Online Learning: LMS and Perceptrons

Learning Objectives
Complexity of OLS
LMS = SDG
Perceptron variations
online hinge loss optimization

Note: not on midterm
Why do online learning?

- Batch learning can be expensive for big datasets
 - How expensive is it to compute \((X^TX)^{-1}\)?

A) \(n^3\)
B) \(p^3\)
C) \(np^2\)
D) \(n^2p\)
Why do online learning?

- **Batch learning can be expensive for big datasets**
 - How hard is it to compute \((X^T X)^{-1}\)?
 - \(np^2\) to form \(X^T X\)
 - \(p^3\) to invert
 - Tricky to parallelize inversion

- **Online methods are easy in a map-reduce environment**
 - They are often clever versions of stochastic gradient descent

Have you seen map-reduce/hadoop?

A) Yes
B) No
Online learning methods

- **Least Mean Squares (LMS)**
 - Online regression -- L_2 error

- **Perceptron**
 - Online SVM -- Hinge loss
LMS: Online linear regression

◆ Minimize $\text{Err} = \sum_i (y_i - w^T x_i)^2$ using stochastic gradient descent

 • Look at each observation (x_i, y_i) sequentially and decrease its error $\text{Err}_i = (y_i - w^T x_i)^2$

◆ LMS (Least Mean Squares) algorithm

 • $w_{i+1} = w_i - \eta / 2 \frac{\text{dErr}_i}{\text{dw}_i}$

 • $\frac{\text{dErr}_i}{\text{dw}_i} = -2 (y_i - w_i^T x_i) x_i = -2 r_i x_i$

 $w_{i+1} = w_i + \eta r_i x_i$

Note that i is the index for both the iteration and the observation, since there is one update per observation.

How do you pick the “learning rate” η?
Online linear regression

- LMS (Least Mean Squares) algorithm
 \[w_{i+1} = w_i + \eta r_i x_i \]

- Converges for \(0 < \eta < \lambda_{\text{max}} \)
 - Where \(\lambda_{\text{max}} \) is the largest eigenvalue of the covariance matrix \(X^T X \)

- Convergence rate is proportional to \(\lambda_{\text{min}}/\lambda_{\text{max}} \)
 (ratio of extreme eigenvalues of \(X^T X \))
Perceptron Learning Algorithm

Input: A list T of training examples $\langle \vec{x}_0, y_0 \rangle \ldots \langle \vec{x}_n, y_n \rangle$ where $\forall i : y_i \in \{+1, -1\}$
Output: A classifying hyperplane \vec{w}
Randomly initialize \vec{w};

while model \vec{w} makes errors on the training data do
 for $\langle \vec{x}_i, y_i \rangle$ in T do
 Let $\hat{y} = \text{sign}(\vec{w} \cdot \vec{x}_i)$;
 if $\hat{y} \neq y_i$ then
 $\vec{w} = \vec{w} + y_i \vec{x}_i$;
 end
 end
end

If you were wrong, make \vec{w} look more like \vec{x}

What do we do if error is zero?

Of course, this only converges for linearly separable data
Perceptron Learning Algorithm

For each observation \((x_i, y_i)\)

\[w_{i+1} = w_i + \eta \; r_i \; x_i \]

Where \(r_i = y_i - \text{sign}(w_i^T x_i)\)
and \(\eta = \frac{1}{2}\)

I.e., if we get it right: *no change*

if we got it wrong: \(w_{i+1} = w_i + y_i \; x_i\)

Ho does this relate to SVMs?
Perceptron update

If the prediction at x_1 is wrong, what is the true label y_1?

How do you update w?
Perceptron update example

\[w = w + (-1) x \]
Properties of the simple perceptron

- **Provably:**
 - If it’s possible to separate the data with a hyperplane (i.e. if it’s **linearly separable**), then the algorithm will converge to that hyperplane.
 - And it will converge such that the number of mistakes M it makes is bounded by
 \[M < \frac{R^2}{\gamma^2} \]
 where
 \[R = \max_i \|x_i\|_2 \] size of biggest x
 \[\gamma > y_i w^T x_i \] > 0 if separable
Properties of the Simple Perceptron

But what if it isn’t separable?

- Then perceptron is unstable and bounces around
Voted Perceptron

- Works just like a regular perceptron, except you keep track of all the intermediate models you created.
- When you want to classify something, you let each of the many models vote on the answer and take the majority.

Often implemented after a “burn-in” period.
Properties of Voted Perceptron

◆ Simple!

◆ Much better generalization performance than regular perceptron
 ● Almost as good as SVMs
 ● Can use the ‘kernel trick’ – replace dot product with another kernel

◆ Training is as fast as a regular perceptron

◆ But run-time is slower
 ● Since we need n models
Averaged Perceptron

- The final model is the *average* of all the intermediate models
- Approximation to voted perceptron
- Again extremely simple!
 - and can use kernels
- Nearly as fast to train and exactly as fast to run as regular perceptron
Many possible perceptrons

◆ If point x_i is misclassified
 - $w_{i+1} = w_i + \eta y_i x_i$

◆ Different ways of picking learning rate η

◆ Standard perceptron: $\eta = 1$
 - Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)
 - Can get bounds on error even for non-separable case

◆ Alternate: pick η to maximize the margin $(w_i^T x_i)$ in some fashion
Can we do a better job of picking η?

- **Perceptron:**

For each observation (y_i, x_i)

$$w_{i+1} = w_i + \eta \ r_i \ x_i$$

where $r_i = y_i - \text{sign}(w_i^T x_i)$

and $\eta = \frac{1}{2}$

Let’s use the fact that we are actually trying to minimize a loss function.
Passive Aggressive Perceptron

- Minimize the *hinge loss* at each observation
 - \(L(w_i; x_i, y_i) = 0 \) if \(y_i w_i^T x_i \geq 1 \) (loss 0 if correct with margin > 1)
 - \(1 - y_i w_i^T x_i \) else

- Pick \(w_{i+1} \) to be as close as possible to \(w_i \) while still setting the hinge loss to zero
 - If point \(x_i \) is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - \(w_{i+1} = w_i + \eta y_i x_i \)
 - where \(\eta = L(w_i; x_i, y_i)/||x_i||^2 \)

- Can prove bounds on the total hinge loss
Passive-Aggressive = MIRA

\[w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i \]

easy to show:

\[y_i (w_{i+1} \cdot x_i) = y_i (w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i) \cdot x_i = 1 \]

new score

\[y_i (w_i \cdot x_i + y_i - w_i \cdot x_i) = y_i y_i \]

Moves hyperplane so that new point is on the margin
Margin-Infused Relaxed Algorithm (MIRA)

- *Multiclass*; each class has a prototype vector
 - Note that the prototype \(w \) is like a feature vector \(x \)
- Classify an instance by choosing the class whose prototype vector is *most similar* to the instance
 - *Has the greatest dot product with the instance*
- During training, make the ‘smallest’ change to the prototype vectors which guarantees correct classification by a specified margin
 - “passive aggressive”
Can we parallelize SGD?

- If I give you 1,000 machines, how do you speed SGD up?
What we didn’t cover

- Feature selection
What you should know

- **LMS**
 - Online regression

- **Perceptrons**
 - Online SVM
 - Large margin / hinge loss
 - Has nice mistake bounds (for separable case): see wiki
 - In practice, use averaged perceptrons
 - Passive Aggressive perceptrons and MIRA
 - Change w just enough to set its hinge loss to zero.