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Administrivia
• HW3 released, due Feb 22.

§ Requires some DT materials we will wrap up today.
• Recordings of recitations online. Moved to in-person (+Zoom) recitations last week.
• Fall 2022 slides are at: https://www.seas.upenn.edu/~cis5190/fall2022/.

§ May be useful if you find that you absolutely require some starting slides to be able to 
make notes on. But there will almost always be changes in each semester.

• Debugging during OHs:
§ Debugging your code is not the TAs’ responsibility. TAs can take a look, but are 

instructed to not debug for >5 minutes with any student.
§ If seeking help, remember:

§ Show evidence of your own systematic effort. Thumb rule: Before asking for 5 mins 
of OH time, spend minimum 1 hour debugging by yourself. Print statements, 
breakpoints, assert statements, unit tests, googling error messages etc.

§ Systematic debugging is an art worth learning! Lots of resources with tips. E.g.:
§ https://applab.unc.edu/posts/2021/02/17/debugging-tips/

https://www.seas.upenn.edu/~cis5190/fall2022/
https://applab.unc.edu/posts/2021/02/17/debugging-tips/




Recap: Decision Trees and Training

|--- worst perimeter <= 105.95
| |--- worst concave points <= 0.135
| | |--- class: benign
| |--- worst concave points > 0.135
| | |--- worst concave points < 0.16
| | | |--- class: benign
| | |--- worst concave points > 0.16
| | | | --- worst perimeter > 80
| | | | | --- class: malignant
| | | | --- worst perimeter < 80
| | | | | --- class: benign

…
…

Our first attempt on diabetes data, choosing 

random features to split the data on



Recap: Selecting “Good” Features While Training DTs

The only way to stop growing a tree larger 

is to get to homogeneous decision nodes 

where all samples have the same label

We would like to select splits that lead as quickly as possible to homogeneous children nodes



Recap: Entropy and the Information Gain Criterion 
Entropy ! " = −∑! & ' = ( log" & ' = ( ,
where different !!" correspond to different class labels

IG(!,##) = &(!) − ∑$&(! ## = * )+(## = *)
Information Gain Criterion:



Recap: Information Gain For Diabetes Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

= (6/12) * (-2/6 lg 2/6 
- 4/6 lg 4/6) 

+ (6/12) * (0)
= 0.459
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Need to compute:
,-(!,&./ℎ 1+) = &(!) – & (! |&./ℎ 1+)

,-(!, 456789.:;) = &(!) – & (!| 456789.:;)



Recap: Information Gain For Diabetes Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

= (1/12) * 0 + (1/12) * 0 
+ (3/12) * (–1/3 lg 1/3 

– 2/3 lg 2/3)
+ (3/12) * (–2/3 lg 2/3 

– 1/3 lg 1/3)
+ (4/12) * (–3/4 lg 3/4 

– 1/4 lg 1/4)
= 0.730

Need to compute:
,-(!,&./ℎ 1+) = &(!) – & (! |&./ℎ 1+)

,-(!, 456789.:;) = &(!) – & (!| 456789.:;)



Recap: Information Gain For Diabetes Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

Need to compute:
,-(!,&./ℎ 1+) = &(!) – & (! |&./ℎ 1+) = 0.918 – 0.459 = 0.459

,-(!, 456789.:;) = &(!) – & (!| 456789.:;) = 0.918 – 0.730 = 0.188 
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So is IG always the right criterion?





A Problem with Information Gain

• IG does indeed identify features that lead to more homogeneous child 
nodes.

• But note that it is easier for child nodes to be more homogeneous, when 
there are more children.
§ For example, what if each child has just one sample? E.g. unique IDs, 

dates, phone number etc.



What If Every Child Node Holds 1 Training Sample?

Patient ID

Need to compute:
,-(!, ,<) = &(!) – & (! |,<)

=1/12*0+1/12*0+….
= 0

IG = 0.918 … highest 
possible!



A Problem with Information Gain

• IG does indeed identify features that lead to more homogeneous child 
nodes.

