Ensembles: Random Forests and Boosting

Learning objectives
Ensembles: random forests
Review stagewise regression
Know adaboost well
See gradient tree boosting

Lyle Ungar
Ensemble: average many predictors

- **Ensemble method**
 - Weighted combination of T weak models: $h_t(x)$

 \[
 h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)
 \]

 - Often $\alpha_t = 1$

- **For real values, average $h_t(x)$**
 - *i.e., instead of taking the sign, divide by* $\sum_{t=1}^{T} \alpha_t$
Ensembles are great!!!
Bagging

- Generate $h_t(x)$ by resampling a fraction f of the n training points for each of T training sets

$$h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

- Often $\alpha_t = 1$

- For real values, often average $h_t(x)$
When is bagging a good idea?

- Linear regression?
- Decision trees?
- Deep learning?
When is bagging a good idea?

- **Linear regression?**
 - *No;* when you add a bunch of linear regressions, you still get a linear regression

- **Decision trees?**
 - *Yes;* when you add a bunch of decision trees you get a much more complex decision surface.

- **Deep learning?**
 - It gives better accuracy, but mostly people don’t do it because it is too expensive
Random Forests

- Repeat \(k \) times:
 - Choose a training set by choosing \(f \cdot n \) training cases with replacement (‘bootstrapping’)
 - Build a decision tree as follows
 - For each node of the tree, randomly choose \(m \) features and find the best split from among them
 - Repeat until the tree is built

- To predict, take the modal prediction of the \(k \) trees

Typical values:
\[
k = 1,000 \quad m = \sqrt{p}
\]
Random forests are widely used

- They don’t overfit
 - Why not?
 - Where is the regularization?

- They don’t underfit (much)
 - Why are they so much better than decision trees?
 - Than logistic regression?
Questions?
Stagewise Regression

- Sequentially learn the weights α_t
 - Never readjust previously learned weights

$$h(x) = \sum_{t=1}^{T} \alpha_t \phi_t(x)$$

$h_0(x) = 0$

For $t = 1:T$

- $r_t = y - h_{t-1}(x)$ find residual
- Pick $\phi_t(x)$ pick next feature
- Regress $r_t = \alpha_t \phi_t(x)$ to find α_t
- $h_t(x) = h_{t-1}(x) + \alpha_t \phi_t(x)$ update model
Boosting

- **Ensemble method**
 - Weighted combination of weak learners $h_t(x)$

\[h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]

- **Estimated stagewise**
 - At each stage, boosting gives more weight to what it got wrong before
Adaboost

Given: n examples \((x_i, y_i), \) where \(x \in \mathcal{X}, y \in \pm 1.\)

Initialize: \(D_1(i) = \frac{1}{n}\)

For \(t = 1 \ldots T\)

- Train weak classifier on distribution \(D(i), h_t(x): \mathcal{X} \mapsto \pm 1\)
- Choose weight \(\alpha_t\) (see how below)
- Update: \(D_{t+1}(i) = \frac{D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}}{Z_t}, \) for all \(i,\) where \(Z_t = \sum_i D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}\)

Output classifier: \(h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)\)

Where \(\alpha_t\) is the log-odds of the weighted probability of the prediction being wrong

\[
\alpha_t = \frac{1}{2} \log \frac{1-e_t}{e_t} \quad \epsilon_t = \sum_i D_t(i) 1(y_i \neq h_t(x_i))
\]
Adaboost example

Questions?
Adaboost minimizes exponential loss

Boosting: \(\exp(-y_if_\alpha(x_i)) \) Logistic: \(\log(1 + \exp(-y_if_w(x_i))) \)
And it learns it exponentially fast

\[\frac{1}{n} \sum_i 1(y_i \neq h(x_i)) \leq \prod_{t=1}^T Z_t \leq \exp\left\{ \sum_t -2(0.5 - \epsilon_t)^2 \right\} \leq \exp\{-2T\gamma^2\} \]

Average Error

where \(\gamma = \min_t (0.5 - \epsilon_t) \).

Exponential in stages \(T \) and the accuracy of the weak learner \(\gamma \).
Gradient Tree Boosting

- **Current state-of-the-art for moderate-sized data sets**
 - on average very slightly better than random forests

- **Ensemble of Trees**
 - Adaboost used ‘stumps’
Gradient Boosting

- **Model**: \(h(x) = \sum_t \alpha_t h_t(x) + \text{const} \)
- **Loss function**: \(L(y, h(x)) \)
 - \(L_2 \) or logistic or …
- **Base learner**: \(h_t(x) \)
 - Decision tree of specified depth
- **Optionally subsample features**
 - “stochastic gradient boosting”
- **Do stagewise estimation of \(h(x) \)**
 - Estimate \(h_t(x) \) and \(\alpha_t \) at each iteration \(t \)
1. Initialize model with a constant value:

\[F_0(x) = \arg \min_{\gamma} \sum_{i=1}^{n} L(y_i, \gamma). \]

2. For \(m = 1 \) to \(M \):

 1. Compute so-called pseudo-residuals:

 \[
 r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} \right]_{F(x) = F_{m-1}(x)} \quad \text{for } i = 1, \ldots, n.
 \]

 2. Fit a base learner (e.g. tree) \(h_m(x) \) to pseudo-residuals, i.e. train it using the training set \(\{(x_i, r_{im})\}_{i=1}^{n} \).

 3. Compute multiplier \(\gamma_m \) by solving the following one-dimensional optimization problem:

 \[
 \gamma_m = \arg \min_{\gamma} \sum_{i=1}^{n} L(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)).
 \]

 4. Update the model:

 \[
 F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).
 \]

3. Output \(F_M(x) \).
Gradient Tree Boosting for Regression

- **Loss function:** L_2
- **Base learners** $h_t(x)$
 - Fixed-depth regression tree fit on residual
 - Gives a constant prediction for each leaf of the tree
- **Stagewise:** find weights on each $h_t(x)$
 - Fancy version: fit different weights for each leaf of tree
Regularization helps

Subsample = stochastic gradient boosting

Learning rate = shrinkage on α

What you should know

◆ **Boosting**
 - Stagewise regression, upweighting previous errors
 - Gives highly accurate ensemble models
 - Relatively fast
 - Tends not to overfit (but still: use early stopping!)

◆ **Gradient Tree Boosting**
 - "base learner" is a decision tree
 - Stagewise (on pseudo-residuals)
 - Very accurate!!!
Questions?