Upcoming Deadlines

- Quiz 1 due tomorrow
- HW 2 due in one week

Announcements

Bug bounty

- Bonus points for students who find "bugs" in the written/coding HW
- Score depends on severity of bugs

Clarification on late penalty

• Only available for HWs, not quizzes or project milestones

• HW Clarifications on EdStem

- We will keep a list of clarifications pinned
- Please look through these before asking questions!

Lecture 6: Logistic Regression

CIS 4190/5190 Spring 2023

Loss Minimization View of ML

• Three design decisions

- Model family: What are the candidate models *f*? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- **Optimizer:** How do we optimize the loss? (E.g., gradient descent)

- A probabilistic viewpoint on learning (from statistics)
- Given x_i , suppose y_i is drawn i.i.d. from distribution $p_{Y|X}(Y = y | x; \beta)$ with parameters β (or density, if y_i is continuous):

 $y_i \sim p_{Y|X}(\cdot \mid x_i; \beta)$

Y is random variable, not vector

- Typically write $p_{\beta}(Y = y \mid x)$ or just $p_{\beta}(y \mid x)$
 - Called a model (and $\{p_{\beta}\}_{\beta}$ is the model family)
 - Will show up convert p_{β} to f_{β} later

Two design decisions

- Model family: What are the candidate models *f*? (E.g., linear functions)
- Loss function: How to define "approximating"? (E.g., MSE loss)
- **Optimizer:** How do we optimize the loss? (E.g., gradient descent)

• Two design decisions

- Likelihood: What are the candidate likelihoods p? (E.g., Gaussian)
- **Optimizer:** How do we optimize the loss? (E.g., gradient descent)

• Likelihood: Given model p_{β} , the probability of dataset Z (replaces loss function in loss minimization view):

$$L(\beta; Z) = p_{\beta}(Y \mid X) = \prod_{i=1}^{n} p_{\beta}(y_i \mid x_i)$$

• Negative Log-likelihood (NLL): Computationally better behaved form:

$$\ell(\beta; \mathbf{Z}) = -\log L(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i)$$

• Assume that the conditional density is

$$p_{\beta}(y_i \mid x_i) = N(y_i; \beta^{\mathsf{T}} x_i, 1) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(\beta^{\mathsf{T}} x_i - y_i)^2}{2}}$$

• $N(y; \mu, \sigma^2)$ is the density of the normal (a.k.a. Gaussian) distribution with mean μ and variance σ^2

• Then, the likelihood is

$$L(\beta; Z) = \prod_{i=1}^{n} p_{\beta}(y_i \mid x_i) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(\beta^{\mathsf{T}} x_i - y_i)^2}{2}}$$

• The NLL is

$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i) = \frac{n \log(2\pi)}{2} + \underbrace{\sum_{i=1}^{n} (\beta^{\mathsf{T}} x_i - y_i)^2}_{\text{constant}}$$

• Loss minimization for maximum likelihood estimation:

$$\hat{\beta}(Z) = \arg\min_{\beta} \ell(\beta; Z)$$

• Note: Called maximum likelihood estimation since maximizing the likelihood equivalent to minimizing the NLL

• What about the model family?

$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$$
$$= \arg \max_{y} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{\|\beta^{\mathsf{T}} x - y\|_{2}^{2}}{2}}$$
$$= \beta^{\mathsf{T}} x$$

• Recovers linear functions!

Maximum Likelihood View of ML

Two design decisions

- Likelihood: Probability $p_{\beta}(y \mid x)$ of data (x, y) given parameters β
- **Optimizer:** How do we optimize the NLL? (E.g., gradient descent)
- Corresponding Loss Minimization View:
 - Model family: Most likely label $f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$
 - Loss function: Negative log likelihood (NLL) $\ell(\beta; Z) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i)$
- Very powerful framework for designing cutting edge ML algorithms
 - Write down the "right" likelihood, form tractable approximation if needed
 - Especially useful for thinking about non-i.i.d. data

What about classification? Compare to linear regression:

