Announcements

- Homework 2 due Tonight at 8pm
- Midterm 1 is Wednesday in class
 - Example exam has been released

Projects

• Teams

- Teams of 3, self-organized
- We'll allow teams of 2, but you'll be graded the same way

Project options

- **Option 1 (computer vision):** Predict GPS coordinates from campus image
- Option 2 (NLP): Predict source of news headline

• Timeline

- Details released after Spring Break (3/17)
- Milestone due mid April, final project due early May (end of semester)

Lecture 13: Review

CIS 4190/5190 Spring 2025

Concepts

• Concepts

- Types of learning
- Loss minimization
- Bias-variance tradeoff
- Maximum likelihood estimation
- Non-parametric models

Algorithms

Algorithms

- What does the model family look like?
- What does the loss function measure?
- How does the optimizer work?
- What is the effect of each design decision and hyperparameter on biasvariance tradeoff and/or optimization?

Concept: Types of Learning

Supervised learning

- Predict unknown output given a new input
- Most common task

Unsupervised learning

- Infer structure in unlabeled data
- Automatically learn features, visualize data, etc.

Reinforcement learning

- Sequential decision-making in unknown environment
- Robotics, control, etc.

Concept: Loss Minimization View

- Model family: What are the candidate models *f*?
- Loss function: How to define "approximating"?
- **Optimizer:** How do we minimize the loss?

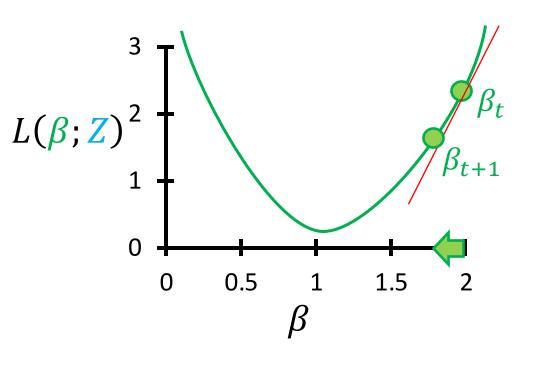
Algorithm: Linear Regression

- Type: Supervised learning
- Model family: Linear functions $f_{\beta}(x) = \beta^{\top} x$
- Loss function: MSE $L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i \beta^{\mathsf{T}} \mathbf{x}_i)^2$
- Optimizer: Gradient descent
- Hyperparameters: Learning rate α , convergence threshold ϵ

Algorithm: Linear Regression

- Initialize $\beta_1 = \vec{0}$
- Repeat until $\|\beta_t \beta_{t+1}\|_2 \le \epsilon$:

 $\beta_{t+1} \leftarrow \beta_t - \alpha \cdot \nabla_\beta L(\beta_t; Z)$



Algorithm: Linear Regression with Features

- Type: Supervised learning
- Model family: Linear functions $f_{\beta}(x) = \beta^{\top} \phi(x)$

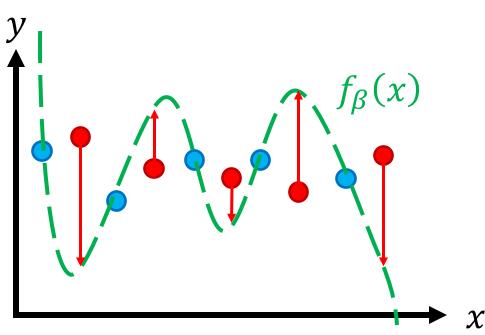
• Loss function: MSE
$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^{\mathsf{T}} \phi(x_i))^2$$

- **Optimizer:** Gradient descent
- Hyperparameters: Feature map ϕ

Concept: Bias-Variance Tradeoff

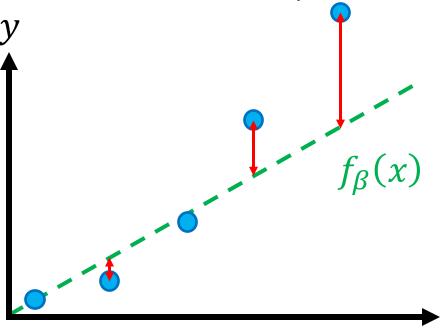
• Overfitting (high variance)

