Ensembles, Random Forests, and Boosting

Learning objectives
Ensembles: random forests
Review stagewise regression
Know adaboost well
See gradient tree boosting
Ensemble: average many predictors

- **Ensemble method**
 - Weighted combination of T models: $h_t(x)$

$$h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

- Often $\alpha_t = 1$

- **For real values, average** $h_t(x)$
Bagging

- Generate $h_t(x)$ by resampling a fraction f of the n training points for each of T training sets

$$h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

- Often $\alpha_t = 1$

- For real values, average $h_t(x)$
Random Forests

◆ Repeat k times:
 ● Choose a training set by choosing \(f \) \(n \) training cases (with replacement).
 ● Build a decision tree as follows
 ■ For each node of the tree, randomly choose \(m \) features and find the best split from among them
 ● Repeat until the tree is built

◆ To predict, take the modal prediction of the \(k \) trees
 Typical values:
 \(k = 1,000 \quad m = \sqrt{p} \)
Stagewise Regression

- Sequentially learn the weights α_t
 - Never readjust previously learned weights

$$h(x) = \sum_{t=1}^{T} \alpha_t \phi_t(x)$$

$h(x) = 0$

For $t = 1:T$

$$r_t = y - h(x)$$

regress $r_t = \alpha_t \phi_t(x)$ to find α_t

$h(x) := h(x) + \alpha_t \phi_t(x)$
Boosting

◆ Ensemble method
 - Weighted combination of weak learners $h_t(x)$

$$h(x) = sign \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

◆ Estimated stagewise
 - At each stage, boosting gives more weight to what it got wrong before
Adaboost

Given: n examples \((x_i, y_i)\), where \(x \in \mathcal{X}, y \in \pm 1\).

Initialize: \(D_1(i) = \frac{1}{n}\)

For \(t = 1 \ldots T\)

- Train weak classifier on distribution \(D(i), h_t(x) : \mathcal{X} \mapsto \pm 1\)
- Choose weight \(\alpha_t\) (see how below)
- Update: \(D_{t+1}(i) = \frac{D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}}{Z_t}\), for all \(i\), where \(Z_t = \sum_i D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}\)

Output classifier: \(h(x) = \text{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)\)

Where \(\alpha_t\) is the log-odds of the weighted probability of the prediction being wrong

\[
\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t} \quad \epsilon_t = \sum_i D_t(i) \mathbf{1}(y_i \neq h_t(x_i))
\]
Adaboost example

Adaboost minimizes exponential loss

Boosting: \(\exp(-y_if_\alpha(x_i)) \) Logistic: \(\log(1 + \exp(-y_if_w(x_i))) \)
And it learns it exponentially fast

$$\frac{1}{n} \sum_i 1(y_i \neq h(x_i)) \leq \prod_{t=1}^T Z_t \leq \exp\{\sum_t -2(0.5 - \epsilon_t)^2\} \leq \exp\{-2T\gamma^2\}$$

Average Error

where $\gamma = \min_t (0.5 - \epsilon_t)$.

Exponential in stages T and the accuracy of the weak learner γ.
Gradient Tree Boosting

- Current state-of-the-art for moderate-sized data sets
 - on average very slightly better than random forests
- Ensemble of Trees
 - Adaboost used ‘stumps’
Gradient Boosting

- Model: $h(x) = \sum_t \alpha_t h_t(x) + \text{const}$
- Loss function: $L(y, h(x))$
 - L_2 or logistic or …
- Base learner: $h_t(x)$
 - Decision tree of specified depth
- Optionally subsample features
 - “stochastic gradient boosting”
- Do stagewise estimation of $h(x)$
 - Estimate $h_t(x)$ and α_t at each iteration t
1. Initialize model with a constant value:

\[F_0(x) = \arg \min_{\gamma} \sum_{i=1}^{n} L(y_i, \gamma). \]

2. For \(m = 1 \) to \(M \):

 1. Compute so-called \textit{pseudo-residuals}:

 \[r_{im} = - \left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} \right]_{F(x)=F_{m-1}(x)} \quad \text{for } i = 1, \ldots, n. \]

 2. Fit a base learner (e.g. tree) \(h_m(x) \) to pseudo-residuals, i.e. train it using the training set \(\{(x_i, r_{im})\}_{i=1}^{n} \).

 3. Compute multiplier \(\gamma_m \) by solving the following \textit{one-dimensional optimization} problem:

 \[\gamma_m = \arg \min_{\gamma} \sum_{i=1}^{n} L(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)). \]

 4. Update the model:

 \[F_m(x) = F_{m-1}(x) + \gamma_m h_m(x). \]

3. Output \(F_M(x) \).

You are not required to know this.

Translation

\(F(x) \) is \(h(x) \)

\(m \) is stage \(t \)

\(\gamma_m \) is \(\alpha_m \)

For squared error, this is just the standard residual
Gradient Tree Boosting for Regression

- **Loss function:** L_2
- **Base learners** $h_t(x)$
 - Fixed depth regression tree fit on residual
 - Gives a constant prediction for each leaf of the tree
- **Stagewise:** find weights on each $h_t(x)$
 - Fancy version: fit different weights for each leaf of tree
Regularization helps

Subsample = stochastic gradient boosting

Learning rate = shrinkage on α

What you should know

◆ Boosting
 ● Stagewise regression upweighting previous errors
 ● Gives highly accurate ensemble models
 ● Relatively fast
 ● Tends not to overfit (but still: use early stopping!)

◆ Gradient Tree Boosting
 ● "base learner" is a decision tree
 ● Stagewise (on pseudo-residuals)
 ● Very accurate!!!