Ensembles: Random Forests and Boosting

Learning objectives
Ensembles: random forests
Review stagewise regression
Know adaboost well
See gradient tree boosting

Lyle Ungar
Ensemble: average many predictors

- Ensemble method
 - Weighted combination of T weak models: $h_t(x)$

$$h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

- Often $\alpha_t = 1$

- For real values, average $h_t(x)$
 - i.e., instead of taking the sign, divide by $\sum_{t=1}^{T} \alpha_t$
Ensembles are great!!!

- Why?
Bagging

- Generate $h_t(x)$ by resampling a fraction f of the n training points for each of T training sets

$$h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right)$$

- Often $\alpha_t = 1$
- For real values, often average $h_t(x)$
When is bagging a good idea?

- Linear regression?
- Decision trees?
- Deep learning?
When is bagging a good idea?

◆ **Linear regression?**
 - **No;** when you add a bunch of linear regressions, you still get a linear regression

◆ **Decision trees?**
 - **Yes;** when you add a bunch of decision trees you get a much more complex decision surface.

◆ **Deep learning?**
 - It gives better accuracy, but mostly people don’t do it because it is too expensive
Random Forests

◆ **Repeat k times:**
 - Choose a training set by choosing \(f \cdot n \) training cases
 - with replacement (’bootstrapping’)
 - Build a decision tree as follows
 - For each node of the tree, randomly choose \(m \) features and find the best split from among them
 - Repeat until the tree is built

◆ *To predict, take the modal prediction of the k trees*

Typical values:
\[k = 1,000 \quad m = \sqrt{p} \]
Random forests are widely used

- They don’t overfit
 - Why not?
 - Where is the regularization?

- They don’t underfit (much)
 - Why are they so much better than decision trees?
 - Than logistic regression?
Stagewise Regression

- Sequentially learn the weights α_t
 - Never readjust previously learned weights

$$h(x) = \sum_{t=1}^{T} \alpha_t \phi_t(x)$$

$h_0(x) = 0$

For $t = 1:T$

- $r_t = y - h_{t-1}(x)$ find residual
- Pick $\phi_t(x)$ pick next feature
- Regress $r_t = \alpha_t \phi_t(x)$ to find α_t
- $h_t(x) = h_{t-1}(x) + \alpha_t \phi_t(x)$ update model
Boosting

◆ Ensemble method
 - Weighted combination of weak learners $h_t(x)$

\[h(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \]

◆ Estimated stagewise
 - At each stage, boosting gives more weight to what it got wrong before
Adaboost

Given: n examples \((x_i, y_i)\), where \(x \in \mathcal{X}, y \in \pm 1\).

Initialize: \(D_1(i) = \frac{1}{n}\)

For \(t = 1 \ldots T\)

- Train weak classifier on distribution \(D(i), h_t(x) : \mathcal{X} \mapsto \pm 1\)
- Choose weight \(\alpha_t\) (see how below)
- Update: \(D_{t+1}(i) = \frac{D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}}{Z_t}\), for all \(i\), where \(Z_t = \sum_i D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\}\)

Output classifier: \(h(x) = \text{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)\)

Where \(\alpha_t\) is the log-odds of the weighted probability of the prediction being wrong

\[
\alpha_t = \frac{1}{2} \log \left(\frac{1 - \epsilon_t}{\epsilon_t}\right) \quad \epsilon_t = \sum_i D_t(i) \mathbf{1}(y_i \neq h_t(x_i))
\]
Adaboost example

Questions?
Adaboost minimizes exponential loss

Boosting: $\exp(-y_if_\alpha(x_i))$ Logistic: $\log(1 + \exp(-y_if_w(x_i)))$
And it learns it exponentially fast

\[
\frac{1}{n} \sum_i 1(y_i \neq h(x_i)) \leq \prod_{t=1}^T Z_t \leq \exp\{ \sum_t -2(0.5 - \epsilon_t)^2 \} \leq \exp\{-2T\gamma^2\}
\]

Average Error

where \(\gamma = \min_t (0.5 - \epsilon_t) \).

Exponential in stages T and the accuracy of the weak learner \(\gamma \).
Gradient Tree Boosting

- Current state-of-the-art for moderate-sized data sets
 - on average very slightly better than random forests

- Ensemble of Trees
 - Adaboost used ‘stumps’
Gradient Boosting

- **Model:** $h(x) = \Sigma_t \alpha_t h_t(x) + \text{const}$
- **Loss function:** $L(y, h(x))$
 - L$_2$ or logistic or …
- **Base learner:** $h_t(x)$
 - Decision tree of specified depth
- **Optionally subsample features**
 - “stochastic gradient boosting”
- **Do stagewise estimation of h(x)**
 - Estimate $h_t(x)$ and α_t at each iteration t
Gradient Tree Boosting for Regression

- **Loss function:** L_2
- **Base learners** $h_t(x)$
 - Fixed-depth regression tree fit on residual
 - Gives a constant prediction for each leaf of the tree
- **Stagewise:** find weights on each $h_t(x)$
 - Fancy version: fit different weights for each leaf of tree
Gradient Tree Boosting

- **Stagewise estimation**
 \[h(x) = \sum_{t=1}^{T} \alpha_t h_t(x) \]

- **For L_2 loss**

 Initialize \(h_0(x) = \text{average } y \)

 For \(t = 1:T \)

 - **pick fraction** \(f \) of \(n \) observations
 - **bag**
 - **find residual**
 - **pick weak learner**
 - **not needed here**
 - **update model**

 \[r_t = y - h_{t-1}(x) \]

 fit decision tree: \(\phi_t(x) \)

 regress \(r_t = \alpha_t \phi_t(x) \) to find \(\alpha_t \)

 \[h_t(x) = h_{t-1}(x) + \eta \alpha_t \phi_t(x) \]
Gradient Tree Boosting

- **Tree depth:** d
- **Number of stages:** T
- **Bag size:** $f\,n$
- **Learning rate:** η
Regularization helps

Subsample = stochastic gradient boosting

Learning rate = shrinkage on α

What you should know

Boosting
- Stagewise regression, upweighting previous errors
- Gives highly accurate ensemble models
- Relatively fast
- Tends not to overfit (but still: use early stopping!)

Gradient Tree Boosting
- "base learner" is a decision tree
- Stagewise (on pseudo-residuals)
- Very accurate!!!
Questions?