- High capacity model capable of fitting complex data
- Insufficient data to constrain it

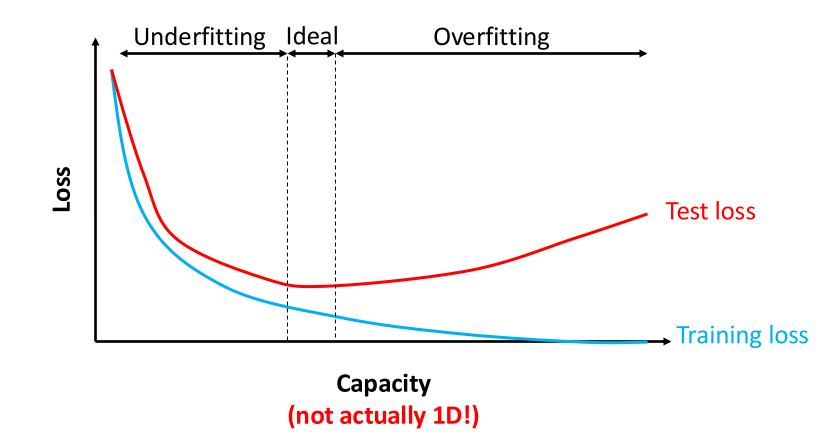


Underfitting (high bias)

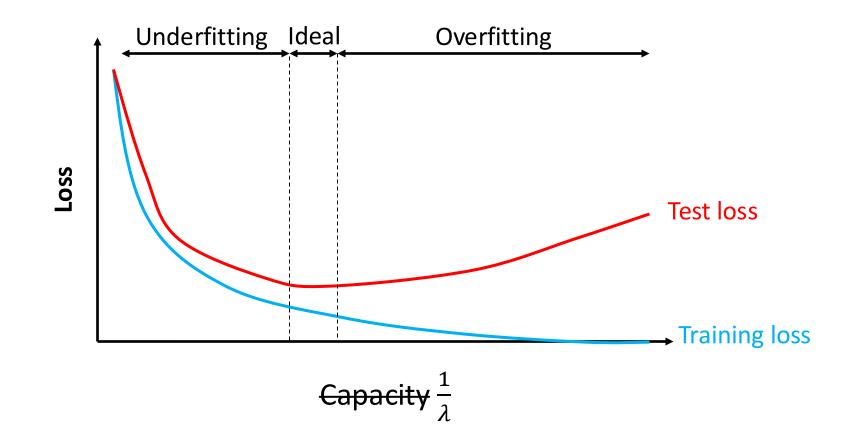
- Low capacity model that can only fit simple data
- Sufficient data but poor fit



Concept: Bias-Variance Tradeoff



Concept: Bias-Variance Tradeoff



Algorithm: L₂ Regularized Linear Regression

- Type: Supervised learning
- Model family: Linear functions $f_{\beta}(x) = \beta^{\top} x$

• Loss function: MSE
$$L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T x_i)^2 + \lambda \cdot \|\beta\|_2^2$$

- Optimizer: Gradient descent
- Hyperparameters: Regularization weight λ

Concept: Maximum Likelihood Estimation

- Model family: What is the likelihood p(y | x)?
- Optimizer: How do we minimize the negative log likelihood (NLL)?

