£ S0
& 300
o -0.1
& 200 0.2
-0.3
100f * Training data
— Current hypothesis 0.4
0.5 ‘ ‘ | ‘
1000 2000 23000 4000 1000 -500 0 500 1000 1500 2000
Size (feet®) 0o

/5 (x) L(G;7)

Slide by Andrew Ng

Strategy 2: Gradient Descent

700 . , y 05
0.4
600V ><>< ; B
X 0.3
— 500r i
S 0.2
3
— 400°F . < i 0.1
é K X };/X X % Qb‘—c O
2 300+ <X T X X "% i
-g Xex XK -0.1
= 2001 1 0.2
-0.3
1007 » Training data
— Current hypothesis -0.4
0 : ‘ : :
_0.5 L 1 I I
10 200 3000 4000 -1000 -500 0 500 1000 1500 2000
Size (feet”) 8

fp(x) L(B;7)

Slide by Andrew Ng

Strategy 2: Gradient Descent

700 . ' 0.5
0.4
600k ><>< % i
" Cox 0.3
~ 500"]
2 0.2
o
= 400 0-1
£ S0
& 300
o -0.1
& 200 0.2
-0.3
100f * Training data
— Current hypothesis 0.4
0 1 | T T
0.5 ‘ ‘ | ‘
1000 2000 23000 4000 1000 -500 0 500 1000 1500 2000
Size (feet®) 0o

/5 (x) L(G;7)

Slide by Andrew Ng

Strategy 2: Gradient Descent

700 . . 0.5
0.
600 *
0.3
—~ 500
3 0.2
o
= 400 0-1
g =" 4
& 300
o 0.1
& 200 0.2
-0.3
100f * Training data
— Current hypothesis 0.4
0.5 ‘ ‘ | ‘
1000 2000 23000 4000 1000 -500 0 500 1000 1500 2000
Size (feet®) 0o

/5 (x) L(G;7)

Slide by Andrew Ng

Strategy 2: Gradient Descent

Minimizer of loss function

700

6007

w H Ul
o o o
) o)

Price $ (in 1000s)

[*]
o
()

100f * Training data
— Current hypothesis

' | 5 : ‘ |
1000 2000 ;3000 4000 5000 -500 0 500 1000
Size (feet®) 0o

/5 (x) L(G;7)

1500 2000

Slide by Andrew Ng

Choice of Learning Rate «

L(B;7Z) L(B;7)

Problem: a too small Problem: a too large
* L(B;Z) decreases slowly * L(B;Z) increases!

Plot L(f;; Z:r4in) Vs. t to diagnose these problems

Choice of Learning Rate «

* o is a hyperparameter for gradient descent that we need to choose
= Can set just based on training data

* Rule of thumb
" ¢ too small: Loss decreases slowly
" a too large: Loss increases!

* Try rates a € {1.0,0.1,0.01, ... } (can tune further once one works)

Comparison of Strategies

* Closed-form solution
" No hyperparameters
" Slow if n or d are large

 Gradient descent
=" Need to tune
m Scales to large n and d

* For linear regression, there are better optimization algorithms, but gradient
descent is very general
" Accelerated gradient descent is an important tweak that improves
performance in practice (and in theory)

Loss Minimization View of ML

* Two design decisions
" Model family: What are the candidate models f? (E.g., linear functions)
" Loss function: How to define “approximating”? (E.g., MSE loss)

Loss Minimization View of ML

* Three design decisions
" Model family: What are the candidate models f? (E.g., linear functions)
" Loss function: How to define “approximating”? (E.g., MSE loss)
" Optimizer: How do we minimize the loss? (E.g., gradient descent)

