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Spring 2023



Administrivia
• Class roster is now stable, and add/drop deadline has passed. 
• HW1 due tonight 8 p.m., and HW2 will be posted tonight/tomorrow morning, on linear 

regression.
§ Class late policy reminder: 0.5% points for every late hour, up to a max of 48 hours. 

• TA office hours:
§ Any changes will be posted to the TA office hours thread on EdSTEM, at least 48 hours ahead

of time.
§ We are moving the 3 p.m. OH on Monday and Wed to 3.30 p.m. to avoid clashing. More news 

on that soon. 
• Recitations tomorrow at 5 p.m. on Python, Numpy, Pandas, Scikit-Learn. See EdSTEM post.

• No quiz for week 1. We’ll fix the webpage.



Last Lecture Summary

• The Train/Test Split Protocol for Measuring Underfitting / Overfitting
• Bias and variance as functions of a model class

§ Tuning them by selecting hypothesis spaces / feature maps
§ Tuning them by modifying the loss function

§ 𝐿!"# 𝛽; 𝑍 = 𝐿 𝛽; 𝑍 + 𝜆 ⋅ 𝑅 𝛽

• Today: 
§ Selecting hyperparameters like 𝜆
§ Finally unveil the mystery about how to find *𝛽 𝑍 = arg min$ 𝐿(𝛽; 𝑍)





Cross-Validation for Model 
Selection



Hyperparameter Tuning, or “Model Selection”

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0) 

• Naïve strategy: Try a few different candidates 𝜆% and choose the one 
that minimizes the test loss



Test Data Contamination

• Suppose you have tried 100 different hyperparameter values, that all haver 
the same value of generalization MSE, if evaluated on the full data 
distribution. 
• But the test dataset is only a finite sample of this distribution, so test MSE is 

a noisy estimate of true generalization MSE. For example

Hyperparameter values

Te
st

 M
SE

(True generalization error)
Note how, in selecting based on test MSE, you 
have “overfit” your hyperparameter choice to 
your test set!



Hyperparameter Tuning, or “Model Selection”

• 𝜆 is a hyperparameter that must be tuned (satisfies 𝜆 ≥ 0) 

• Naïve strategy: Try a few different candidates 𝜆% and choose the one 
that minimizes the test loss

• Problem: We may overfit the test set!
§ Major problem if we have more hyperparameters

• Solution: A new subset of data just for selecting hyperparameters



Train/Val/Test Split Protocol for Model Selection

• Goal: Choose best hyperparameter 𝜆
§ Can also compare different model families, feature maps, etc.

• Solution: Optimize 𝜆 on a held-out validation data
§ Rule of thumb: 60/20/20 split (usually shuffle before splitting)

Given data 𝑍
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Basic Cross Validation Algorithm: “Holdout”

• Step 1: Split 𝑍 into 𝑍&'()!, 𝑍+(,, and 𝑍&"*&

• Step 2: For 𝑡 ∈ 1,… , ℎ hyperparameter choices:
§ Step 2a: Run linear regression with 𝑍&'()! and 𝜆% to obtain 
*𝛽 𝑍&'()!, 𝜆%

§ Step 2b: Evaluate validation loss 𝐿+(,
% = 𝐿 *𝛽 𝑍&'()!, 𝜆% ; 𝑍+(,

• Step 3: Use best 𝜆%
§ Choose 𝑡- = arg min% 𝐿+(,

% with lowest validation loss
§ Re-run linear regression with 𝑍&'()! and 𝜆%! to obtain *𝛽 𝑍&'()!, 𝜆%!

Training data 𝑍&'()! Test data 𝑍&"*&Val data 𝑍+(,



Cross Validation Hygiene

Training data 𝑍&'()! Test data 𝑍&"*&Val data 𝑍+(,

For training parameters For selecting 
hyperparameters

For evaluation 
only

• The moment that test data is used for hyperparameter selection or to iterate 
on ML design choices, it should be treated as “contaminated”. 

• Remember: Performance on contaminated test data is an overly optimistic
estimate of the “true” test performance.

Q: What about validation data performance then?