Concept: Maximum Likelihood Estimation

• Model family: Most likely label

$$f_{\beta}(x) = \arg \max_{y} p_{\beta}(y \mid x)$$

• Loss function: Negative log likelihood (NLL)

$$\ell(\beta; \mathbf{Z}) = -\sum_{i=1}^{n} \log p_{\beta}(\mathbf{y}_i \mid \mathbf{x}_i)$$

Algorithm: Linear Regression

• Likelihood: A Gaussian distribution

$$p_{\beta}(y \mid x) = N(y; \beta^{\mathsf{T}}x, 1) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(\beta^{\mathsf{T}}x - y)^2}{2}}$$

• Optimizer: Gradient descent

Algorithm: Linear Regression

• Model family:

$$f_{\beta}(x) = \beta^{\top} x$$

• Negative log likelihood:

$$\ell(\beta; Z) = \frac{n \log(2\pi)}{2} + \sum_{i=1}^{n} (\beta^{\mathsf{T}} x_i - y_i)^2$$

Algorithm: Logistic Regression

• Likelihood: Bernoulli distribution with

$$p_{\beta}(Y = 1 \mid x) = \frac{1}{1 + e^{-\beta^{\mathsf{T}}x}} = \sigma(\beta^{\mathsf{T}}x)$$
$$p_{\beta}(Y = 0 \mid x) = 1 - \sigma(\beta^{\mathsf{T}}x)$$

• Optimizer: Gradient descent

Algorithm: Logistic Regression

• Model family:

$$f_{\beta}(x) = 1(\beta^{\top}x \ge 0)$$

• Negative log likelihood:

$$\ell(\beta; Z) = -\sum_{i=1}^{n} y_i \log(\sigma(\beta^{\mathsf{T}} x_i)) + (1 - y_i) \log(1 - \sigma(\beta^{\mathsf{T}} x_i))$$

Concept: Non-Parametric Models

• Parametric models

• Model family has the form $\{f_{\beta} \mid \beta \in \mathbb{R}^d\}$

• Non-parametric models

- Very high capacity model families that can fit "arbitrary" functions
- Specifically, parameter dimension grows with size of dataset ${\cal Z}$
- **Example:** For decision trees, # internal nodes is O(|Z|)

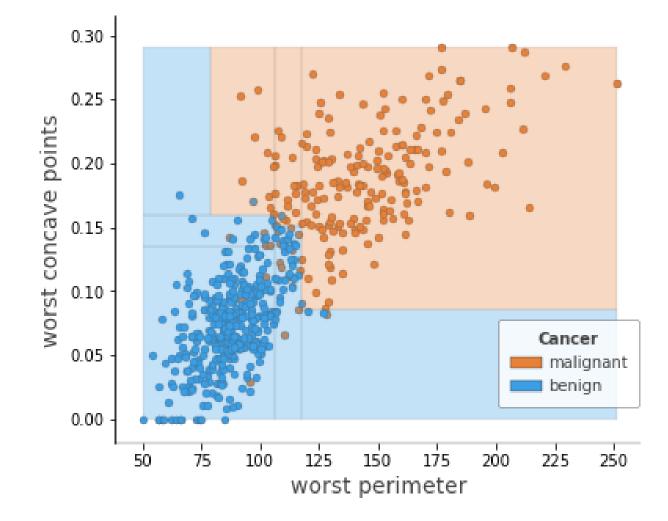
Algorithm: KNN

- Type: Supervised
- Model family: Aggregate labels of k nearest points
 - Parameters are the dataset ("nonparametric")
- Loss function: MSE, accuracy, etc.
- Optimizer: N/A
- Hyperparameters: Aggregation/distance functions, k

Algorithm: Decision Trees

- Type: Supervised
- Model family: Decision trees ($x_i = c$ for categorical, $x_i \le t$ for real)
- Loss function: MSE, accuracy, etc.
- **Optimizer:** CART algorithm
 - Recursively choose nodes based on split that maximizes information gain
 - Early stopping (e.g., minimum gain) or prune using validation set
- Hyperparameters: Gain metric, maximum depth, minimum gain

Algorithm: Decision Trees



Algorithm: Neural Networks

- Type: Supervised, unsupervised
- Model family: Custom composition of parametric layers
 - Nonlinearities
 - Linear/fully-connected, convolution, pooling, recurrent, self-attention
- Loss function: Any differentiable loss
- **Optimizer:** Gradient descent (compute gradient via backpropagation)
 - **Tweaks:** Momentum, adaptive learning rates, schedules, residual connections, initialization, batch normalization, dropout, early stopping
 - Make sure you know how to take partial derivatives!