Exam Wednesday

- In class (unless otherwise arranged)
 - Email me or Ed private post if you have covid - ASAP
- Bubble sheet – **bring pencil and eraser**
- Exams from past years may cover different material
- No office hours or pods W0FSS after the exam
- HW4 due a week from Tuesday
Online Learning: LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard and Mitch Marcus (with lots of original slides by Lyle Ungar)

Learning Objectives
- Complexity of OLS
- LMS = SGD
- Perceptron variations
 - online hinge loss optimization

Note: not on midterm
Online (streaming) learning

- Streaming (in observations) vs streamwise (in features)
- Why do streamwise?
- Why do streaming?
 - Where have we seen streaming?
Why do online learning?

- Batch learning can be expensive for big datasets
 - How expensive is it to compute $(X^TX)^{-1}$?

A) n^3
B) p^3
C) np^2
D) n^2p
Why do online learning?

- **Batch learning can be expensive for big datasets**
 - How hard is it to compute \((X^TX)^{-1}\)?
 - \(np^2\) to form \(X^TX\)
 - \(p^3\) to invert (with a naïve algorithm) Have you seen SVD?
 - Tricky to parallelize inversion (but easy to approximate)

- **Online methods are easy in a map-reduce environment**
 - They are often clever versions of stochastic gradient descent Have you seen map-reduce/hadoop?
Online learning methods

- **Least Mean Squares (LMS)**
 - Online regression -- L_2 error
 - Stochastic gradient descent
 - "Streaming"

- **Perceptron**
 - Online SVM -- Hinge loss
LMS: Online linear regression

◆ Minimize $\text{Err} = \sum_i (y_i - w^T x_i)^2$ using stochastic gradient descent

 ● Look at each observation (x_i, y_i) sequentially and decrease its error: $\text{Err}_i = (y_i - w^T x_i)^2$

◆ LMS (Least Mean Squares) algorithm

 ● $w_{i+1} = w_i - \eta/2 \frac{d\text{Err}_i}{dw_i}$

 ● $\frac{d\text{Err}_i}{dw_i} = -2 (y_i - w_i^T x_i) x_i = -2 r_i x_i$

 $w_{i+1} = w_i + \eta r_i x_i$ \hspace{1cm} How do you pick the “learning rate” η?

Note that i is the index for both the iteration and the observation, since there is one update per observation.
Online linear regression

- LMS (Least Mean Squares) algorithm
 \[w_{i+1} = w_i + \eta r_i x_i \]
- Converges for \(0 < \eta < \lambda_{\text{max}} \)
 - Where \(\lambda_{\text{max}} \) is the largest eigenvalue of the covariance matrix \(X^T X \)
- Convergence rate is proportional to \(\frac{\lambda_{\text{min}}}{\lambda_{\text{max}}} \)
 (ratio of extreme eigenvalues of \(X^T X \))
Perceptron Learning Algorithm

Input: A list T of training examples $\langle \vec{x}_0, y_0 \rangle \ldots \langle \vec{x}_n, y_n \rangle$ where $\forall i : y_i \in \{+1, -1\}$

Output: A classifying hyperplane \vec{w}

Randomly initialize \vec{w};

while model \vec{w} makes errors on the training data do

for $\langle \vec{x}_i, y_i \rangle$ in T do

Let $\hat{y} = \text{sign}(\vec{w} \cdot \vec{x}_i)$;

if $\hat{y} \neq y_i$ then

$\vec{w} = \vec{w} + y_i \vec{x}_i$;

end

end

end

What do we do if error is zero?

Of course, this only converges for linearly separable data
Perceptron Learning Algorithm

For each observation \((x_i, y_i)\)

\[
 w_{i+1} = w_i + \eta r_i x_i
\]

Where \(r_i = y_i - \text{sign}(w_i^T x_i)\)

and \(\eta = \frac{1}{2}\)

i.e., if we get it right: \textit{no change}

if we got it wrong: \(w_{i+1} = w_i + y_i x_i\)

How does this relate to SVMs?
Perceptron update

If the prediction at x_1 is wrong, what is the true label y_1?

