
Lecture 5: Linear Regression (Part 4)
[& Logistic Regression (Part 1)]

CIS 4190/5190

Spring 2023

Administrivia
• HW2 in progress!
• Recitation recording on Canvas, for those of you that couldn’t attend.
• Quiz due in a few days.
• Helpful Extra Readings (All Optional):

§ Hastie and Tibshirani Ch 3: Linear Regression. https://hastie.su.domains/Papers/ESLII.pdf
§ Hands-On ML Linear Regression Worksheet: https://github.com/ageron/handson-

ml/blob/master/04_training_linear_models.ipynb
§ D2l.ai Interactive textbook on ML (Use in Pytorch mode): https://d2l.ai/index.html
§ Scikit-learn “algorithm cheatsheet”. A flowchart for “which algorithm to use”:

§ https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
§ Recht and Hardt Chapter 1. An introduction to the history of machine learning:

https://mlstory.org/introduction.html
§ Leo Breiman, “Statistical Modeling: The Two Cultures”

§ http://www2.math.uu.se/~thulin/mm/breiman.pdf

https://hastie.su.domains/Papers/ESLII.pdf
https://github.com/ageron/handson-ml/blob/master/04_training_linear_models.ipynb
https://d2l.ai/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://mlstory.org/introduction.html
http://www2.math.uu.se/~thulin/mm/breiman.pdf

Last class

• Cross-Validation

• Optimizing the unregularized linear regression loss (Train MSE)
§ Closed-form solution
§ Iterative optimization through gradient descent

§ Q: How do their computational complexities compare?
§ Note: Multiplying AxB matrix with BxC matrix = O(ABC)

Relative computational complexities

• Optimizing the unregularized linear regression loss (Train MSE)
§ Closed-form solution

!" # = %!% "#%!&

§ Iterative optimization through gradient descent:

"$%# ← "$ −) ⋅ ∇&, "$; #

∇&, "$; # =
2

/
%!(%" − &)

O(ND)
O(ND)

Repeating 2 times, O(NDT)

O(3'4 + 3()

For two matrices of
dimensions A×B and B×C,
multiplication is O(ABC)

O(3'4)
O(3()

Suppose ! is very large.
Can we get a way from
linear dependence on !
in the gradient update?

Recall: MSE gradient as mean of sample-wise gradients

(Equivalent to our earlier matrix expression of gradient)

• By linearity of the gradient, we have:

∇&, "; # =6
)*#

+
∇& 7) − "!8) ' =

1

/
6
)*#

+
2 7) − "!8) 8)

What if we just used the single-sample gradient of a randomly drawn sample
as a noisy approximation to the mean of gradients?

Gradient w.r.t a single sample O(D)

6

“Stochastic” Gradient Descent
Batch Gradient Descent

Initialize !
Repeat T times till covergence {

}

Stochastic Gradient Descent
Initialize "
Randomly shuffle dataset
Repeat T’ times until covergence {

For i = 1...N, do

}

(T’ is typically 1 – 10xT)

"! ← "! − %&
"#$

%
2 (" − "&)")" ∀+

"! ← "! − %2 (" − "&)")" ∀+

O(DT’)O(NDT)

We will look later at methods to speed up convergence so that , (or ,′)
can be small above.

We are descending the original
loss function ,(.; 0).

At each step, we are descending a
different loss function specific to the
chosen sample ,(.; 0! = { 4!, 6! }).

Noisy Gradients in Stochastic Gradient Descent

7

• Learning rate α is typically held constant
• One heuristic is to decrease α over time to force . to converge: '! = "#$%!&$!'

(!)*&!(#$+,-.)* ! /"#$%!&$!0
• We’ll encounter more sophisticated strategies soon!

