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Administrivia
* HW2 in progress!
e Recitation recording on Canvas, for those of you that couldn’t attend.

* Quiz duein a few days.

* Helpful Extra Readings (All Optional):
= Hastie and Tibshirani Ch 3: Linear Regression. https://hastie.su.domains/Papers/ESLI|.pdf

» Hands-On ML Linear Regression Worksheet: https://github.com/ageron/handson-
ml/blob/master/04 training_linear _models.ipynb

D2l.ai Interactive textbook on ML (Use in Pytorch mode): https://d2l.ai/index.html
Scikit-learn “algorithm cheatsheet”. A flowchart for “which algorithm to use”:
= https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Recht and Hardt Chapter 1. An introduction to the history of machine learning:
https://mlstory.org/introduction.html

= Leo Breiman, “Statistical Modeling: The Two Cultures”
= http://www2.math.uu.se/~thulin/mm/breiman.pdf



https://hastie.su.domains/Papers/ESLII.pdf
https://github.com/ageron/handson-ml/blob/master/04_training_linear_models.ipynb
https://d2l.ai/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://mlstory.org/introduction.html
http://www2.math.uu.se/~thulin/mm/breiman.pdf

Last class

* Cross-Validation

e Optimizing the unregularized linear regression loss (Train MSE)
" Closed-form solution
" [terative optimization through gradient descent

" Q: How do their computational complexities compare?
" Note: Multiplying AxB matrix with BxC matrix = O(ABC)
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Relative computational complexities

e Optimizing the unregularized linear regression loss (Train MSE)
" Closed-form solution
L(Z)=X'X)"1X"Y
O(D?N)
o(D3) O(DZN + D3)

" [terative optimization through gradient descent:

Biy1 < br—a- VﬁL(ﬁtiZ)
5 Suppose N is very large.
_ _f T . Can we get a way from
V[;L(ﬁt, 7) = n X (KE ") linear dependence on N
O(ND) in the gradient update?
[
O(ND) For two matrices of
Repeating T times, O(NDT) dimensions AxB and BxC,
multiplication is O(ABC)

\ J




Recall: MSE gradient as mean of sample-wise gradients

(Equivalent to our earlier matrix expression of gradient)
* By linearity of the gradignt, we have:

1 n
VeL(B;7) = Z Ve(yi =B %)% = Ez 2(v; = B x)x;
i=1 =1
|

)

I
Gradient w.r.t a single sample O(D)

What if we just used the single-sample gradient of a randomly drawn sample
as a noisy approximation to the mean of gradients?



“Stochastic” Gradient Descent

Batch Gradient Descent Stochastic Gradient Descent
Initialize [
Repeat T times till covergence {

Initialize
Randomly shuffle dataset(T, s typically 1 — 10xT)
Repeat T’ times until covergence {

N
Bj < Bj — sz 2(v; — B x)x; vd
i=1

Fori=1...N, do
} Bj < Bj—a2(v; = fTx)x; vd
}
We are descending the original At each step, we are descending a
loss function L(f; 7). different loss function specific to the
chosen sample L(S; Z; = {(x;, v:)}).
O(NDT) O(DT’)

We will look later at methods to speed up convergence so that T (or T')
can be small above.



Noisy Gradients in Stochastic Gradient Descent

Full Dataset / “Batch” GD
Walking down a hill steadily I

0.3
0.2
0.17
=~ O
-0.17
-0.27
-0.37
-0.47
-0.5

. | 1 Il 1 _0.5 | 1
-1000  -500 0 500 1000 1500 2000 -1000  -500 0 500
90 90

Stochastic GD
AN Walking down a slightly
turbed version of the hill
1 step

1000 1500 2000

e Learning rate a is typically held constant
* One heuristic is to decrease a over time to force 0 to converge: a, =

 We’ll encounter more sophisticated strategies soon!

constantl

iterationNumber t +constant?2

Based on slide by Andrew Ng 7






Optimized Regularized Linear Regression

* For optimizing L2-regularized linear regression, the same two methods hold
as before!