(yes, this is also overly optimistic)



Alternative Cross-Validation Algorithms

• If 𝑍 is small, then splitting it can reduce performance
§ Can use 𝑍&'()! ∪ 𝑍+(, in Step 3

• Alternative more thorough CV strategy: “𝑘-fold” cross-validation
§ Split 𝑍 into 𝑍&'()! and 𝑍&"*&
§ Split 𝑍&'()! into 𝑘 disjoint sets 𝑍+(,

. , and let 𝑍&'()!. = ⋃.!/. 𝑍+(,
.

§ Use 𝜆- that works best on average across 𝑠 ∈ 1,… , 𝑘 with 𝑍&'()!
§ Chooses better 𝜆- than above strategy



Example: 𝑘 = 3-Fold Cross Validation

Test data 𝑍&"*&Val data 𝑍+(,
0Training data 𝑍&'()!0

Test data 𝑍&"*&Train data 𝑍+(,
1Val data 𝑍+(,

1Train data 𝑍+(,
1

Test data 𝑍&"*&Train data 𝑍&'()!2Val data 𝑍+(,
2

Test data 𝑍&"*&Train data 𝑍&'()!

Compute vs. accuracy tradeoff: As 𝑘 → 𝑁, model selection becomes more 
accurate, but algorithm becomes more computationally expensive



Note: What Exactly Are “Hyperparameters”?

• Cross-Validation is a general, systematic trial-and-error procedure for 
selecting hyperparameters.
• Other hyperparameters too, not just the regularization 𝜆.
• “Hyperparameters” are ML system properties / design choices that are not 

directly set in the optimization problem.
*𝛽 𝑍 = arg min

$
𝐿 𝛽; 𝑍

• Examples of other hyperparameters you could set with cross-validation:
§ choice of feature maps in linear regression.
§ data selection and other preprocessing procedures (coming up soon).
§ linear regression versus another ML algorithm, altogether. 





Minimizing the MSE Loss

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1
𝑛
B
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𝑦3 − 𝛽6𝑥3 1

• Closed-form solution: Compute a matrix expression derived using calculus

• Iterative Optimization-based solution: Search over candidate 𝛽



Vectorizing Linear Regression
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Vectorizing Linear Regression
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Summary: 𝑌 ≈ 𝑋𝛽

Note: n equations, d variables



Vectorizing Linear Regression

𝑌 ≈ 𝑋𝛽
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Vectorizing Mean Squared Error



Vectorizing Mean Squared Error
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Vectorizing Mean Squared Error
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Intuition on Vectorized Linear Regression

• Rewriting the vectorized loss:

𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽 1
1 = 𝑌 1

1 − 2𝑌6𝑋𝛽 + 𝑋𝛽 1
1

𝑛 ⋅ 𝐿 𝛽; 𝑍 = 𝑌 − 𝑋𝛽 1
1 = 𝑌 1

1 − 2𝑌6𝑋𝛽 + 𝛽6 𝑋6𝑋 𝛽

• Side note: Quadratic function of 𝛽 with leading “coefficient” 𝑋6𝑋
§ In one dimension, “width” of parabola 𝑎𝑥1 + 𝑏𝑥 + 𝑐 is 𝑎:2

§ In multiple dimensions, “width” along direction 𝑣3 is 𝜆3:2, where 𝑣3 is an 
eigenvector of 𝑋6𝑋 with eigenvalue 𝜆3
§ Large width (small 𝜆3) along a direction 𝑣3 implies that parameter 

values along that direction affect the loss value less.
§ This will be interesting to us later in class (“PCA”)



Intuition on Vectorized Linear Regression

𝛽1

𝛽2

Minimizer (𝛽 𝑍

Directions/magnitudes are given by eigenvectors/eigenvalues of 𝑋6𝑋



Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss:

𝐿 𝛽; 𝑍 =
1
𝑛
𝑌 − 𝑋𝛽 1

1

• Minimum solution has gradient equal to zero:

∇$𝐿 *𝛽 𝑍 ; 𝑍 = 0



Strategy 1: Closed-Form Solution

• Recall that linear regression minimizes the loss

𝐿 𝛽; 𝑍 =
1
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1

• Minimum solution has gradient equal to zero:

∇$𝐿 *𝛽; 𝑍 = 0



Strategy 1: Closed-Form Solution

• The gradient is

∇$𝐿 𝛽; 𝑍 = ∇$
2
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• The gradient is
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Strategy 1: Closed-Form Solution