- Consider the following choice: $p_{\beta}(y \mid x_{i}) \propto e^{-\frac{\left(\beta^{\mathsf{T}} x_{i} - y\right)^{2}}{2}}$ $p_{\beta}(Y = 0 \mid x_{i}) \propto e^{-\frac{\beta^{\mathsf{T}} x_{i}}{2}} \text{ and } p_{\beta}(Y = 1 \mid x_{i}) \propto e^{\frac{\beta^{\mathsf{T}} x_{i}}{2}}$
- Then, we have

Sigmoid function

$$p_{\beta}(Y = 1 \mid x_{i}) = \frac{e^{\frac{\beta^{\mathsf{T}} x_{i}}{2}}}{e^{\frac{\beta^{\mathsf{T}} x_{i}}{2}} + e^{-\frac{\beta^{\mathsf{T}} x_{i}}{2}}} = \frac{1}{1 + e^{-\beta^{\mathsf{T}} x_{i}}}$$

What about classification? Compare to linear regression:

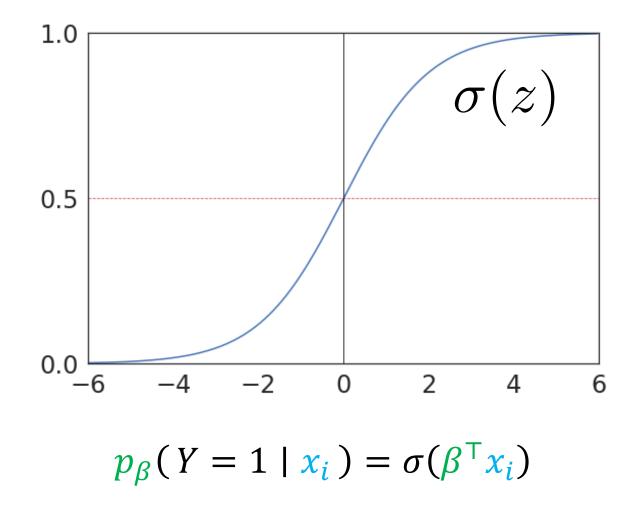
- Consider the following choice: $p_{\beta}(y \mid x_{i}) \propto e^{-\frac{(\beta^{\mathsf{T}}x_{i}-y)^{2}}{2}}$ $p_{\beta}(Y = 0 \mid x_{i}) \propto e^{-\frac{\beta^{\mathsf{T}}x_{i}}{2}} \text{ and } p_{\beta}(Y = 1 \mid x_{i}) \propto e^{\frac{\beta^{\mathsf{T}}x_{i}}{2}}$
 - Sigmoid function

• Then, we have

$$p_{\beta}(Y = 1 \mid x_{i}) = \frac{e^{\frac{\beta^{\mathsf{T}} x_{i}}{2}}}{e^{\frac{\beta^{\mathsf{T}} x_{i}}{2}} + e^{-\frac{\beta^{\mathsf{T}} x_{i}}{2}}} = \sigma(\beta^{\mathsf{T}} x_{i})$$

• Furthermore, $p_{\beta}(Y = 0 \mid x_i) = 1 - \sigma(\beta^{T} x_i)$

Logistic/Sigmoid Function



Logistic Regression Model Family

$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$$

$$= \arg \max_{y} \begin{cases} \sigma(\beta^{\mathsf{T}}x) & \text{if } y = 1\\ 1 - \sigma(\beta^{\mathsf{T}}x) & \text{if } y = 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } \sigma(\beta^{\mathsf{T}}x) \ge \frac{1}{2}\\ 0 & \text{otherwise} \end{cases}$$

