
Announcements

• HW 4 due next Wednesday (Apr 16th)

• Project Milestone 2 (Status Check-In) due in 2 weeks (Apr 23rd)
• 3-page report

Lecture 22: Ensembles (Part 2)

CIS 4190/5190

Spring 2025

Recap: Ensemble Design Decisions

• How to learn the base models?
• Bagging (randomize dataset)

• Boosting (weighted dataset)

• How to combine the learned base models?
• Averaging (regression) or majority vote (classification)

Recap: Bagging and Boosting

• Bagging (Boostrap Aggregating)
• Main goal is to reduce variance

• Models are trained independently with randomized dataset

• Boosting
• Main goal is to reduce bias

• Models are trained sequentially with weighted dataset

Recap: Bagging

• Step 1: Create bootstrap replicates of the original training dataset

• Excludes 1 −
1

𝑛

𝑛
→

1

𝑒
of the training examples (𝑛 → ∞).

• Step 2: Train a classifier for each replicate

• Step 3 (Optional): Use held-out validation set to weight models
• Can just use average predictions

Recap: Bagging

Original
Training Data

...

𝛽1 𝛽2 𝛽𝑘

...

Recap: Random Forests

• Ensemble of decision trees using bagging
• Typically use simple average (over probabilities for classification)

• Intuition:
• Large decision trees are good nonlinear models, but high variance

• Random forests average over many decision trees to reduce variance without
increasing bias

Recap: Random Forests

• Tweak 1: Randomize features in learning algorithm instead of bagging

• At DT node splitting step, subsample ≈ 𝑑 features

• Allows each tree to use all features, but not at every node

• Aside: If a few features are highly predictive, then they will be selected in
many trees, causing the base models to be highly correlated

• Tweak 2: Train unpruned decision trees
• Ensures base models have higher capacity

• Intuition: Skipping pruning increases variance

Recap: AdaBoost

• Input
• Training dataset 𝑍

• Learning algorithm Train 𝑍, 𝑤 that can handle weights 𝑤

• Hyperparameter 𝑇 indicating number of models to train

• Output
• Ensemble of models 𝐹 𝑥 = σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡 𝑥

Recap: Learning with Weighted Examples

For MSE loss:

ℓ 𝛽; 𝑍, 𝑤 =

𝑖=1

𝑛

𝑤𝑖 ⋅ 𝑦𝑖 − 𝑓𝛽(𝑥𝑖)
2

2

For maximum likelihood estimation:

ℓ 𝛽; 𝑍, 𝑤 =

𝑖=1

𝑛

𝑤𝑖 ⋅ log 𝑝𝛽 𝑦𝑖 𝑥𝑖

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

size represents weight 𝑤𝑖

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

focus on linear classifiers 𝑓𝑡

𝑡 = 1

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

𝑡 = 1

𝛽𝑡 becomes larger as
𝜖𝑡 becomes smaller

• 𝛽𝑡 measures the importance of 𝑓𝑡()
• If 𝜖𝑡 ≤ 0.5, then 𝛽𝑡 ≥ 0

▪ otherwise flip ℎ𝑡‘s predictions

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

𝑡 = 1

Use convention 𝑦𝑖 ∈ −1, +1

If correct (𝑦𝑖 = 𝑓𝑡 𝑥𝑖) then multiply by 𝑒−𝛽𝑡

If incorrect (𝑦𝑖 ≠ 𝑓𝑡 𝑥𝑖) then multiply by 𝑒𝛽𝑡

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

𝑡 = 1

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –
+ –

𝑡 = 2

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –
+ –

𝑡 = 2

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –
+ –

𝑡 = 2

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

+ –

+ –

𝑡 = 3

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

+ –

+ –

𝑡 = 3

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+ –

+ –

+ –

𝑡 = 3

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+

+

+

+
+

+

+ +

+

+ +

𝑡 = 𝑇

AdaBoost

1. 𝑤1 ←
1

𝑛
, … ,

1

𝑛
 (𝑤1,𝑖 weight for 𝑥𝑖 , 𝑦𝑖)

2. for 𝑡 ∈ 1, … , 𝑇
3. 𝑓𝑡 ← Train 𝑍, 𝑤𝑡
4. 𝜖𝑡 ← Error 𝑓𝑡 , 𝑍, 𝑤𝑡

5. 𝛽𝑡 ←
1

2
ln

1−𝜖𝑡

𝜖𝑡

6. 𝑤𝑡+1,𝑖 ∝ 𝑤𝑡,𝑖 ⋅ 𝑒−𝛽𝑡⋅𝑦𝑖⋅𝑓𝑡 𝑥𝑖 (for all 𝑖)
7. return 𝐹 𝑥 = sign(σ𝑡=1

𝑇 𝛽𝑡 ⋅ 𝑓𝑡(𝑥))

+

+

+

+
+

+

+ +

+

+ +

AdaBoost Summary

• Strengths:
• Fast and simple to implement

• No hyperparameters (except for 𝑇)

• Very few assumptions on base models

• Weaknesses:
• Can be susceptible to noise/outliers when there is insufficient data

• No way to parallelize

• Small gains over complex base models

• Specific to classification!