• The gradient is

∇$𝐿 𝛽; 𝑍 = ∇$
2
5
𝑌 − 𝑋𝛽 1

1 = − 1
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• Setting ∇$𝐿 *𝛽; 𝑍 = 0, we have 𝑋6𝑋 *𝛽 = 𝑋6𝑌

• Assuming 𝑋6𝑋 is invertible, we have

*𝛽 𝑍 = 𝑋6𝑋 :2𝑋6𝑌

Compare this to: 𝑌 ≈ 𝑋𝛽

This is called the 
“pseudoinverse” of X



Strategy 1: Closed-Form Solution

• Setting ∇$𝐿 *𝛽; 𝑍 = 0, we have 𝑋6𝑋 *𝛽 = 𝑋6𝑌

• Assuming 𝑋6𝑋 is invertible, we have

*𝛽 𝑍 = 𝑋6𝑋 :2𝑋6𝑌



Note on Invertibility
• Closed-form solution only unique if 𝑋6𝑋 (size dxd) is invertible

§ Otherwise, multiple solutions exist to 𝑋6𝑋 *𝛽 = 𝑋6𝑌
§ Intuition: Underconstrained system of linear equations

• Example:
1 1
2 2

*𝛽2
*𝛽1

= 2
4

§ In this case, any *𝛽1 = 2 − *𝛽2 is a solution



When Can this Happen?

• Case 1
§ Fewer data examples than feature dimension (i.e., 𝑛 < 𝑑)

§ Remember: we are solving something like 𝑌 ≈ 𝑋𝛽
§ Solution: Remove features so 𝑑 ≤ 𝑛
§ Solution: Collect more data until 𝑑 ≤ 𝑛

• Case 2: Some feature is a linear combination of the others
§ Special case (duplicated feature): For some 𝑗 and 𝑗-, 𝑥3,7 = 𝑥3,7!

for all 𝑖
§ Solution: Remove linearly dependent features
§ Solution: Use 𝐿1 regularization (we will soon see why)



Shortcomings of Closed-Form Solution

• Computing *𝛽 𝑍 = 𝑋6𝑋 :2𝑋6𝑌 can be challenging

• Computing (𝑿6𝑿):𝟏 is 𝑶 𝒅𝟑
§ 𝑑 = 10= features à 𝑂(1021)
§ Even storing 𝑋6𝑋 requires a lot of memory

• Numerical accuracy issues due to “ill-conditioning”
§𝑋6𝑋 is “barely” invertible
§ Then, 𝑋6𝑋 :2 has large variance along some dimension
§ Regularization helps (more on this later)





Iterative Optimization Algorithms

• Recall that linear regression minimizes the loss

𝐿(𝛽; 𝑍) =
1
𝑛
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• Iteratively optimize 𝛽
§ Initialize 𝛽2 ← Init …
§ For some number of iterations 𝑇, update 𝛽% ← Step(… )
§ Return 𝛽>



Iterative Optimization Algorithms

• Global search: Try random values of 𝛽 and choose the best
§ I.e., 𝛽% independent of 𝛽%:2
§ Very unstructured, can take a long time (especially in high 

dimension 𝑑)!

• Local search: Start from some initial 𝛽 and make local changes
§ I.e., 𝛽% is computed based on 𝛽%:2
§ What is a “local change”, and how do we find good one?



Strategy 2: Gradient Descent

• Gradient descent: Update 𝛽 based on gradient ∇$𝐿 𝛽; 𝑍 of 𝐿 𝛽; 𝑍 :

𝛽%?2 ← 𝛽% − 𝛼 ⋅ ∇$𝐿 𝛽%; 𝑍

• Intuition: The gradient is the direction along which 𝐿 𝛽; 𝑍 changes 
most quickly as a function of 𝛽

• 𝛼 ∈ ℝ is a hyperparameter called the learning rate
§ More on this later



Strategy 2: Gradient Descent

• Choose initial value for 𝛽
• Until we reach a minimum:

§ Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

𝐿 𝛽; 𝑍

𝛽2 𝛽1 Figure by Andrew Ng
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Strategy 2: Gradient Descent

• Choose initial value for 𝛽
• Until we reach a minimum:

§ Choose a new value for 𝛽 to reduce 𝐿 𝛽; 𝑍

Figure by Andrew Ng

Linear regression loss is 
convex, so no local minima
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Strategy 2: Gradient Descent

• Initialize 𝛽2 = 0
• Repeat until convergence:

𝛽%?2 ← 𝛽% − 𝛼 ⋅ ∇$𝐿 𝛽%; 𝑍

• For linear regression, know the 
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽(
𝛽()!