How do you update w?
Perceptron update example

\[w = w + (-1) x \]
Properties of the simple perceptron

◆ Provably:
 ● If data are *linearly separable*, then the algorithm will converge to a solution
 ● The number of mistakes M it makes is bounded by
 $$M < \frac{R^2}{\gamma^2}$$
 where
 $$R = \max_i \|x_i\|_2$$ size of biggest x
 $$\gamma < y_i \ w^T x_i > 0 \text{ if separable; } \gamma \text{ is the margin}$$
Properties of the Simple Perceptron

But what if it isn’t separable?

- Then perceptron is unstable and bounces around
Voted Perceptron

- Works just like a regular perceptron, except you keep track of all the intermediate models you created.
- When you want to classify something, you let each of the many models vote on the answer and take the majority.

Often implemented after a “burn-in” period.
Properties of Voted Perceptron

- Much better generalization performance than regular perceptron
 - Almost as good as SVMs
 - Can use the ‘kernel trick’ – replace dot product with another kernel
- Training is as fast as a regular perceptron
- But run-time is slower
 - Since we need \(n \) models
Averaged Perceptron

- The final model is the *average* of all the intermediate models
- Approximation to voted perceptron
- Again extremely simple!
 - and can use kernels
- Nearly as fast to train and exactly as fast to run as regular perceptron
Many possible perceptrons

◆ If point x_i is misclassified

 \[w_{i+1} = w_i + \eta y_i x_i \]

◆ Different ways of picking learning rate η

◆ Standard perceptron: $\eta = 1$

 ◆ Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)
 ◆ Can get bounds on error even for non-separable case

◆ Alternate: pick η to maximize the margin $(w_i^T x_i)$ in some fashion
Can we do a better job of picking η?

- **Perceptron:**

 For each observation (y_i, x_i)

 $$w_{i+1} = w_i + \eta \cdot r_i \cdot x_i$$

 where $r_i = y_i - \text{sign}(w_i^T x_i)$

 and $\eta = \frac{1}{2}$

Let’s use the fact that we are actually trying to minimize a loss function.
Passive Aggressive Perceptron

- Minimize the *hinge loss* at each observation
 - $L(w_i; x_i, y_i) = 0$ if $y_i w_i^T x_i >= 1$ \hspace{1cm} (loss 0 if correct with margin > 1)

 \hspace{1cm} 1 - y_i w_i^T x_i \hspace{1cm} \text{else}

- Pick w_{i+1} to be as close as possible to w_i while still setting the hinge loss to zero
 - If point x_i is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - $w_{i+1} = w_i + \eta y_i x_i$
 - where $\eta = L(w_i; x_i, y_i)/||x_i||^2$

- Can prove bounds on the total hinge loss
Passive-Aggressive = MIRA

\[w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i \]

easy to show:

\[y_i (w_{i+1} \cdot x_i) = y_i (w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i) \cdot x_i = 1 \]

new score

\[y_i (w_i \cdot x_i + y_i - w_i \cdot x_i) = y_i y_i \]

Moves hyperplane so that new point is on the margin
Margin-Infused Relaxed Algorithm (MIRA)

- **Multiclass**: each class has a prototype vector
 - Note that the prototype w is like a feature vector x
- Classify an instance by choosing the class whose prototype vector is *most similar* to the instance
 - *Has the greatest dot product with the instance*
- During training, make the ‘smallest’ change to the prototype vectors which guarantees correct classification by a specified margin
 - “passive aggressive”
Can we parallelize SGD?

- If I give you 1,000 machines, how do you speed SGD up?
What we didn’t cover

- Feature selection in online learning (tricky)
What you should know

◆ LMS
 ● Online regression

◆ Perceptrons
 ● Online SVM
 ■ Large margin / hinge loss
 ● Has nice mistake bounds (for separable case): see wiki
 ● In practice, use averaged perceptrons
 ● Passive Aggressive perceptrons and MIRA
 ■ Change \(w \) just enough to set its hinge loss to zero.