= Closed form
= Gradient descent



L, Regularized Linear Regression

* Recall that linear regression with L, regularization minimizes the loss

n d
1
L(3;7Z) = EZ(yi — [ x)* + /lz ih
i=1 j=1



L, Regularized Linear Regression

* Recall that linear regression with L, regularization minimizes the loss
1% ' 1
L5 2) == ) (= BTa)? +2 ) =1V = XBI3 + Al
i=1 j=1

e Gradient is

V.L(B;7) = 2XTY+2XTX + 22
15 IB' — n n :8 IB




Strategy 1: Closed-Form Solution

e Gradient is (from last slide)

VoL(B;7) = 2XTY+2XTX + 27
15 IB' — n n :8 IB

* Setting VBL(B;Z) =0,wehave X "X +nADf =X"Y

e Always invertible if A > 0, so we have

B(Z)=X"X+nAD) XY



Strategy 2: Gradient Descent

e Gradient is (from last slide)

VoL(B;7) = 2XTY+2XTX + 27
15 :8' — n n :8 IB

e Same algorithm as vanilla linear regression (a.k.a. OLS)

* Intuition: The extra term Af in the gradient is often interpreted as a
“weight decay” --- at every update, it decays [ = [ (1 — 2al)






Feature Preprocessing And
Selection



Invariance To The Scales of Input Features

* Consider performing linear regression with a dataset that has height
measurements as one of the input dimensions.

" Does it matter what units height should be recorded in?
" E.g. Inches? Centimers?

" Those two measurements are simply scaled versions of each other, and
contain exactly the same information.

* We would like our ML algorithms to not get affected in any substantive /
meaningful way by such simple scalings: “Scale Invariance”



Scale Invariance in Unregularized Linear Regression

* The unregularized linear regression problem is:
in L(S,Z =l . — BTx)?
argmin (B,2)=—) i=[ %)
i=1

Does linearly scaling some dimensions in the data affect the solution?
* Suppose one data dimension Xx; is scaled by some factor k

* For an equivalent [ that produces identical predictions 5’ x, we need only
1
scale 3; by L and leave all other parameters (.. ; the same as before.

* Crucially, the loss value for this [/ would also be the same, since it depends
on x and [ exclusively through the predictions 5’ x

* The new argmin would thus select equivalent [ that produces identical
predictions S x. Unregularized linear regression is scale invariant!



Scale Invariance in Regularized Linear Regression

regularized

1 /1('322 4o 4 ,3]'2 4o lgé)

 But this no longer leaves the loss unaffected! The regularizer term depends
directly on the parameter scale £.

" This means that we cannot guarantee that the argmin above will select
an equivalent solution.



Solution: Feature Standardization

* Rescale all features to zero mean and unit variance

Xi e xi,j—lifmin train _ 11 i o glrain _ 1¢N (x_ __ train)?
L] gtrain cu] T N&=1AL) J N &=L ‘u]

]
" Note: When using intercept term, do not rescale x; = 1

* Can be sensitive to outlier data samples (ways to fix this later in course)

* Must use same transformation during training and for prediction

train

" Compute the standardization means y; and standard deviation
train
O'.

[ on training data and use the same values on test data too:
x_te_st _ train
test L] 'uJ
L] train
9j

X



Preprocessing Beyond Feature Standardization

e Standardization is one example of a “dataset preprocessing” step.
* Another is the implementation of the “feature map”: x = ¢(x)

* Let us look at some more in the context of a specific problem.



Housing Dataset

* Sales of residential property in Ames, lowa from 2006 to 2010
= Examples: 1,022
= Features: 79 total (real-valued + categorical), some are missing!
= Label: Sales price

Common way to present data. Rows=samples, columns=features, last column=label.

MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape "’ MoSold YrSold SaleType SaleCondition SalePrice
20 RL 80.0 10400 Pave  NaN Reg 5 2008 WD Normal 174000

180 RM 35.0 3675 Pave NaN Reg 5 2006 WD Normal 145000

60 FV 72.0 8640 Pave NaN Reg 6 2010 Con Normal 215200

20 RL 84.0 11670 Pave NaN IR1 3 2007 WD Normal 320000

60 RL 43.0 10667 Pave NaN IR2 4 2009 ConLw Normal 212000

80 RL 82.0 9020 Pave NaN Reg 6 2008 WD Normal 168500

60 RL 70.0 11218 Pave NaN Reg 5 2010 WD Normal 189000

80 RL 85.0 13825 Pave NaN Reg ™~ 12 2008 WD Normal 140000

60 RL NaN 13031 Pave NaN IR2 7 7 2006 WD Normal 187500

Data from: De Cock. Journal of Statistics Education 19(3), 2011




Housing Dataset

* dataframe.describe()

count

mean
std
min
25%
50%
75%

max

Id MSSubClass LotFrontage

1022.000000
732.338552
425.860402

1.000000
367.500000
735.500000

1100.500000

1460.000000

1022.000000
57.059687
42.669715
20.000000
20.000000
50.000000
70.000000

190.000000

832.000000
70.375000
25.533607
21.000000
59.000000
70.000000
80.000000

313.000000

LotArea
1022.000000
10745.437378
11329.753423
1300.000000
7564.250000
9600.000000
11692.500000