Logistic Regression Model Family

$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$$

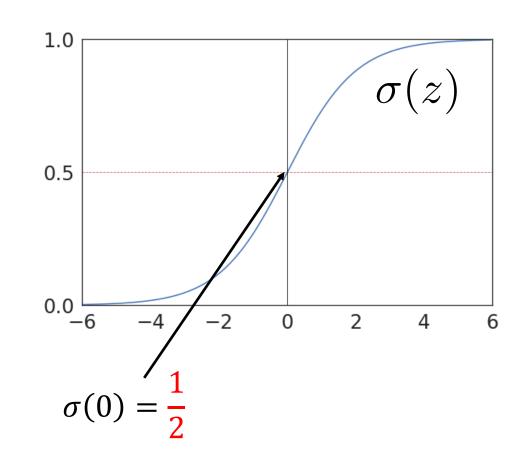
$$= \arg \max_{y} \begin{cases} \sigma(\beta^{\mathsf{T}}x) & \text{if } y = 1\\ 1 - \sigma(\beta^{\mathsf{T}}x) & \text{if } y = 0 \end{cases}$$

$$= \begin{cases} 1 & \text{if } \sigma(\beta^{\mathsf{T}}x) \ge \frac{1}{2}\\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1 & \text{if } \beta^{\mathsf{T}}x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$= 1(\beta^{\mathsf{T}}x \ge 0)$$

Recovers linear classifiers!



Logistic Regression Algorithm

• Then, we have the following NLL loss:

$$\ell(\beta; Z) = -\sum_{i=1}^{n} \log p_{\beta}(y_i \mid x_i)$$

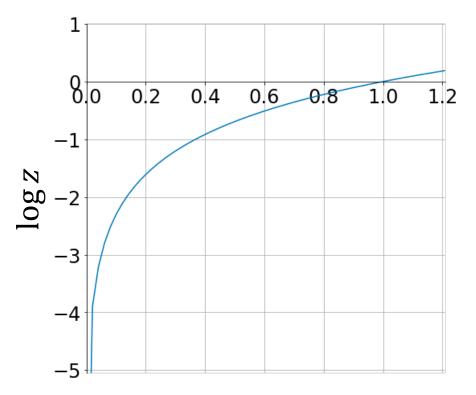
= $-\sum_{i=1}^{n} 1(y_i = 1) \cdot \log(\sigma(\beta^{\top} x_i)) + 1(y_i = 0) \cdot \log(1 - \sigma(\beta^{\top} x_i))$
= $-\sum_{i=1}^{n} y_i \cdot \log(\sigma(\beta^{\top} x_i)) + (1 - y_i) \cdot \log(1 - \sigma(\beta^{\top} x_i))$

• Logistic regression minimizes this loss:

$$\hat{\beta}(Z) = \arg\min_{\beta} \ell(\beta; Z)$$

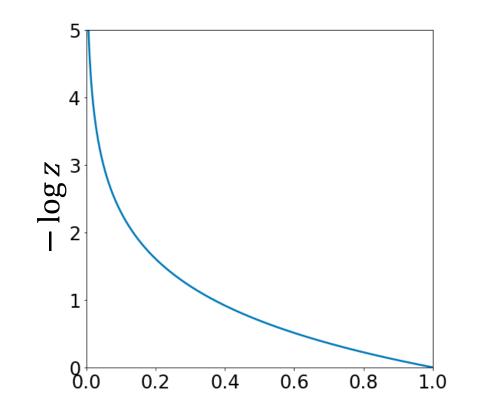
• Loss for example *i* is

$$\begin{cases} -\log(\sigma(\beta^{\mathsf{T}} x_i)) & \text{if } y_i = 1\\ -\log(1 - \sigma(\beta^{\mathsf{T}} x_i)) & \text{if } y_i = 0 \end{cases}$$

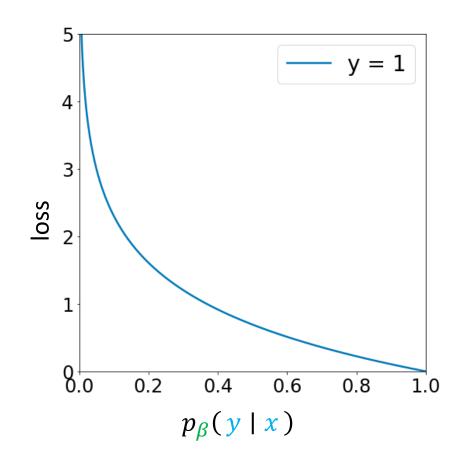


• Loss for example *i* is

$$\begin{cases} -\log(\sigma(\beta^{\mathsf{T}} x_i)) & \text{if } y_i = 1\\ -\log(1 - \sigma(\beta^{\mathsf{T}} x_i)) & \text{if } y_i = 0 \end{cases}$$

