Exam Wednesday

◆ Exam will go live on canvas Wed at 10:30 am ET
 ● I will post a message and link on piazza
 ● 80 minutes exam, open book
 ● You have 3 hours (one sitting) over the 24 hour period

◆ We will answer private posts to piazza during specified times (starting 10:30 am and 10:30 pm)

◆ No office hours on Wednesday

◆ Study groups (piazza)

◆ Don’t cheat!
Online Learning: LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by Lyle Ungar)

Learning Objectives
Complexity of OLS
LMS = SGD
Perceptron variations
online hinge loss optimization

Note: not on midterm
Why do online learning?

- Batch learning can be expensive for big datasets
 - How expensive is it to compute $(X^TX)^{-1}$?

A) n^3
B) p^3
C) np^2
D) n^2p
Why do online learning?

- **Batch learning can be expensive for big datasets**
 - How hard is it to compute $(X^TX)^{-1}$?
 - np^2 to form X^TX
 - p^3 to invert
 - Tricky to parallelize inversion

- **Online methods are easy in a map-reduce environment**
 - They are often clever versions of stochastic gradient descent

Have you seen map-reduce/hadoop?

A) Yes
B) No
Online learning methods

- **Least Mean Squares (LMS)**
 - Online regression -- L₂ error
 - “Streaming”

- **Perceptron**
 - Online SVM -- Hinge loss
LMS: Online linear regression

- Minimize \(\text{Err} = \sum_i (y_i - w^T x_i)^2 \) using stochastic gradient descent
 - Look at each observation \((x_i, y_i)\) sequentially and decrease its error \(\text{Err}_i = (y_i - w^T x_i)^2 \)

- LMS (Least Mean Squares) algorithm
 - \(w_{i+1} = w_i - \eta / 2 \frac{d\text{Err}_i}{dw_i} \)
 - \(\frac{d\text{Err}_i}{dw_i} = -2 (y_i - w_i^T x_i) x_i = -2 r_i x_i \)
 - \(w_{i+1} = w_i + \eta r_i x_i \)

How do you pick the “learning rate” \(\eta \)?

Note that \(i \) is the index for both the iteration and the observation, since there is one update per observation.
Online linear regression

- **LMS (Least Mean Squares) algorithm**

 $$ w_{i+1} = w_i + \eta r_i x_i $$

- **Converges for** $0 < \eta < \lambda_{\text{max}}$
 - Where λ_{max} is the largest eigenvalue of the covariance matrix $X^T X$

- **Convergence rate is proportional to** $\lambda_{\text{min}}/\lambda_{\text{max}}$
 (ratio of extreme eigenvalues of $X^T X$)
Perceptron Learning Algorithm

Input: A list \(T \) of training examples \(\langle \vec{x}_0, y_0 \rangle \ldots \langle \vec{x}_n, y_n \rangle \) where \(\forall i : y_i \in \{+1, -1\} \)

Output: A classifying hyperplane \(\vec{w} \)

Randomly initialize \(\vec{w} \);

while model \(\vec{w} \) makes errors on the training data **do**

for \(\langle \vec{x}_i, y_i \rangle \) **in** \(T \) **do**

Let \(\hat{y} = \text{sign}(\vec{w} \cdot \vec{x}_i) \);

if \(\hat{y} \neq y_i \) **then**

\[\vec{w} = \vec{w} + y_i \vec{x}_i; \]

end

end

end

If you were wrong, make \(w \) look more like \(x \)

What do we do if error is zero?

Of course, this only converges for linearly separable data
Perceptron Learning Algorithm

For each observation \((x_i, y_i)\)

\[w_{i+1} = w_i + \eta \cdot r_i \cdot x_i \]

Where \(r_i = y_i - \text{sign}(w_i^T x_i)\)

and \(\eta = \frac{1}{2}\)

i.e., if we get it right: no change

if we got it wrong: \(w_{i+1} = w_i + y_i \cdot x_i\)

How does this relate to SVMs?
Perceptron update

If the prediction at x_1 is wrong, what is the true label y_1?