215245.000000

1022.000000
6.128180
1.371391
1.000000
5.000000
6.000000
7.000000

10.000000

OverallQual OverallCond

1022.000000
5.564579
1.110557
1.000000
5.000000
5.000000
6.000000
9.000000

YearBuilt YearRemodAdd

1022.000000
1970.995108

30.748816
1872.000000
1953.000000
1972.000000
2001.000000
2010.000000

1022.000000
1984.757339

20.747109
1950.000000
1966.000000
1994.000000
2004.000000
2010.000000

MasVnrArea
1019.000000
105.261040
172.707705
0.000000
0.000000
0.000000
170.000000
1378.000000

SalePrice
1022.000000
181312.692759
77617.461005
34900.000000
130000.000000
165000.000000
215000.000000
745000.000000



Features Most Correlated with Label

To control the size of the hypothesis class, could select features most
correlated with label, such as these:
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Feature Correlation Matrix Visuali
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Could get rid of features that are heavily correlated with each other, to reduce
redundancy.



Handling Missing Values

* If rarely missing, could discard such
samples during training.

* If very common for some feature to be
missing, omit the feature from the model
entirely.

e Other possible ways to handle missing
values

=" Numerical: Impute with mean
= Categorical: Impute with mode

Feature % Missing Values
PoolQC 99.5108
MiscFeature 96.0861
Alley 93.5421
Fence 80.2348
FireplaceQu 47.6517
LotFrontage 18.5910
GarageCond 05.2838
GarageType 05.2838
GarageYrBlt 05.2838
GarageFinish 05.2838
GarageQual 05.2838
BsmtFinTypel 02.5440



Recall: Other Preprocessing Steps We Have Seen

Converting all data to be numeric type:

e Categorical: Featurize using “one-hot encoding” vectors e.g. cat =[1, 0], dog

=[0, 1]

e Ordinal

= Convert to integer (e.g., low, medium, high =2 1, 2, 3)

" Does not fully capture relationships (try different featurizations!)
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Automatic Feature Set Selection
with L1 Regularization



Lg-Regularization — L Regularization
1
LB 2) = ) (i = BT + 211,

e Sparsity: Can we minimize ||f]|, = ‘{] | B; # O} , the number of non-zero
components? (This is called Ly regularization)
= Automatic feature selection!

" [Improves interpretability.
* Challenge: || ]|, is not differentiable, making it hard to optimize

* Solution: L Regularization
= We can instead use an L, norm ||5||; as the regularizer!
= Still harder to optimize than L, norm, but at least it is convex



Intuition on L4 Regularization

,32 Minimizes
original loss
(orif A = 0)

Minimizer of full loss at
corner = sparse ([, = 0)!

Minimizes f1
regularization term
(orif A — o)

" d
1
L(B;Z) = EZ(yi —Bx;)? + AZ"BJ‘
i=1 J=1



Intuition on L4 Regularization

Recall: L2 regularization induces a gaussian prior on the values of £.

L1 regularization similarly induces a “Laplacian” prior on the values of £.
- More parameters drawn to O.

- But also more parameters with large values, compared to L2.

--- L2 regularization

04

___ L1 regularization

density
0.3

0.2

0.1




L, Regularization for Feature Selection

* Step 1: Construct a lot of features and add to feature map

* Step 2: Use L, regularized regression to “select” subset of features
" |.e., coefficient §; # 0 = feature j is selected)

* Optional: Remove unselected features from the feature map and run
vanilla linear regression (a.k.a. ordinary least squares)



Optimizing L1 Regularized Linear Regression?

e Gradient descent still works!

 Specialized algorithms work better in practice
» Simple one: Gradient descent + soft thresholding
= Basically, if |5, ;| < 4, just set it to zero
" Good theoretical properties



Lecture 5: Logistic Regression (Part 1)
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Supervised Learning

300

Data Z = {(x;, y)}j=1  B(Z) = argming L(B;Z) Model /7
L encodes y; = fz(x;)




Regression

300

Data Z = {(x;, y)}i=1  B(Z) = argming L(B; 2) Model /57

\ L encodes y; =~ fz(x;)

Label is a real value y; € R




Classification

3-0+0

Data Z = {(x;, y)}i=1  B(Z) = argming L(B; 2) Model /57

\ L encodes y; =~ fz(x;)

Label is a discrete value y; € Y = {1, ..., k}




(Binary) Classification

e Input: Dataset Z = {(x, V1), (x5, v>), ..., (%, Vi) }
* Output: Model y; = f5(x;)

A
N \. o
. N 0 0o
Q
gl @ >
3 -
= N - P
® -
o .
> S z
Image: https://eyecancer.com/uncategorized/choroidal-
X1 (tu mor Size) metastasis-test/

Example: Malignant vs. Benign Ocular Tumor



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models [ ? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
* Optimizer: How do we optimize the loss? (E.g., gradient descent)

* How do we adapt to classification?