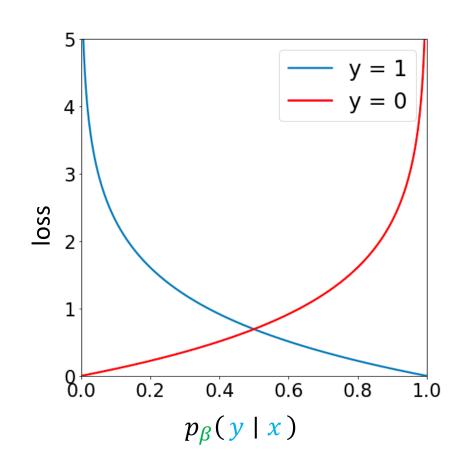


- If $y_i = 1$:
 - If $p_{\beta}(Y = 1 | x_i) = 1$, then loss = 0
 - As $p_{\beta}(Y = 1 \mid x_i) \to 0$, loss $\to \infty$



$$-y_i \cdot \log(\sigma(\beta^{\mathsf{T}} x_i)) - (1 - y_i) \cdot \log(1 - \sigma(\beta^{\mathsf{T}} x_i))$$

- If $y_i = 1$:
 - If $p_{\beta}(Y = 1 | x_i) = 1$, then loss = 0
 - As $p_{\beta}(Y = 1 \mid x_i) \to 0$, loss $\to \infty$
- If $y_i = 0$
 - If $p_{\beta}(Y = 0 | x_i) = 1$, then loss = 0
 - As $p_{\beta}(Y = 0 \mid x_i) \rightarrow 0$, loss $\rightarrow \infty$



$$-y_i \cdot \log(\sigma(\beta^\top x_i)) - (1 - y_i) \cdot \log(1 - \sigma(\beta^\top x_i))$$

Optimization for Logistic Regression

• To optimize the NLL loss, we need its gradient:

$$\nabla_{\beta}\ell(\beta; Z) = -\sum_{i=1}^{n} y_{i} \cdot \nabla_{\beta} \log(\sigma(\beta^{\top}x_{i})) + (1 - y_{i}) \cdot \nabla_{\beta} \log(1 - \sigma(\beta^{\top}x_{i}))$$

$$= -\sum_{i=1}^{n} y_{i} \cdot \frac{\nabla_{\beta}\sigma(\beta^{\top}x_{i})}{\sigma(\beta^{\top}x_{i})} - (1 - y_{i}) \cdot \frac{\nabla_{\beta}\sigma(\beta^{\top}x_{i})}{1 - \sigma(\beta^{\top}x_{i})}$$

$$= -\sum_{i=1}^{n} y_{i} \cdot \frac{\sigma(\beta^{\top}x_{i})(1 - \sigma(\beta^{\top}x_{i})) \cdot x_{i}}{\sigma(\beta^{\top}x_{i})} - (1 - y_{i}) \cdot \frac{\sigma(\beta^{\top}x_{i})(1 - \sigma(\beta^{\top}x_{i})) \cdot x_{i}}{1 - \sigma(\beta^{\top}x_{i})}$$

$$= -\sum_{i=1}^{n} y_{i} \cdot (1 - \sigma(\beta^{\top}x_{i})) \cdot x_{i} - (1 - y_{i}) \cdot \sigma(\beta^{\top}x_{i}) \cdot x_{i}$$