Based on slide by Andrew Ng

Full Dataset / “Batch” GD Stochastic GD
Walking down a hill steadily Walking down a slightly

perturbed version of the hill
at each step

Optimized Regularized Linear Regression

• For optimizing L2-regularized linear regression, the same two methods hold
as before!
§ Closed form
§ Gradient descent

!! Regularized Linear Regression

• Recall that linear regression with ,' regularization minimizes the loss

, "; # =
1

/
6
)*#

+
7) − "!8) ' + :6

8*#

9
"8
' =

1

/
& − %" '' + : " ''

!! Regularized Linear Regression

• Recall that linear regression with ,' regularization minimizes the loss

, "; # =
1

/
6
)*#

+
7) − "!8) ' + :6

8*#

9
"8
' =

1

/
& − %" '' + : " ''

• Gradient is

∇&, "; # = −
2

/
%!& +

2

/
%!%" + 2:"

Strategy 1: Closed-Form Solution

• Gradient is (from last slide)

∇&, "; # = −
2

/
%!& +

2

/
%!%" + 2:"

• Setting ∇&, !"; # = 0, we have %!% + /:< !" = %!&

• Always invertible if : > 0, so we have

!" # = %!% + /:< "#%!&

Strategy 2: Gradient Descent

• Gradient is (from last slide)

∇&, "; # = −
2

/
%!& +

2

/
%!%" + 2:"

• Same algorithm as vanilla linear regression (a.k.a. OLS)

• Intuition: The extra term :" in the gradient is often interpreted as a
“weight decay” --- at every update, it decays " → "(1 − 2):)

Feature Preprocessing And
Selection

Invariance To The Scales of Input Features

• Consider performing linear regression with a dataset that has height
measurements as one of the input dimensions.
§ Does it matter what units height should be recorded in?

§ E.g. Inches? Centimers?
§ Those two measurements are simply scaled versions of each other, and

contain exactly the same information.

• We would like our ML algorithms to not get affected in any substantive /
meaningful way by such simple scalings: “Scale Invariance”

Scale Invariance in Unregularized Linear Regression
• The unregularized linear regression problem is:

argmin
&

, ", # =
1

/
6
)*#

7) − ":8 '

Does linearly scaling some dimensions in the data affect the solution?
• Suppose one data dimension 88 is scaled by some factor F

• For an equivalent " that produces identical predictions ":8, we need only
scale "8 by

#
;, and leave all other parameters "<8 the same as before.

• Crucially, the loss value for this " would also be the same, since it depends
on 8 and " exclusively through the predictions ":8
• The new argmin would thus select equivalent " that produces identical

predictions ":8. Unregularized linear regression is scale invariant!

Scale Invariance in Regularized Linear Regression
• The regularized linear regression problem is:

argmin
&

1

/
6
)*#

+
7) − "!8) ' + : "'

' +⋯+ "8
' +⋯+ "9

'

How would linearly scaling some dimensions in the data affect the solution?
• Suppose one data dimension is scaled by some factor F

• For an equivalent " that produces identical predictions ":8, we need only
scale "8 by

#
;, and leave all other parameters "<8 the same as before.

• But this no longer leaves the loss unaffected! The regularizer term depends
directly on the parameter scale ".
§ This means that we cannot guarantee that the argmin above will select

an equivalent solution.

Solution: Feature Standardization

• Rescale all features to zero mean and unit variance

)!,# ←
$!,#%&#$%&!'

'#$%&!'
/#()*!+ = ,

-∑!.,
-)!,# 2#()*!+ = ,

-∑!.,
-)!,# − /#()*!+

/

§ Note: When using intercept term, do not rescale 8# = 1
§ Can be sensitive to outlier data samples (ways to fix this later in course)

• Must use same transformation during training and for prediction
§ Compute the standardization means H8

$=>)+ and standard deviation
I8
$=>)+ on training data and use the same values on test data too:

8),8
$?@$ ←

8),8
$?@$ − H8

$=>)+

I8
$=>)+

Preprocessing Beyond Feature Standardization

• Standardization is one example of a “dataset preprocessing” step.

• Another is the implementation of the “feature map”: 8 → J(8)

• Let us look at some more in the context of a specific problem.

Housing Dataset
• Sales of residential property in Ames, Iowa from 2006 to 2010

§ Examples: 1,022
§ Features: 79 total (real-valued + categorical), some are missing!
§ Label: Sales price

...

...

...

...

...

...

...

...

...

...

Data from: De Cock. Journal of Statistics Education 19(3), 2011

Common way to present data. Rows=samples, columns=features, last column=label.