Boosting as Gradient Descent

• Both algorithms: new model = old model + update

• Gradient Descent:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅ ∇𝜃𝐿 𝜃𝑡; 𝑍

• Boosting:

𝐹𝑡+1 𝑥 = 𝐹𝑡 𝑥 + 𝛽𝑡+1 ⋅ 𝑓𝑡+1 𝑥

• Here, 𝐹𝑡 𝑥 = σ𝑖=1
𝑡 𝛽𝑖 ⋅ 𝑓𝑖 𝑥

Boosting as Gradient Descent

• Assuming 𝛽𝑡 = 1 for all 𝑡, then:

𝐹𝑡 𝑥𝑖 + 𝑓𝑡+1 𝑥𝑖 = 𝐹𝑡+1 𝑥𝑖 ≈ 𝑦𝑖

Boosting as Gradient Descent

• Assuming 𝛽𝑡 = 1 for all 𝑡, then:

𝐹𝑡 𝑥𝑖 + 𝑓𝑡+1 𝑥𝑖 = 𝐹𝑡+1 𝑥𝑖 ≈ 𝑦𝑖

• Rewriting this equation, we have

𝑓𝑡+1 𝑥𝑖 = 𝐹𝑡+1 𝑥𝑖 − 𝐹𝑡 𝑥𝑖 ≈ 𝑦𝑖 − 𝐹𝑡 𝑥𝑖

“residuals”, i.e., error of the current model

• In other words, at each step, boosting is training the next model 𝑓𝑡+1
to approximate the residual:

𝑓𝑡+1 𝑥𝑖 ≈ 𝑦𝑖 − 𝐹𝑡 𝑥𝑖

• Idea: Train 𝑓𝑡+1 directly to predict residuals 𝑦𝑖 − 𝐹𝑡 𝑥𝑖

• This strategy works for regression as well!

“residuals”, i.e., error of the current model

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1, … , 𝑇 :
• Step 1: Train 𝑓𝑡+1 using dataset

𝑍𝑡+1 = 𝑥𝑖 , 𝑦𝑖 − 𝐹𝑡 𝑥𝑖 𝑖=1

𝑛

• Step 2: Take

𝐹𝑡+1 𝑥 = 𝐹𝑡 𝑥 + 𝑓𝑡+1 𝑥

• Return the final model 𝐹𝑇

Boosting as Gradient Descent

Boosting as Gradient Descent

• Consider losses of the form

𝐿 𝐹; 𝑍 =
1

𝑛

𝑖=1

𝑛

෨𝐿 𝐹 𝑥𝑖 ; 𝑦𝑖

• In other words, sum of individual label-level losses ෨𝐿 ො𝑦; 𝑦 of a
prediction ො𝑦 = 𝐹 𝑥 if the ground truth label is 𝑦

• For example, ෨𝐿 ො𝑦; 𝑦 =
1

2
𝑦 ̂ − 𝑦 2 yields the MSE loss

Boosting as Gradient Descent

• Residuals are the gradient of the squared error ෨𝐿 ො𝑦; 𝑦 =
1

2
𝑦 − ො𝑦 2:

−
𝜕 ෨𝐿

𝜕 ො𝑦
𝐹𝑡 𝑥𝑖 ; 𝑦𝑖 = 𝑦𝑖 − 𝐹𝑡 𝑥𝑖 = residuali

• For general ෨𝐿, instead of 𝑥𝑖 , 𝑦𝑖 − 𝐹𝑡 𝑥𝑖 𝑖=1

𝑛
 we can train 𝑓𝑡+1 on

𝑍𝑡+1 = 𝑥𝑖 , −
𝜕 ෨𝐿

𝜕 ො𝑦
𝐹𝑡 𝑥𝑖 ; 𝑦𝑖

𝑖=1

𝑛

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1, … , 𝑇 :
• Step 1: Train 𝑓𝑡+1 using dataset

𝑍𝑡+1 = 𝑥𝑖 , 𝑦𝑖 − 𝐹𝑡 𝑥𝑖 𝑖=1

𝑛

• Step 2: Take

𝐹𝑡+1 𝑥 = 𝐹𝑡 𝑥 + 𝑓𝑡+1 𝑥

• Return the final model 𝐹𝑇

Boosting as Gradient Descent

• Algorithm: For each 𝑡 ∈ 1, … , 𝑇 :
• Step 1: Train 𝑓𝑡+1 using dataset

𝑍𝑡+1 = 𝑥𝑖 , −
𝜕 ෨𝐿

𝜕 ො𝑦
𝐹𝑡 𝑥𝑖 ; 𝑦𝑖

𝑖=1

𝑛

• Step 2: Take

𝐹𝑡+1 𝑥 = 𝐹𝑡 𝑥 + 𝑓𝑡+1 𝑥

• Return the final model 𝐹𝑇

Boosting as Gradient Descent

• Casts ensemble learning in the loss minimization framework
• Model family: Sum of base models 𝐹𝑇 𝑥 = σ𝑡=1