$$= -\sum_{i=1}^{n} (y_{i} - \sigma(\beta^{\top}x_{i})) \cdot x_{i}$$

Optimization for Logistic Regression

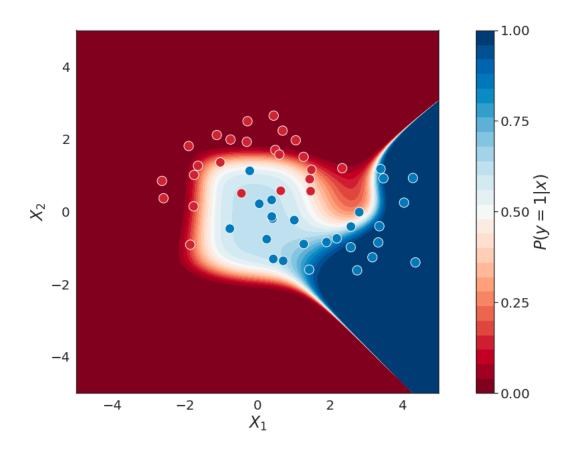
• Gradient of NLL:

$$\nabla_{\beta} \ell(\beta; \mathbf{Z}) = \sum_{i=1}^{n} (\sigma(\beta^{\top} x_{i}) - y_{i}) \cdot x_{i}$$

- Surprisingly similar to the gradient for linear regression!
 - Only difference is the σ
- Gradient descent works as before
 - No closed-form solution for $\hat{\beta}(Z)$

Feature Maps

• Can use feature maps, just like linear regression



Regularized Logistic Regression

• We can add L_1 or L_2 regularization to the NLL loss, e.g.:

$$\ell(\beta; Z) = -\sum_{i=1}^{n} y_i \cdot \log(\sigma(\beta^{\mathsf{T}} x_i)) + (1 - y_i) \cdot \log(1 - \sigma(\beta^{\mathsf{T}} x_i)) + \lambda \cdot \|\beta\|_2^2$$

• Is there a more "natural" way to derive the regularized loss?

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
 - What if we assume $\beta \sim N(0, \sigma^2 I)$ (the *d* dimensional normal distribution)?
- Consider the modified likelihood

$$L(\beta; Z) = p_{Y,\beta|X}(Y,\beta \mid X)$$

= $p_{Y|X,\beta}(Y \mid X,\beta) \cdot N(\beta; 0, \sigma^2 I)$
= $\left(\prod_{i=1}^n p_\beta(y_i \mid x_i)\right) \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\|\beta\|_2^2}{2\sigma^2}}$

Regularization as a Prior

- So far, we have not assumed any distribution over the parameters β
 - What if we assume $\beta \sim N(0, \sigma^2 I)$ (the *d* dimensional normal distribution)?
- Consider the modified NLL

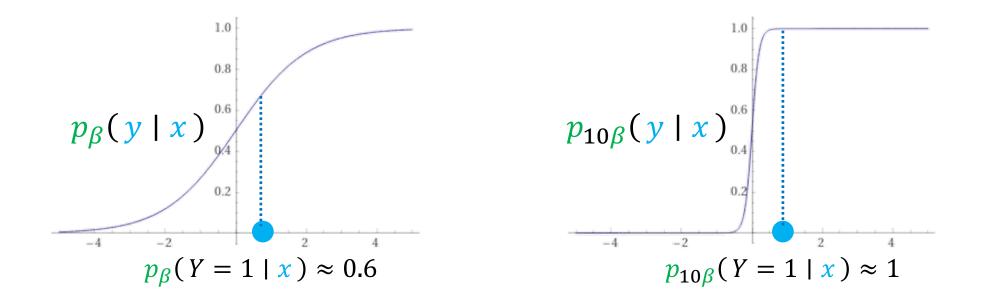
$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} \log p_{\beta}(\mathbf{y}_{i} \mid \mathbf{x}_{i}) + \underbrace{\log \sigma \sqrt{2\pi}}_{\mathbf{Z}\sigma^{2}} + \underbrace{\frac{\|\beta\|_{2}^{2}}{2\sigma^{2}}}_{\mathbf{Z}\sigma^{2}}$$

constant regularization!

