
Upcoming Deadlines

• Quiz 1 due tomorrow

• HW 2 due in one week



Announcements

• Bug bounty
• Bonus points for students who find “bugs” in the written/coding HW
• Score depends on severity of bugs

• Clarification on late penalty
• Only available for HWs, not quizzes or project milestones

• HW Clarifications on EdStem
• We will keep a list of clarifications pinned
• Please look through these before asking questions!



Lecture 6: Logistic Regression
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Loss Minimization View of ML

• Three design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)



Maximum Likelihood Estimation

• A probabilistic viewpoint on learning (from statistics)

• Given 𝑥!, suppose 𝑦! is drawn i.i.d. from distribution 𝑝"∣$ 𝑌 = 𝑦 𝑥; 𝛽
with parameters 𝛽 (or density, if 𝑦! is continuous):

𝑦! ∼ 𝑝"∣$ ⋅ 𝑥!; 𝛽

• Typically write 𝑝% 𝑌 = 𝑦 𝑥 or just 𝑝% 𝑦 𝑥
• Called a model (and 𝑝! !

is the model family)

• Will show up convert 𝑝! to 𝑓! later

𝑌 is random variable, 
not vector



Maximum Likelihood Estimation

• Two design decisions
• Model family: What are the candidate models 𝑓? (E.g., linear functions)
• Loss function: How to define “approximating”? (E.g., MSE loss)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)



Maximum Likelihood Estimation

• Two design decisions
• Likelihood: What are the candidate likelihoods 𝑝? (E.g., Gaussian)
• Optimizer: How do we optimize the loss? (E.g., gradient descent)



Maximum Likelihood Estimation

• Likelihood: Given model 𝑝%, the probability of dataset 𝑍 (replaces 
loss function in loss minimization view):

𝐿 𝛽; 𝑍 = 𝑝% 𝑌 𝑋 =-
!&'

(

𝑝% 𝑦! 𝑥!

• Negative Log-likelihood (NLL): Computationally better behaved form:

ℓ 𝛽; 𝑍 = − log 𝐿 𝛽; 𝑍 = −3
!&'

(

log 𝑝% 𝑦! 𝑥!



Example: Linear Regression

• Assume that the conditional density is

𝑝% 𝑦! 𝑥! = 𝑁 𝑦!; 𝛽)𝑥! , 1 =
1
2𝜋

⋅ 𝑒*
%!+"*,"

#

-

• 𝑁 𝑦; 𝜇, 𝜎- is the density of the normal (a.k.a. Gaussian) distribution 
with mean 𝜇 and variance 𝜎-



Example: Linear Regression

• Then, the likelihood is

𝐿 𝛽; 𝑍 =-
!&'

(

𝑝% 𝑦! 𝑥! =-
!&'

(
1
2𝜋

⋅ 𝑒*
%!+"*,"

#

-

• The NLL is

ℓ 𝛽; 𝑍 = −3
!&'

(

log 𝑝% 𝑦! 𝑥! =
𝑛 log 2𝜋

2
+3

!&'

(

𝛽)𝑥! − 𝑦! -

constant MSE!



Example: Linear Regression

• Loss minimization for maximum likelihood estimation:

>𝛽 𝑍 = arg min
%

ℓ 𝛽; 𝑍

• Note: Called maximum likelihood estimation since maximizing the 
likelihood equivalent to minimizing the NLL



Example: Linear Regression

• What about the model family?

𝑓% 𝑥 = arg max
,

𝑝% 𝑦 𝑥

𝑓% 𝑥 = arg max
,

'
-.
⋅ 𝑒*

$!%&' #
#

#

𝑓% 𝑥 = 𝛽)𝑥

• Recovers linear functions!