𝑇 𝑓𝑡 𝑥

• Loss: Any differentiable loss expressed as

𝐿 𝐹; 𝑍 =

𝑖=1

𝑛

෨𝐿 𝐹 𝑥𝑖 , 𝑦𝑖

• Gradient boosting is a general paradigm for training ensembles with
specialized losses (e.g., most NLL losses)

Gradient Boosting in Practice

• Gradient boosting with depth-limited decision trees (e.g., depth 3) is
one of the most powerful off-the-shelf classifiers available
• Caveat: Inherits decision tree hyperparameters

• XGBoost is a very efficient implementation suitable for production use
• A popular library for gradient boosted decision trees

• Optimized for computational efficiency of training and testing

• Used in many competition winning entries, across many domains

• https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/

Mobile and IoT Computing
CIS 3990

Mobile and IoT Computing
The convergence of sensing, communication, and computation that allows us to:

37

Acquire data from the

environment

Aggregate data from

multiple sources

Analyze data (cloud/edge) and

provide insights about the world

Act based on the data

This course

WHAT?

Sensing Objectives

HOW?

Sensing Modalities

38

Sensing & Computing

Locations Health

Motion & Activity Environment

Radio Acoustic

Inertial Visual

Example Mobile and IoT Systems

39

Through-Wall Vision

Mobile Security
Case Study: Inaudible Voice Commands

Can hack Android/Alexa using inaudible voice commands

What you are expected to learn from this class

Lectures:

• Fundamentals of Mobile and IoT Computing

• How are they applied across various industries?

• What are emerging IoT domains and what does the future of IoT look like?

Labs:

• iOS APIs, including Bluetooth, inertial, basic UI programming

Project:

• Build a physical IoT project using material learnt from class

• Collaboration

43

Course Projects

Course Projects: Two Options

• Project A: Image2GPS
• Predicting camera location based on the photo.

• Project B: News Source Classification
• Classifying the source of a news headline.

Course Projects: Two Parts

• Core Questions:
• Describe how you address the core task (i.e., image2GPS or news source

classification).

• Describe the design, implementation and evaluation of your method/model.

• Exploratory Questions:
• Define your own questions building on top of the core questions.

• E.g., how much can ensembles help?

• E.g., how much can pretrained language model help?

• Motivation, related work, method, results, and discussions.

Course Projects: Evaluation

• Project Report
• Document your method and results for core and exploratory questions
• 3 pages for check-in and 5 pages for the final report

• Colab Notebook with inference results on our test data
• Test data and code will be release later
• Report your performance on the test data
• Submit a Colab notebook with output of the code cells

• Summary Slides

• Demo Video (Optional)

Course Projects: Compute

You are strongly encouraged to use (relatively) small architectures.

• You should be able to use Google Colab for all evaluations

• Inference.ai: GPU compute resources (Juputer Notebook & SSH)

• You may also consider signing up for Amazon SageMaker Studio Lab
• https://studiolab.sagemaker.aws

https://studiolab.sagemaker.aws/

Course Projects: Q & A

	Slide 1: Announcements
	Slide 2: Lecture 22: Ensembles (Part 2)
	Slide 3: Recap: Ensemble Design Decisions
	Slide 4: Recap: Bagging and Boosting
	Slide 5: Recap: Bagging
	Slide 6: Recap: Bagging
	Slide 7: Recap: Random Forests
	Slide 8: Recap: Random Forests
	Slide 9: Recap: AdaBoost
	Slide 10: Recap: Learning with Weighted Examples
	Slide 11: AdaBoost
	Slide 12: AdaBoost
	Slide 13: AdaBoost
	Slide 14: AdaBoost
	Slide 15: AdaBoost
	Slide 16: AdaBoost
	Slide 17: AdaBoost
	Slide 18: AdaBoost
	Slide 19: AdaBoost
	Slide 20: AdaBoost
	Slide 21: AdaBoost
	Slide 22: AdaBoost
	Slide 23: AdaBoost
	Slide 24: AdaBoost Summary
	Slide 25: Boosting as Gradient Descent
	Slide 26: Boosting as Gradient Descent
	Slide 27: Boosting as Gradient Descent
	Slide 28: Boosting as Gradient Descent
	Slide 29: Boosting as Gradient Descent
	Slide 30: Boosting as Gradient Descent
	Slide 31: Boosting as Gradient Descent
	Slide 32: Boosting as Gradient Descent
	Slide 33: Boosting as Gradient Descent
	Slide 34: Boosting as Gradient Descent
	Slide 35: Gradient Boosting in Practice
	Slide 36: Mobile and IoT Computing
	Slide 37: Mobile and IoT Computing
	Slide 38: Sensing & Computing
	Slide 39: Example Mobile and IoT Systems
	Slide 40
	Slide 41: Mobile Security Case Study: Inaudible Voice Commands
	Slide 42
	Slide 43: What you are expected to learn from this class
	Slide 44: Course Projects
	Slide 45: Course Projects: Two Options
	Slide 46: Course Projects: Two Parts
	Slide 47: Course Projects: Evaluation
	Slide 48: Course Projects: Compute
	Slide 49
	Slide 50: Course Projects: Q & A