- Obtain L_2 regularization on β !
 - With $\lambda = \frac{1}{2\sigma^2}$
 - If $\beta_i \sim \text{Laplace}(0, \sigma^2)$ for each *i*, obtain L_1 regularization

Additional Role of Regularization

- In p_{β} , if we replace β with $c \cdot \beta$, where $c \gg 1$ (and $c \in \mathbb{R}$), then:
 - The decision boundary does not change
 - The probabilities $p_{\beta}(y \mid x)$ become more confident

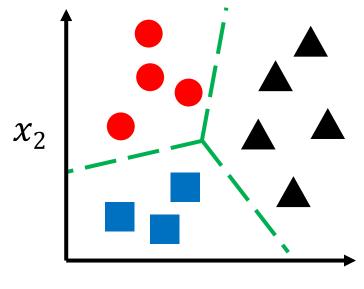


Additional Role of Regularization

- Regularization ensures that β does not become too large
 - Prevents overconfidence
- Regularization can also be necessary
 - Without regularization (i.e., $\lambda = 0$) and data is linearly separable, then gradient descent diverges (i.e., $\beta \to \pm \infty$)

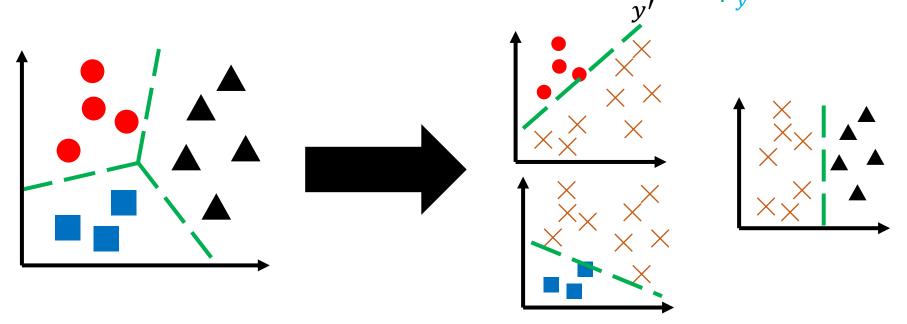
Multi-Class Classification

- What about more than two classes?
 - Disease diagnosis: healthy, cold, flu, pneumonia
 - **Object classification:** desk, chair, monitor, bookcase
 - In general, consider a finite space of labels ${\mathcal Y}$



Multi-Class Classification

- Naïve Strategy: One-vs-rest classification
 - Step 1: Train $|\mathcal{Y}|$ logistic regression models, where model $p_{\beta_y}(Y = 1 \mid x)$ is interpreted as the probability that the label for x is y
 - Step 2: Given a new input x, predict label $y = \arg \max p_{\beta_{x'}} (Y = 1 | x)$



Multi-Class Logistic Regression

- Strategy: Include separate β_y for each label $y \in \mathcal{Y} = \{1, ..., k\}$
- Let $p_{\beta}(y \mid x) \propto e^{\beta_y^{\mathsf{T}} x}$, i.e.

$$p_{\beta}(y \mid x) = \frac{e^{\beta_{y}^{\mathsf{T}}x}}{\sum_{y' \in \mathcal{Y}} e^{\beta_{y'}^{\mathsf{T}}x}}$$

- We define softmax $(z_1, ..., z_k) = \begin{bmatrix} e^{z_1} & \dots & \frac{e^{z_k}}{\sum_{i=1}^k e^{z_i}} & \dots & \frac{e^{z_k}}{\sum_{i=1}^k e^{z_i}} \end{bmatrix}$
- Then, $p_{\beta}(y \mid x) = \operatorname{softmax}(\beta_1^{\top} x, \dots, \beta_k^{\top} x)_{y}$
 - Thus, sometimes called **softmax regression**

Multi-Class Logistic Regression

• Model family

•
$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x) = \arg \max_{y} \frac{e^{\beta y x}}{\sum_{y' \in y} e^{\beta y' x}} = \arg \max_{y} \beta_{y}^{\mathsf{T}} x$$

- Optimization
 - Gradient descent on NLL
 - Simultaneously update all parameters $\{\beta_{y}\}_{y \in \mathcal{Y}}$