
Ensembles:
Random Forests and

Boosting
Lyle UngarLearning objectives

Ensembles: random forests
Review stagewise regression
Know adaboost well
See gradient tree boosting

Ensemble: average many predictors
u Ensemble method

l Weighted combination of T weak models: ht(x)

l Often at =1

u For real values, average ht(x)
l I.e., instead of taking the sign, divide by

Ensembles are great!!!
u Why?

Bagging
u Generate ht(x) by resampling a fraction f of the

n training points for each of T training sets

l Often at =1

u For real values, often average ht(x)

When is bagging a good idea?
u Linear regression?
u Decision trees?
u Deep learning?

When is bagging a good idea?
u Linear regression?

l No; when you add a bunch of linear regressions, you still get a
linear regression

u Decision trees?
l Yes; when you add a bunch of decision trees you get a much

more complex decision surface.
u Deep learning?

l It gives better accuracy, but mostly people don’t do it because it is
too expensive

Random Forests
u Repeat k times:

l Choose a training set by choosing f.n training cases
n with replacement (’bootstrapping’)

l Build a decision tree as follows
n For each node of the tree, randomly choose m features and

find the best split from among them
l Repeat until the tree is built

u To predict, take the modal prediction of the k trees
Typical values:
k = 1,000 m = sqrt(p)

Random forests are widely used
u They don’t overfit

l Why not?
l Where is the regularization?

u They don’t underfit (much)
l Why are they so much better than decision trees?
l Than logistic regression?

Stagewise Regression
u Sequentially learn the weights at

l Never readjust previously learned weights
h(x) =

h0(x) = 0
For t =1:T

rt = y – ht-1(x) find residual
pick ft (x) pick next feature
regress rt = at ft (x) to find at
ht (x) = ht-1(x) + at ft(x) update model

f

Boosting
u Ensemble method

l Weighted combination of weak learners ht(x)

u Estimated stagewise
l At each stage, boosting gives more weight to what it got

wrong before

Adaboost

Where at is the log-odds of the weighted probability of the prediction being wrong

Adaboost example
u https://alliance.seas.upenn.edu/~cis520/dynamic/2

021/wiki/index.php?n=Lectures.Boosting

https://alliance.seas.upenn.edu/~cis520/dynamic/2021/wiki/index.php?n=Lectures.Boosting

Adaboost minimizes exponential loss

And it learns it exponentially fast

Average Error Exponential in
stages T and the
accuracy of the
weak learner g

Gradient Tree Boosting
u Current state-of-the-art for moderate-sized data sets

l on average very slightly better than random forests
u Ensemble of Trees

l Adaboost used ‘stumps’

Gradient Boosting
u Model: h(x) = St at ht(x) + const

u Loss function: L(y,h(x))
l L2 or logistic or …

u Base learner: ht(x)
l Decision tree of specified depth

u Optionally subsample features
l “stochastic gradient boosting”

u Do stagewise estimation of h(x)
l Estimate ht(x) and at at each iteration t

Gradient Tree Boosting
for Regression

u Loss function: L2

u Base learners ht(x)
l Fixed-depth regression tree fit on residual
l Gives a constant prediction for each leaf of the tree

u Stagewise: find weights on each ht(x)
l Fancy version: fit different weights for each leaf of tree

Gradient Tree Boosting
u Stagewise estimation h(x) =
u For L2 loss

Initialize h0(x) = average y
For t =1:T

pick fraction f of n observations bag
rt = y – ht-1(x) find residual
fit decision tree: ft (x) pick weak learner
regress rt = at ft (x) to find at not needed here
ht (x) = ht-1(x) + h at ft(x) update model

learning rate h

Gradient Tree Boosting
Regularization

u Tree depth: d
u Number of stages: T
u Bag size: f n
u Learning rate: h

Regularization helps

http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regularization.html

Subsample =
stochastic
gradient
boosting

Learning rate =
shrinkage on a

What you should know
u Boosting

l Stagewise regression, upweighting previous errors
l Gives highly accurate ensemble models
l Relatively fast
l Tends not to overfit (but still: use early stopping!)

u Gradient Tree Boosting
l ”base learner” is a decision tree
l Stagewise (on pseudo-residuals)
l Very accurate!!!