Indexing iteration now, rather than parameter vector element

For in-place updates 𝛽 ← 𝛽 − 𝛼 ⋅ ∇*𝐿 𝛽; 𝑍 , compute 
all components of ∇*𝐿 𝛽; 𝑍 before modifying 𝛽
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Strategy 2: Gradient Descent

• Initialize 𝛽2 = 0
• Repeat until convergence:

𝛽%?2 ← 𝛽% − 𝛼 ⋅ ∇$𝐿 𝛽%; 𝑍

• For linear regression, know the 
gradient from strategy 1

𝐿 𝛽; 𝑍
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Strategy 2: Gradient Descent

• Initialize 𝛽2 = 0
• Repeat until 𝛽% − 𝛽%?2 1 ≤ 𝜖:

𝛽%?2 ← 𝛽% − 𝛼 ⋅ ∇$𝐿 𝛽%; 𝑍

• For linear regression, know the 
gradient from strategy 1

𝐿 𝛽; 𝑍

𝛽

𝛽(
𝛽()!

Hyperparameter defining 
convergence



Aside: Gradient As Sum of Sample-Wise Gradients
(Equivalent to our earlier matrix expression of gradient)
• By linearity of the gradient, we have

∇!𝐿 𝛽; 𝑍 ='
"#$

%

∇! 𝑦" − 𝛽&𝑥" ' ='
"#$

%

2 𝑦" − 𝛽&𝑥" 𝑥"

• The gradient term induced by a single training data sample is:

∇! 𝑦" − 𝛽&𝑥" ' = 2 𝑦" − 𝛽&𝑥" 𝑥"

• I.e., the current error 𝑦" − 𝛽&𝑥" times the feature vector 𝑥"

“Large error samples induce large changes to 𝛽, proportional to their 
feature values.” 



Strategy 2: Gradient Descent

ℎ(𝑥) = −900 – 0.1 𝑥

Slide by Andrew Ng
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Strategy 2: Gradient Descent

Slide by Andrew Ng

𝑓! 𝑥 𝐿 𝛽; 𝑍

Minimizer of loss function



Choice of Learning Rate 𝜶

𝐿 𝛽; 𝑍

Problem: 𝛼 too large
• 𝐿 𝛽; 𝑍 increases!

𝐿 𝛽; 𝑍

Problem: 𝛼 too small
• 𝐿 𝛽; 𝑍 decreases slowly

Plot 𝐿 𝛽"; 𝑍#$%&' vs. 𝑡 to diagnose these problems



Choice of Learning Rate 𝜶

• 𝛼 is a hyperparameter for gradient descent that we need to choose
§ Can set just based on training data

• Rule of thumb
§𝜶 too small: Loss decreases slowly
§𝜶 too large: Loss increases!

• Try rates 𝛼 ∈ 1.0, 0.1, 0.01, … (can tune further once one works)



Comparison of Strategies

• Closed-form solution
§ No hyperparameters
§ Slow if 𝑛 or 𝑑 are large

• Gradient descent
§ Need to tune 𝛼
§ Scales to large 𝑛 and 𝑑

• For linear regression, there are better optimization algorithms, but gradient 
descent is very general
§ Accelerated gradient descent is an important tweak that improves 

performance in practice (and in theory)





Loss Minimization View of ML

• Two design decisions
§ Model family: What are the candidate models 𝑓? (E.g., linear functions)
§ Loss function: How to define “approximating”? (E.g., MSE loss)



Loss Minimization View of ML

• Three design decisions
§ Model family: What are the candidate models 𝑓? (E.g., linear functions)
§ Loss function: How to define “approximating”? (E.g., MSE loss)
§ Optimizer: How do we minimize the loss? (E.g., gradient descent)


