Kernels and Kernel Regression

Lyle Ungar

Learning objectives
Kernel definition and examples
RBF algorithm (again)
Kernel regression
What is a kernel?

• $k(x,y)$
 • Measures the similarity between a pair of points x and y
 • Symmetric and positive definite

• **Example: Gaussian kernel**
 • $k(x,y) = \exp(-||x - y||^2/\sigma^2) = \exp(-d(x, y)^2/\sigma^2)$

• **Uses of kernels**
 • RBF
 • Kernel regression
 • SVMs
Kernel definition

A symmetric function $k(x_i, x_j): X \times X \rightarrow \mathbb{R}$ is a positive definite kernel on X if

$$\sum_{i,j} c_i c_j k(x_i, x_j) \geq 0$$

for all $c_i, c_j x_i, x_j$

summed over any set of i,j pairs

We won't actually use this
What is a kernel?

- $k(x, y)$
 - Measures the similarity between a pair of points x and y
 - Symmetric and positive semi-definite (PSD)
 - Often tested using a Kernel Matrix,
 - a PSD matrix K with elements $K_{ij} = k(x_i, x_j)$ from all pairs of rows of a matrix X
 - A PSD matrix has only non-negative eigenvalues
Kernel examples

- **Linear kernel**
 - \(k(x,y) = x^T y \)

- **Gaussian kernel**
 - \(k(x,y) = \exp(-||x - y||^2/\sigma^2) \)

- **Quadratic kernel**
 - \(k(x,y) = (x^T y)^2 \) or \((x^T y + 1)^2 \)

- **Combinations and transformations of kernels**
Radial Basis Functions (RBFs)

1) Pick k basis function centers μ_j using k-means clustering

2) Let $h(x) = w_1 \phi_1(x) + w_2 \phi_2(x) + \ldots w_k \phi_k(x)$

where

$\phi_j(x) = k(x, \mu_j) = \exp(-||x - \mu_j||^2 / C)$

3) Estimate w using linear regression
RBFs can do ...

- **Use $k < p$ basis vectors**
 - Dimensionality reduction
 - Good for high dimensional feature spaces

- **Use $k > p$ basis vectors**
 - Increases the dimensionality
 - Can make a formerly nonlinear problem linear

- **Use $k=n$ basis vectors**
 - Switches to a *dual* representation
Kernel Regression

\[\hat{y}(x) = \frac{\sum_{i=1}^{n} K(x, x_i)y_i}{\sum_{i=1}^{n} K(x, x_i)} \]

Kernel classification

\[\hat{y}(x) = \text{sign}(\sum_{i=1}^{n} K(x, x_i)y_i) \quad y_i = -1, 1 \]
KNN vs Kernel regression

- When is k-NN better than kernel regression?
- When is kernel regression better than k-NN
A kernel $k(x,y)$

- Measures the similarity between a pair of points x and y
- Symmetric and positive semi-definite
- Often tested using a Kernel Matrix,
 - a PSD matrix K with elements $K_{ij} = k(x_i, x_j)$ from all pairs of rows of a matrix X of predictors
 - A PSD matrix has only non-negative eigenvalues
Kernel matrix example

◆ Pick a matrix X

\[
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{pmatrix}
\]

◆ Compute $K_{ij} = k(x_i, x_j)$

◆ Test the eigenvalues

◆ What is K for X using the linear kernel?
How was my speed

A Slow

B Good

C Fast