• But note that it is easier for child nodes to be more homogeneous, when 
there are more children.
§ For example, what if each child has just one sample? e.g. unique IDs, 

dates, phone number etc.

§ More broadly, more child nodes ⇒ fewer data at each node ⇒ less 
reliable estimates of statistical properties such as entropy and more 
likely to overfit.

So we would like to combat IG’s preference for creating many child nodes





Compensating for Features with Many Values

Gain Ratio can compensate for this:

"# $, &! = "# $,&!
'()*+",-. $,&!

=>?.9,;@: !, ## = −A
$
+ ## = * log% +(## = *)
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This scales by the 
entropy of the split, 
ignoring classes

$ &! = (
$

Split entropy measures the intrinsic information in the feature, not specific to the task --- it 
doesn’t account for the class labels in any way.
Higher “split entropy” => 
• more child nodes (splits), and/or 
• more even distribution of parent samples amongst the children.

Ratio of task-relevant
information to task-
non-specific intrinsic 
information



Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

Need to compute:
GainRatio(! High BP) = IG(!, High BP) / SplitInfo(!, High BP)

GainRatio(!, Education) = IG(!, Education) / SplitInfo(!, Education)
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Already Computed:

• H(&) = 0.918

• H (& |  High BP) = 0.459 

• H (& |  Education) = 0.730

• IG(& High BP)  =  0.459

• IG(&, Education) = 0.188 



Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

= – 6/12 lg 6/12 
– 6/12 lg 6/12 

= 1
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Need to compute:
GainRatio(! High BP) = IG(!, High BP) / SplitInfo(!, High BP)

GainRatio(!, Education) = IG(!, Education) / SplitInfo(!, Education)

Already Computed:

• H(&) = 0.918

• H (& |  High BP) = 0.459 

• H (& |  Education) = 0.730

• IG(& High BP)  =  0.459

• IG(&, Education) = 0.188 



Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad

20

Already Computed:

• H(&) = 0.918

• H (& |  High BP) = 0.459 

• H (& |  Education) = 0.730

• IG(& High BP)  =  0.459

• IG(&, Education) = 0.188 

Need to compute:
GainRatio(! High BP) = IG(!, High BP) / SplitInfo(!, High BP)

GainRatio(!, Education) = IG(!, Education) / SplitInfo(!, Education)

= – 1/12 lg 1/12 – 1/12 lg 1/12
– 3/12 lg 3/12 – 3/12 lg 3/12
– 4/12 lg 4/12

=  2.1258 



Gain Ratio Example

yes

no

<9th 9th-11th HS grad
Education

H
ig

h 
 B

P
some college college grad
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Need to compute:
GainRatio(! High BP) = IG(!, High BP) / SplitInfo(!, High BP) = 0.459/1=0.459

GainRatio(!, Education) = IG(!, Education) / SplitInfo(!, Education)=0.188/2.126 
= 0.088

Already Computed:

• H(&) = 0.918

• H (& |  High BP) = 0.459 

• H (& |  Education) = 0.730

• IG(& High BP)  =  0.459

• IG(&, Education) = 0.188 

Exercise: Try this with the patient ID feature.





Aside: Gini Index Reduction Criterion

There is another widely used criterion aside from IG and GR, the “Gini 
Index” for binary classification.
• Recall how we compute Information Gain = Entropy Reduction:

§ Entropy ) $ = ∑/ + , = - (− log0 + , = - )
§ Information Gain = Entropy of parent – Weighted Average 

Entropy of Children 
• Analogously, Gini Index Reduction:

§ Gini index Gini($) = ∑/ + , = - (1 − + , = - )
§ Gini gain = Gini of parent – Weighted Average Gini of Children

You will get to play with this in HW3.

Q: Does Gini index also prefer creating more children?