Housing Dataset

• dataframe.describe()

...

Features Most Correlated with Label
To control the size of the hypothesis class, could select features most
correlated with label, such as these:

Feature Correlation Matrix Visualization

Could get rid of features that are heavily correlated with each other, to reduce
redundancy.

Handling Missing Values

• If rarely missing, could discard such
samples during training.

• If very common for some feature to be
missing, omit the feature from the model
entirely.

• Other possible ways to handle missing
values
§ Numerical: Impute with mean
§ Categorical: Impute with mode

Feature % Missing Values
PoolQC 99.5108
MiscFeature 96.0861
Alley 93.5421
Fence 80.2348
FireplaceQu 47.6517
LotFrontage 18.5910
GarageCond 05.2838
GarageType 05.2838
GarageYrBlt 05.2838
GarageFinish 05.2838
GarageQual 05.2838
BsmtFinType1 02.5440
...

Recall: Other Preprocessing Steps We Have Seen

Converting all data to be numeric type:
• Categorical: Featurize using “one-hot encoding” vectors e.g. cat =[1, 0], dog

=[0, 1]

• Ordinal
§ Convert to integer (e.g., low, medium, high à 1, 2, 3)
§ Does not fully capture relationships (try different featurizations!)

Automatic Feature Set Selection
with L1 Regularization

!" Regularization

• Sparsity: Can we minimize ! A = # !8 ≠ 0 , the number of non-zero
components? (This is called &B regularization)
§ Automatic feature selection!
§ Improves interpretability.

• Challenge: ! A is not differentiable, making it hard to optimize

• Solution: &C Regularization
§ We can instead use an '# norm ! # as the regularizer!
§ Still harder to optimize than '' norm, but at least it is convex

' !;) = 1
+,)*#

+
-) − !!/) ' + 1||!||A

!" Regularization → !# Regularization

Intuition on !# Regularization

' !;) = 1
+,
)*#

+
-) − !!/) ' + 1,

8*#

9
!8

!'

!#

Minimizes
original loss
(or if 3 = 0)

Minimizes
regularization term

(or if 3 → ∞)

Minimizer of full loss at
corner à sparse (", = 0)!

Intuition on !# Regularization
Recall: L2 regularization induces a gaussian prior on the values of !.

L1 regularization similarly induces a “Laplacian” prior on the values of !.

- More parameters drawn to 0.

- But also more parameters with large values, compared to L2.

--- L2 regularization

__ L1 regularization

!# Regularization for Feature Selection

• Step 1: Construct a lot of features and add to feature map

• Step 2: Use '# regularized regression to “select” subset of features
§ I.e., coefficient !8 ≠ 0à feature # is selected)

• Optional: Remove unselected features from the feature map and run
vanilla linear regression (a.k.a. ordinary least squares)

Optimizing !# Regularized Linear Regression?

• Gradient descent still works!

• Specialized algorithms work better in practice
§ Simple one: Gradient descent + soft thresholding
§ Basically, if !$,8 ≤ 1, just set it to zero
§ Good theoretical properties

Lecture 5: Logistic Regression (Part 1)

CIS 4190/5190
Spring 2023

Supervised Learning

Data ! = #!, %! !"#
$ &' ! = arg min% .('; !)

. encodes %! ≈ 3% #!
Model 3&% '

Regression

Data ! = #!, %! !"#
$ &' ! = arg min% .('; !)

. encodes %! ≈ 3% #!
Model 3&% '

Label is a real value %! ∈ ℝ

Classification

Data ! = #!, %! !"#
$ &' ! = arg min% .('; !)

. encodes %! ≈ 3% #!
Model 3&% '

Label is a discrete value %! ∈ 6 = 1,… , 9

(Binary) Classification

• Input: Dataset ! = { $!, &! , $", &" , … , }$# , &#
• Output: Model &$ ≈ *% $$

Image: https://eyecancer.com/uncategorized/choroidal-
metastasis-test/&! (tumor size)

& "
(a

ge
)

Example: Malignant vs. Benign Ocular Tumor

Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 3? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)

• How do we adapt to classification?