Linear Functions for (Binary) Classification

* Input: Dataset Z = {(xy, y1), (x5, v2), .., (06, v }

* Classification:

Labels y; € {0, 1}

Predict y; = 1(f"x; = 0)

1(C) equals 1 if C is true and 0 if C is false
How to learn 5? Need a loss function!




Loss Functions for Linear Classifiers

* (In)accuracy:
1 n
L(B;7) = E; 1 (Yi * fﬁ(xi))

* Computationally intractable

e Often, but not always the “true”
loss (e.g., imbalanced data)




Loss Functions for Linear Classifiers

* Distance:
1 n
L(; 7) = ;Z dist(xs, /) - 1(f () # 1)

* If L(;7) = 0, then 100% accuracy
* Variant of this loss results in SVM
* We consider a more general strategy

L(B;7)=1.2



Maximum Likelihood Estimation

A probabilistic viewpoint on learning (from statistics)

* Given x;, suppose V; is drawn i.i.d. from distribution pyx(Y = v | x; ()

with parameters [ (or density, if y; is continuous): \
Vi~ Ple( | x5 B) Y is random variable,
not vector

* Typically write ps (Y =y | x) orjust pp(y [ x)
* Called a model (and {pﬁ}ﬁ is the model family)
* Will show up convert pj to f5 later



Maximum Likelihood Estimation

 Compare to loss function minimization:
* Before: y; = fz(x;)
* Now:  y; ~pg(-lx;pB)

* Intuition the difference:
° fp(x;) just provides a point that y; should be close to

: Pﬁ( ‘| x;; B ) provides a score for each possible y;

 Maximum likelihood estimation combines the loss function and
model family design decisions



Maximum Likelihood Estimation

* Likelihood: Given model pj, the probability of dataset Z (replaces
loss function in loss minimization view):

n
L5 ) = pp (7 1) =] | pp 1)
i=1
* Negative Log-likelihood (NLL): Computationally better behaved form:

0(5;7) = —log L(; 7) = = ) logps(v; 1 %)
=1



Intuition on the Likelihood

6 6
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(Low NLL) (High NLL)



Example: Linear Regression

* Assume that the conditional density is

- 1 _(ﬁTXi—yi)z
pﬁ(yilxi):N(yL’;,B Xi’l):\/T_T[.e 2

* N(y; u, 0%) is the density of the normal (a.k.a. Gaussian) distribution
with mean u and variance ¢



Example: Linear Regression

* Then, the likelihood is

L(5; Z)—l_[pﬁ(mx)—]_[ e

e The NLL is

n l 2 n
L(p;2) = —210829[3(%' | x;) = z ng( ) +Z(,8Txi — Vi)?
i=1

\ J\l_ J
g N~

constant MSE!




Example: Linear Regression

* Loss minimization for maximum likelihood estimation:

[(Z) = arg min£(S; Z)
B

* Note: Called maximum likelihood estimation since maximizing the
likelihood equivalent to minimizing the NLL



Example: Linear Regression

* What about the model family?

fp(x) = argmaxpp(y | x)

y
B A
= arg;nax\/T_n- e 2
— IBTx

* Recovers linear functions!



Loss Minimization View of ML

* Three design decisions
* Model family: What are the candidate models [ ? (E.g., linear functions)
* Loss function: How to define “approximating”? (E.g., MSE loss)
* Optimizer: How do we optimize the loss? (E.g., gradient descent)



Maximum Likelihood View of ML

* Two design decisions
* Likelihood: Probability ps(y | x ) of data (x, y) given parameters [
* Optimizer: How do we optimize the NLL? (E.g., gradient descent)

e Corresponding Loss Minimization View:
* Model family: Most likely label /3 (x) = arg max, pg(y | x)
* Loss function: Negative log likelihood (NLL) £(f5; Z) = — i1 logps(y; | x;)

* Very powerful framework for designing cutting edge ML algorithms
* Write down the “right” likelihood, form tractable approximation if needed
* Especially useful for thinking about non-i.i.d. data