(not a 

great  guy)

Yes. Discussion here: https://stats.stackexchange.com/questions/395278/the-reason-why-gini-index-is-in-favor-of-multivalued-attributes

https://stats.stackexchange.com/questions/395278/the-reason-why-gini-index-is-in-favor-of-multivalued-attributes


Aside: Real-Valued Features
• Change to binary splits by choosing a 

threshold
• One method:

§ Sort instances by value, identify 
adjacencies with different classes

§ Then, choose among splits by IG or GR

24

# days with fever

child age
no

macrolides

no
macrolides

prescribe
macrolides

<2≥2

≤3>3

Days with Fever: 1 1 2 3 4 6
Prescribe macrolides?: No No Yes No Yes Yes

candidate splits

This amounts to converting a continuous attribute &! into a collection of 
binary attributes: 1[&! > :1], 1[&! > :0], 1[&! > :2], … before selecting 
highest IG / GR attrbutes



Aside: Decision Trees for Regression (Real-Valued Targets)

Everything remains the same except:
• Measure of impurity has to apply to 

continuous targets. E.g. standard deviation 
or entropy of continuous target
§ So, e.g., impurity reduction = Standard 

deviation of parent node – weighted 
average standard deviation of children 
nodes

• Making scalar label predictions at a leaf 
node:
§ Similar to KNNs for regression, simply 

take the average of the training target 
labels at the leaf node.

https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html

https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression.html




DT Training via Gain Ratio



Recap

A: Gain Ratio



We are Ready to Train the DT for Diabetes!

29



Gain Ratio-Based Greedy DT Construction

30

X1 X2 X14. . .

Given dataset $ = [&, =]
• Pick feature Xj to split upon with the 

highest IG (or GainRatio) 
• Partition $ via Xj
• Recurse until nodes are homogenous

X14 (LBXGH) ≤ 6.15 has 
the highest IG

Dataset partition ![LBXGH ≤ 6.15] Dataset partition ![LBXGH > 6.15]



Decision Tree (Version 1)

Accuracy on diabetes data still 100%
31



Diabetes DT – Random vs IG Features

• Well, it is smaller while retaining 100 % accuracy on our training data
• Still rather complex, though …

DT with random feature splits DT via IG

Accuracy on diabetes data = 100% Accuracy on diabetes data = 100%

32





Feedback From 
Our Physician Friend





Accuracy – Decision Tree (Version 1)

Original Patient Data: 100.000 %      (n = 1082)

New Patient Data: 82.796 %      (n = 465)



Recall: Overfitting

This is just classic “overfitting”

Larger, more complex models sometimes do poorly on new data, even if 
they perform on par or better than small models on the training data.





Combating Overfitting



Avoiding Overfitting
How can we avoid overfitting?
• Acquire more training data
• Remove irrelevant attributes  (manual process – not always possible)
• Stop growing when data split is not statistically significant

§ E.g. a pre-selected maximum depth, minimum #samples, minimum #samples in each class 
• Grow full tree, then post-prune

Try various tree hyperparameters (like tree depth and termination criterion) and pick the one 
with the best estimated generalization performance. How to estimate?
• Cross-validation
• Add a complexity penalty to performance measure e.g. training  accuracy – average depth 

of leaf node

41Based on Slide by Pedro Domingos



Overview: Reduced-Error Pruning

• Split the original training data into training and validation sets

Training Stage
• Grow the decision tree based on the training set

Pruning Stage
• Loop until further pruning hurts validation performance:

§ Measure the validation performance of pruning each node (and its 
children)

§ Greedily remove the node that most improves validation performance

42



Overview: Reduced-Error Pruning

• Pruning replaces a whole subtree by a leaf node
• Replacement occurs if the expected error rate of the 

subtree on validation data is greater than that of the 
leaf

43

original subtree

Predicting the majority 
class (negative) has a 
lower validation error

pruned subtree

SpO2

normal low

SpO2
vs

Validation

SpO2

normal low

Training

Subtree should 
be pruned(error rate = 4/6)

(error rate = 2/6)



Reduced-Error Pruning on the Diabetes DT

DT unpruned DT pruned 

Much better!