How do you update w?
Perceptron update example

\[w = w + (-1) x \]
Properties of the simple perceptron

Provably:

- If it’s possible to separate the data with a hyperplane (i.e. if it’s \textit{linearly separable}), then the algorithm will converge to that hyperplane.
- And it will converge such that the number of mistakes \(M \) it makes is bounded by

\[M < \frac{R^2}{\gamma^2} \]

where

\[R = \max_i ||x_i||_2 \quad \text{size of biggest } x \]

\[\gamma > y_i \mathbf{w}^T \mathbf{x}_i > 0 \text{ if separable} \]
Properties of the Simple Perceptron

But what if it isn’t separable?

- Then perceptron is unstable and bounces around
Voted Perceptron

- Works just like a regular perceptron, except you keep track of all the intermediate models you created.
- When you want to classify something, you let each of the many models vote on the answer and take the majority.

Often implemented after a “burn-in” period.
Properties of Voted Perceptron

◆ Simple!
◆ Much better generalization performance than regular perceptron
 ● Almost as good as SVMs
 ● Can use the ‘kernel trick’ – replace dot product with another kernel
◆ Training is as fast as a regular perceptron
◆ But run-time is slower
 ● Since we need \(n \) models
Averaged Perceptron

- The final model is the *average* of all the intermediate models
- Approximation to voted perceptron
- Again extremely simple!
 - and can use kernels
- Nearly as fast to train and exactly as fast to run as regular perceptron
Many possible perceptrons

- If point x_i is misclassified
 - $w_{i+1} = w_i + \eta y_i x_i$

- Different ways of picking learning rate η

- Standard perceptron: $\eta = 1$
 - Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)
 - Can get bounds on error even for non-separable case

- Alternate: pick η to maximize the margin $(w_i^T x_i)$ in some fashion
Can we do a better job of picking η?

- **Perceptron:**

 For each observation (y_i, x_i)

 $$w_{i+1} = w_i + \eta \ r_i \ x_i$$

 where $r_i = y_i - \text{sign}(w_i^T x_i)$

 and $\eta = \frac{1}{2}$

Let’s use the fact that we are actually trying to minimize a loss function
Passive Aggressive Perceptron

- Minimize the *hinge loss* at each observation
 - \(L(w_i; x_i, y_i) = 0 \) if \(y_i w_i^T x_i \geq 1 \) \hspace{1cm} (loss 0 if correct with margin > 1)
 \[1 - y_i w_i^T x_i \] else

- Pick \(w_{i+1} \) to be as close as possible to \(w_i \) while still setting the hinge loss to zero
 - If point \(x_i \) is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - \(w_{i+1} = w_i + \eta y_i x_i \)
 - where \(\eta = \frac{L(w_i; x_i, y_i)}{||x_i||^2} \)

- Can prove bounds on the total hinge loss
Passive-Aggressive = MIRA

\[w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i \]

easy to show:
\[y_i (w_{i+1} \cdot x_i) = y_i (w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i) \cdot x_i = 1 \]

new score \[y_i (w_i \cdot x_i + y_i - w_i \cdot x_i) = y_i \]

Moves hyperplane so that new point is on the margin
Margin-Infused Relaxed Algorithm (MIRA)

- **Multiclass**: each class has a prototype vector
 - Note that the prototype w is like a feature vector x
- Classify an instance by choosing the class whose prototype vector is *most similar* to the instance
 - *Has the greatest dot product with the instance*
- During training, make the ‘smallest’ change to the prototype vectors which guarantees correct classification by a specified margin
 - “passive aggressive”
Can we parallelize SGD?

‣ If I give you 1,000 machines, how do you speed SGD up?
What we didn’t cover

- Feature selection
What you should know

LMS
- Online regression

Perceptrons
- Online SVM
 - Large margin / hinge loss
- Has nice mistake bounds (for separable case): see wiki
- In practice, use averaged perceptrons
- Passive Aggressive perceptrons and MIRA
 - Change w just enough to set its hinge loss to zero.