Maximum Likelihood View of ML

• Two design decisions
• Likelihood: Probability 𝑝! 𝑦 𝑥 of data 𝑥, 𝑦 given parameters 𝛽
• Optimizer: How do we optimize the NLL? (E.g., gradient descent)

• Corresponding Loss Minimization View:
• Model family: Most likely label 𝑓! 𝑥 = arg max" 𝑝! 𝑦 𝑥
• Loss function: Negative log likelihood (NLL) ℓ 𝛽; 𝑍 = −∑#$%& log 𝑝! 𝑦# 𝑥#

• Very powerful framework for designing cutting edge ML algorithms
• Write down the “right” likelihood, form tractable approximation if needed
• Especially useful for thinking about non-i.i.d. data



What about classification?

• Consider the following choice:

𝑝% 𝑌 = 0 𝑥! ∝ 𝑒*
%!+"
- and 𝑝% 𝑌 = 1 𝑥! ∝ 𝑒

%!+"
-

• Then, we have

𝑝% 𝑌 = 1 𝑥! =
𝑒
%!+"
-

𝑒
%!+"
- + 𝑒*

%!+"
-

=
1

1 + 𝑒*%!+"

Sigmoid function

𝜎 𝑧 =
1

1 + 𝑒'(

Compare to linear regression:

𝑝! 𝑦 𝑥# ∝ 𝑒'
!!)"'"

#

*



What about classification?

• Consider the following choice:

𝑝% 𝑌 = 0 𝑥! ∝ 𝑒*
%!+"
- and 𝑝% 𝑌 = 1 𝑥! ∝ 𝑒

%!+"
-

• Then, we have

𝑝% 𝑌 = 1 𝑥! =
𝑒
%!+"
-

𝑒
%!+"
- + 𝑒*

%!+"
-

= 𝜎 𝛽)𝑥!

• Furthermore, 𝑝% 𝑌 = 0 𝑥! = 1 − 𝜎 𝛽)𝑥!

Sigmoid function

𝜎 𝑧 =
1

1 + 𝑒'(

Compare to linear regression:

𝑝! 𝑦 𝑥# ∝ 𝑒'
!!)"'"

#

*



Logistic/Sigmoid Function

�(z)

<latexit sha1_base64="u39OYtMSaq4IXUMvaNyC6wmVWPE="></latexit>

𝑝% 𝑌 = 1 𝑥! = 𝜎 𝛽)𝑥!



Logistic Regression Model Family

𝑓! 𝑥 = arg max
"

𝑝! 𝑦 𝑥

𝑓! 𝑥 = arg max
"

; 𝜎 𝛽+𝑥
1 − 𝜎 𝛽+𝑥

if 𝑦 = 1
if 𝑦 = 0

𝑓! 𝑥 = ?10
if 𝜎 𝛽+𝑥 ≥ %

*
otherwise



Logistic Regression Model Family

𝑓! 𝑥 = arg max
"

𝑝! 𝑦 𝑥

𝑓! 𝑥 = arg max
"

; 𝜎 𝛽+𝑥
1 − 𝜎 𝛽+𝑥

if 𝑦 = 1
if 𝑦 = 0

𝑓! 𝑥 = ?10
if 𝜎 𝛽+𝑥 ≥ %

*
otherwise

𝑓! 𝑥 = ?10
if 𝛽+𝑥 ≥ 0
otherwise

𝑓! 𝑥 = 1(𝛽+𝑥 ≥ 0)

• Recovers linear classifiers!

�(z)

<latexit sha1_base64="u39OYtMSaq4IXUMvaNyC6wmVWPE="></latexit>

𝜎 0 =
1
2



Logistic Regression Algorithm

• Then, we have the following NLL loss:

ℓ 𝛽; 𝑍 = −∑#$%& log 𝑝! 𝑦# 𝑥#
ℓ 𝛽; 𝑍 = −∑#$%& 1 𝑦# = 1 ⋅ log 𝜎 𝛽+𝑥# + 1 𝑦# = 0 ⋅ log 1 − 𝜎 𝛽+𝑥#
ℓ 𝛽; 𝑍 = −∑#$%& 𝑦# ⋅ log 𝜎 𝛽+𝑥# + 1 − 𝑦# ⋅ log 1 − 𝜎 𝛽+𝑥#

• Logistic regression minimizes this loss:

>𝛽 𝑍 = arg min
%

ℓ 𝛽; 𝑍



Intuition on the Objective

• Loss for example 𝑖 is

J
− log 𝜎 𝛽)𝑥!