44

DT unpruned      DT pruned

Original Patient Data: 100.000 %           88.909 %       (n = 1082)

New Patient Data: 82.796 %           85.591 %       (n = 465)



The Final Diabetes DT

Our Pruned Decision Tree How Diabetes is Actually Diagnosed

(screenshot from diabetes.org)

Strong similarity to how diabetes is actually diagnosed!

45
You’ll get to play around with this data some more in HW3.





Are DTs feature scaling invariant?

• Yes, DTs are naturally feature-scaling invariant in most implementations.
§ Information Gain, Gain Ratio etc. don’t rely on the specific values of the 

features, so scaling a feature doesn’t affect the tree training, and it 
predicts identical outputs afterwards.  

§ In fact, more general than even just “scaling”, DTs are usually invariant 
under arbitrary monotone transformations of the input.



Where are the parameters in Decision Trees?

• Parameters to select at each node:
§ Which attribute to select?
§ Sometimes, also how to create branches from it? E.g. which threshold to 

set on a continuous variable?

• For a fixed maximum depth >, a decision tree has a fixed number of 
parameters (or at least a fixed maximum number of parameters).

• In general, we don’t know the number of nodes, and consequently, the 
number of parameters. Non-parametric! just like k-NN.



Are We Optimizing A Loss Function?

• Trivially, we are of course seeking high classification accuracy.

• But our optimizer is greedy. 
§ Local optimization of a “heuristic function” such as the information gain.

• There is no notion of a specific loss function for which we can claim that 
our ID3 / C4.5 training approach will “finding the decision tree that incurs 
the lowest loss”.





Decision Tree Algorithm Variants Overview

ID3
• Information gain on nominal features

C4.5
• Can use info gain or gain ratio
• Nominal or numeric features
• Missing values
• Post-pruning
• Rule generation

CART (Classification and Regression Tree)
• Similar to C4.5
• Can handle continuous target prediction 

(regression)
• No rule sets
• Sklearn’s DecisionTreeClassifier is 

based on CART, but can’t handle nominal 
features (as of version 0.22.1)

Other Algorithms
• SPRINT, SLIQ: multiple sequential scans of 

data (1M instances)
• VFDT:  at most one sequential scan (billions 

of instances)
53



Strengths and Weaknesses of DTs

Strengths
!Widely used in practice 
! Fast and simple to implement
! Small trees are easily interpretable 
! Handles a variety of feature types
! Can convert to rules
! Handles noisy / missing data 
! Insensitive to feature scaling
! Handles irrelevant features
! Handles large datasets

Weaknesses
" Univariate partitions limit potential trees
" Limited predictive power
" Heuristic-Based Greedy Training

54

DTs are the basic component of what is arguably the single best “off-the-shelf” ML algorithm for 

arbitrary problems, particularly with tabular data, called XGBoost (more on this soon).





More Administrivia: Projects
• 3 % of course grade (20% for full project: 3 + 5 + 12)
• Team information due Fri Feb 20. 
• 3 members per team. 
• Submit information on google form (announcement soon). 

• Project proposal due Wed Mar 1.
• A proposal template document will be released in the coming days.
• A project mentor will be assigned to you based on your proposal.

• Guidance on project topics: See next 2 slides.



“Standard” Projects
• The recommended option barring exceptional cases.

• Tied closely to any one from a pre-approved list of Kaggle projects (announcement soon).

• Part 1: Implementation
• Option 1: Extensive evaluation of design decisions in pre-existing codebases.

• Evaluate the design decisions in existing Kaggle submissions, e.g. current leading submissions, or 

other codebases on the web for this problem. Always cite and acknowledge.

• Recommendations:

• For tabular datasets, significant feature engineering and try several models

• For image datasets, try different neural network architectures etc.

• Option 2: New ML approach. A new ML approach, not directly building on top of current codebases

• Typically a learning strategy (e.g., semi-supervised learning) or a neural network architecture

• Part 2: Evaluation
• Part 2a: Systematic evaluation of hyperparameters (e.g., regularization, learning rate, etc.)