Linear Functions for (Binary) Classification

• Input: Dataset ! = { $!, &! , $", &" , … , }$# , &#

• Classification:
• Labels %! ∈ 0, 1
• Predict %! ≈ 1 '(#! ≥ 0
• 1 < equals 1 if < is true and 0 if < is false
• How to learn '? Need a loss function!

Loss Functions for Linear Classifiers

• (In)accuracy:

+ ,; ! =
1
/0
$'!

#
1 &$ ≠ *% $$

• Computationally intractable

• Often, but not always the “true”
loss (e.g., imbalanced data)

+ ,; ! =
6
50

Loss Functions for Linear Classifiers

• Distance:

. '; ! =
1
=>!"#

$
dist(#!, 3%) ⋅ 1 3% #! ≠ %!

• If + ,; ! = 0, then 100% accuracy

• Variant of this loss results in SVM

• We consider a more general strategy

+ ,; ! = 1.2

Maximum Likelihood Estimation

• A probabilistic viewpoint on learning (from statistics)

• Given $$, suppose &$ is drawn i.i.d. from distribution 7(∣* 8 = & $; ,
with parameters , (or density, if &$ is continuous):

&$ ∼ 7(∣* ⋅ $$; ,

• Typically write 7% 8 = & $ or just 7% & $
• Called a model (and D% % is the model family)

• Will show up convert D% to 3% later

E is random variable,
not vector

Maximum Likelihood Estimation

• Compare to loss function minimization:
• Before: %! ≈ 3% #!
• Now: %! ∼ D% ⋅ #!; '

• Intuition the difference:
• 3% #! just provides a point that %! should be close to
• D% ⋅ #!; ' provides a score for each possible %!

• Maximum likelihood estimation combines the loss function and
model family design decisions

Maximum Likelihood Estimation

• Likelihood: Given model 7%, the probability of dataset ! (replaces
loss function in loss minimization view):

+ ,; ! = 7% 8 ; =<
$'!

#
7% &$ $$

• Negative Log-likelihood (NLL): Computationally better behaved form:

ℓ ,; ! = − log + ,; ! = −0
$'!

#
log 7% &$ $$

Intuition on the Likelihood

0

1

2

3

4

5

6

0 1 2 3 4

x2

x1

0

1

2

3

4

5

6

0 1 2 3 4

x2

x1

High likelihood
(Low NLL)

Low likelihood
(High NLL)

Example: Linear Regression

• Assume that the conditional density is

7% &$ $$ = B &$; ,+$$, 1 =
1
2C

⋅ D,
%!-",."

#

"

• B &; E, F" is the density of the normal (a.k.a. Gaussian) distribution
with mean E and variance F"

Example: Linear Regression

• Then, the likelihood is

+ ,; ! =<
$'!

#
7% &$ $$ =<

$'!

#
1
2C

⋅ D,
%!-",."

#

"

• The NLL is

ℓ ,; ! = −0
$'!

#
log 7% &$ $$ =

/ log 2C
2 +0

$'!

#
,+$$ − &$ "

constant MSE!

Example: Linear Regression

• Loss minimization for maximum likelihood estimation:

H, ! = arg min
%

ℓ ,; !

• Note: Called maximum likelihood estimation since maximizing the
likelihood equivalent to minimizing the NLL

Example: Linear Regression

• What about the model family?

*% $ = arg max
.

7% & $

*% $ = arg max
.

!
"/ ⋅ D

, $!%&' #
#

#

*% $ = ,+$

• Recovers linear functions!

Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 3? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)

Maximum Likelihood View of ML

• Two design decisions
• Likelihood: Probability D% % # of data #, % given parameters '
• Optimizer: How do we optimize the NLL? (E.g., gradient descent)

• Corresponding Loss Minimization View:
• Model family: Most likely label 3% # = arg max) D% % #
• Loss function: Negative log likelihood (NLL) ℓ '; ! = −∑!"#$ log D% %! #!

• Very powerful framework for designing cutting edge ML algorithms
• Write down the “right” likelihood, form tractable approximation if needed
• Especially useful for thinking about non-i.i.d. data