− log 1 − 𝜎 𝛽)𝑥!
if 𝑦! = 1
if 𝑦! = 0

lo
g𝑧



Intuition on the Objective

• Loss for example 𝑖 is

J
− log 𝜎 𝛽)𝑥!

− log 1 − 𝜎 𝛽)𝑥!
if 𝑦! = 1
if 𝑦! = 0

−
lo
g𝑧



Intuition on the Objective

• If 𝑦! = 1:
• If 𝑝! 𝑌 = 1 𝑥# = 1, then loss = 0
• As 𝑝! 𝑌 = 1 𝑥# → 0,	loss → ∞

𝑝! 𝑦 𝑥

lo
ss

−𝑦! ⋅ log 𝜎 𝛽)𝑥! − 1 − 𝑦! ⋅ log 1 − 𝜎 𝛽)𝑥!



Intuition on the Objective

• If 𝑦! = 1:
• If 𝑝! 𝑌 = 1 𝑥# = 1, then loss = 0
• As 𝑝! 𝑌 = 1 𝑥# → 0,	loss → ∞

• If 𝑦! = 0
• If 𝑝! 𝑌 = 0 𝑥# = 1, then loss = 0
• As 𝑝! 𝑌 = 0 𝑥# → 0,	loss → ∞

𝑝! 𝑦 𝑥

lo
ss

−𝑦! ⋅ log 𝜎 𝛽)𝑥! − 1 − 𝑦! ⋅ log 1 − 𝜎 𝛽)𝑥!



Optimization for Logistic Regression

• To optimize the NLL loss, we need its gradient:

∇!ℓ 𝛽; 𝑍 = −∑#$%& 𝑦# ⋅ ∇! log 𝜎 𝛽+𝑥# + 1 − 𝑦# ⋅ ∇! log 1 − 𝜎 𝛽+𝑥#

∇!ℓ 𝛽; 𝑍 = −∑#$%& 𝑦# ⋅
∇$- !!)"
- !!)"

− 1 − 𝑦# ⋅
∇$- !!)"
%'- !!)"

∇!ℓ 𝛽; 𝑍 = −∑#$%& 𝑦# ⋅
- !!)" %'- !!)" ⋅)"

- !!)"
− 1 − 𝑦# ⋅

- !!)" %'- !!)" ⋅)"
%'- !!)"

∇!ℓ 𝛽; 𝑍 = −∑#$%& 𝑦# ⋅ 1 − 𝜎 𝛽+𝑥# ⋅ 𝑥# − 1 − 𝑦# ⋅ 𝜎 𝛽+𝑥# ⋅ 𝑥#
∇!ℓ 𝛽; 𝑍 = −∑#$%& 𝑦# − 𝜎 𝛽+𝑥# ⋅ 𝑥#

𝜎" 𝑧
= 𝜎 𝑧 1 − 𝜎 𝑧



Optimization for Logistic Regression

• Gradient of NLL:

∇%ℓ 𝛽; 𝑍 =3
!&'

(

𝜎 𝛽)𝑥! − 𝑦! ⋅ 𝑥!

• Surprisingly similar to the gradient for linear regression!
• Only difference is the 𝜎

• Gradient descent works as before
• No closed-form solution for N𝛽 𝑍



Feature Maps

• Can use feature maps, just like linear regression



Regularized Logistic Regression

• We can add 𝐿' or 𝐿- regularization to the NLL loss, e.g.:

ℓ 𝛽; 𝑍 = −O
#$%

&

𝑦# ⋅ log 𝜎 𝛽+𝑥# + 1 − 𝑦# ⋅ log 1 − 𝜎 𝛽+𝑥# + 𝜆 ⋅ 𝛽 *
*

• Is there a more “natural” way to derive the regularized loss?



Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎*𝐼 (the 𝑑 dimensional normal distribution)?

• Consider the modified likelihood

𝐿 𝛽; 𝑍 = 𝑝",%∣$ 𝑌, 𝛽 𝑋
𝐿(𝛽;𝑍)= 𝑝"∣$,% 𝑌 𝑋, 𝛽 ⋅ 𝑁 𝛽; 0, 𝜎-𝐼

𝐿 𝛽; 𝑍 = ∏!&'
( 𝑝% 𝑦! 𝑥! ⋅ '

8 -.
𝑒*

$ #
#

#(#



Regularization as a Prior

• So far, we have not assumed any distribution over the parameters 𝛽
• What if we assume 𝛽 ∼ 𝑁 0, 𝜎*𝐼 (the 𝑑 dimensional normal distribution)?

• Consider the modified NLL

ℓ 𝛽; 𝑍 = −∑!&'( log 𝑝% 𝑦! 𝑥! + log 𝜎 2𝜋 + % #
#

-8#

• Obtain 𝐿-regularization on 𝛽!
• With 𝜆 = %

*-#
• If 𝛽# ∼ Laplace 0, 𝜎* for each 𝑖, obtain 𝐿%regularization

constant regularization!



Additional Role of Regularization

• In 𝑝%, if we replace 𝛽 with 𝑐 ⋅ 𝛽, where 𝑐 ≫ 1 (and 𝑐 ∈ ℝ), then:
• The decision boundary does not change
• The probabilities 𝑝! 𝑦 𝑥 become more confident

𝑝! 𝑦 𝑥 𝑝%/! 𝑦 𝑥

𝑝#$! 𝑌 = 1 𝑥 ≈ 1𝑝! 𝑌 = 1 𝑥 ≈ 0.6



Additional Role of Regularization

• Regularization ensures that 𝛽 does not become too large
• Prevents overconfidence

• Regularization can also be necessary
• Without regularization (i.e., 𝜆 = 0) and data is linearly separable, then 

gradient descent diverges (i.e., 𝛽 → ±∞)



Multi-Class Classification

• What about more than two classes?
• Disease diagnosis: healthy, cold, flu, pneumonia
• Object classification: desk, chair, monitor, bookcase
• In general, consider a finite space of labels 𝒴

𝑥1

𝑥2



Multi-Class Classification

• Naïve Strategy: One-vs-rest classification
• Step 1: Train 𝒴 logistic regression models, where model 𝑝!% 𝑌 = 1 𝑥 is 

interpreted as the probability that the label for 𝑥 is 𝑦
• Step 2: Given a new input 𝑥, predict label 𝑦 = arg max

"&
𝑝!%& 𝑌 = 1 𝑥



Multi-Class Logistic Regression

• Strategy: Include separate 𝛽, for each label 𝑦 ∈ 𝒴 = {1,… , 𝑘}

• Let 𝑝% 𝑦 𝑥 ∝ 𝑒%'!+, i.e.

𝑝% 𝑦 𝑥 =
𝑒%'!+

∑,)∈𝒴 𝑒
%')
! +

• We define softmax 𝑧', … , 𝑧@ =
A*+

∑",+
- A*"

… A*-
∑",+
- A*"

• Then, 𝑝% 𝑦 𝑥 = softmax 𝛽')𝑥,… , 𝛽@)𝑥 ,
• Thus, sometimes called softmax regression



Multi-Class Logistic Regression

• Model family

• 𝑓! 𝑥 = arg max
"

𝑝! 𝑦 𝑥 = arg max
"

0$%
!'

∑%&∈𝒴 0
$
%&
! '

= arg max
"

𝛽"+𝑥

• Optimization
• Gradient descent on NLL
• Simultaneously update all parameters 𝛽" "∈𝒴