• Part 2b: Evaluate on test data distributions different from training data

• E.g. Add synthetic noise to test set, train-test split based on demographic features or time

• Plot performance measures vs. degree of shift (e.g. for demographic features, include X% 

fraction of minority in the training set, where X is degree of shift)

• Particularly interesting to identify “small” shifts that break the model.

• No collaboration outside your project team. 

• Public submission to Kaggle leaderboard at end of project period together with code. You will not be 
graded only on leaderboard position though. More creative and ambitious projects will be held to lower 

final performance standards than more incremental projects.



“Non-Standard” Projects
• Strongly recommended that you use the “standard” option from the last slide.
• If you have good reason to go beyond this, e.g., you would like to propose a project tied to your PhD 

research, you could do so, but these submissions will go through greater scrutiny for approval.



Lecture 10: Learning Ensembles

CIS 4190/5190

Spring 2023



Decision Tree Shortcomings

# days with fever >= 2?

child age > 3? no
macrolides

no
macrolides

prescribe
macrolides

FT

FT

Decision tree example from: Martignon and Monti. (2010). 
Conditions for risk assessment as a topic for probabilistic 
education. Proceedings of the Eighth International Conference 
on Teaching Statistics (ICOTS8).



Decision Tree Shortcomings

• Hard to manage bias-variance tradeoff
• Small depth à High bias, low variance
• Large depth à Small bias, high variance
• What if we need to grow deeper in some branches but not others?

• Can we manage this tradeoff in a principled way?

• Idea: Random forests
• Grow large decision trees
• Rather than prune, average many of them!



Random Forests

…



Random Forests

• Train many decision trees and average them!
• Large depth à High variance, low bias
• Averaging many decision trees à average away “irrelevant” variance

• Very powerful model family in practice



Ensembles

• More generally, ensembles are an effective strategy for mitigating the 
bias-variance tradeoff

• Approaches so far:
• Different model family
• Feature engineering

• Ensembles:
• Combine models to reduce bias without increasing variance



Ensemble Learning

• Step 1: Learn a set of “base” models !!, … , !"

• Step 2: Construct model $ % that combines predictions of !!, … , !"



Example: Netflix Movie Recommendations

• Goal: Predict how a user will rate a movie based on:
• The user’s ratings for other movies
• Other users’ ratings for this movie (and others)
• No features!

• Netflix Prize (2007-2009): $1 million for the first team to do 10% 
better than the existing Netflix recommendation system

• Winner: BellKor’s Pragmatic Chaos
• An ensemble of 800+ rating systems



Ensembles of Decision Trees

• Strategy 1: Random forests

• Strategy 2: Gradient boosted decision trees

• Among the most powerful and widely-used models for “tabular” data 
(i.e., not images, text, graphs, or other highly structured data)



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Ensemble Design Decisions

• How to learn the base models?

• How to combine the learned base models?



Combining Learned Base Models

• Regression: Average predictions $ % = !
"∑#$!

" !# %
• Works well if the base models have similar performance

% $(%)

!!
…

!"

+



Combining Learned Base Models

• Classification: Majority vote $ % = 1 ∑#$!" !# % ≥ "
% (for binary)

• Can also average probabilities for classification

% $(%)

!!
…

!"

+



Combining Learned Base Models

• Can use weighted average:

$ % =,
#$!

"
-# ⋅ !# %

• Can fit weights using linear regression on second training set

• More generally, can fit a second layer model

$ % = /& !! % ,… , !" %



Combining Learned Base Models

• Second model as “mixture of experts”:

$ % =,
#$!

"
/ % # ⋅ !# %

• Second stage model predicts weights over “experts” !# %



Combining Learned Base Models

• Second model as “mixture of experts”:
• Special case: ! " is one-hot
• Advantage: Only need to run ! " and #! " "

%

!!
…

!"
/

$ % = !# %

0 = / %


