Exam Wednesday

- Exam will go live on canvas Wed at 10:30 am ET
 - I will post a message and link on piazza
 - 80 minutes exam, open book
 - You have 3 hours (one sitting) over the 24 hour period

- We will answer private posts to piazza during specified times (starting 10:30 am and 10:30 pm)

- No office hours on Wednesday

- Study groups (piazza)

- Don’t cheat!
Online Learning: LMS and Perceptrons

Partially adapted from slides by Ryan Gabbard and Mitch Marcus (and lots original slides by Lyle Ungar)

Learning Objectives
Complexity of OLS
LMS = SGD
Perceptron variations
 online hinge loss optimization

Note: not on midterm
Why do online learning?

- Batch learning can be expensive for big datasets
 - How expensive is it to compute \((X^TX)^{-1}\)?

A) \(n^3\)
B) \(p^3\)
C) \(np^2\)
D) \(n^2p\)
Why do online learning?

- **Batch learning can be expensive for big datasets**
 - How hard is it to compute \((X^TX)^{-1}\) ?
 - \(np^2\) to form \(X^TX\)
 - \(p^3\) to invert
 - Tricky to parallelize inversion

- **Online methods are easy in a map-reduce environment**
 - They are often clever versions of stochastic gradient descent

 Have you seen map-reduce/hadoop?

 A) Yes
 B) No
Online learning methods

- **Least Mean Squares (LMS)**
 - Online regression -- L_2 error
 - “Streaming”

- **Perceptron**
 - Online SVM -- Hinge loss
LMS: Online linear regression

◆ Minimize $\text{Err} = \sum_{i} (y_i - w^T x_i)^2$ using stochastic gradient descent

 ● Look at each observation (x_i, y_i) sequentially and decrease its error $\text{Err}_i = (y_i - w^T x_i)^2$

◆ LMS (Least Mean Squares) algorithm

 ● $w_{i+1} = w_i - \eta / 2 \frac{d\text{Err}_i}{dw_i}$

 ● $\frac{d\text{Err}_i}{dw_i} = -2 (y_i - w_i^T x_i) x_i = -2 r_i x_i$

 $w_{i+1} = w_i + \eta r_i x_i$

How do you pick the “learning rate” η?

Note that i is the index for both the iteration and the observation, since there is one update per observation.
Online linear regression

- **LMS (Least Mean Squares) algorithm**
 \[w_{i+1} = w_i + \eta r_i x_i \]
 - Converges for \(0 < \eta < \lambda_{\text{max}} \)
 - Where \(\lambda_{\text{max}} \) is the largest eigenvalue of the covariance matrix \(X^T X \)

- **Convergence rate is proportional to** \(\lambda_{\text{min}} / \lambda_{\text{max}} \)
 (ratio of extreme eigenvalues of \(X^T X \))
Perceptron Learning Algorithm

Input: A list T of training examples $\langle \vec{x}_0, y_0 \rangle \ldots \langle \vec{x}_n, y_n \rangle$ where $\forall i : y_i \in \{+1, -1\}$

Output: A classifying hyperplane \vec{w}

Randomly initialize \vec{w};

while model \vec{w} makes errors on the training data do

for $\langle \vec{x}_i, y_i \rangle$ in T do

Let $\hat{y} = \text{sign}(\vec{w} \cdot \vec{x}_i)$;

if $\hat{y} \neq y_i$ then

$$\vec{w} = \vec{w} + y_i \vec{x}_i;$$

end

end

end

If you were wrong, make w look more like x

What do we do if error is zero?

Of course, this only converges for linearly separable data
Perceptron Learning Algorithm

For each observation \((x_i, y_i)\)

\[w_{i+1} = w_i + \eta \ r_i \ x_i \]

Where \(r_i = y_i - \text{sign}(w_i^T x_i)\)

and \(\eta = \frac{1}{2}\)

i.e., if we get it right: no change

if we got it wrong: \(w_{i+1} = w_i + y_i \ x_i\)

How does this relate to SVMs?
Perceptron update

If the prediction at x_1 is wrong, what is the true label y_1?

How do you update w?
Perceptron update example

\[\mathbf{w} = \mathbf{w} + (-1) \mathbf{x} \]
Properties of the simple perceptron

◆ Provably:

- If it’s possible to separate the data with a hyperplane (i.e. if it’s \textit{linearly separable}), then the algorithm will converge to that hyperplane.

- And it will converge such that the number of mistakes M it makes is bounded by
 \[M < R^2/\gamma^2 \]
 where
 \[R = \max_i ||x_i||_2 \quad \text{size of biggest } x \]
 \[\gamma < y_i \mathbf{w}^\top x_i \quad > 0 \text{ if separable; } \gamma \text{ is the margin} \]
Properties of the Simple Perceptron

But what if it isn’t separable?

- Then perceptron is unstable and bounces around
Voted Perceptron

- Works just like a regular perceptron, except you keep track of all the intermediate models you created.
- When you want to classify something, you let each of the many models vote on the answer and take the majority.

Often implemented after a “burn-in” period.
Properties of Voted Perceptron

- Simple!
- Much better generalization performance than regular perceptron
 - Almost as good as SVMs
 - Can use the ‘kernel trick’ – replace dot product with another kernel
- Training is as fast as a regular perceptron
- But run-time is slower
 - Since we need n models
Averaged Perceptron

- The final model is the *average* of all the intermediate models.
- Approximation to voted perceptron.
- Again extremely simple!
 - and can use kernels
- Nearly as fast to train and exactly as fast to run as regular perceptron.
Many possible perceptrons

- If point x_i is misclassified
 - $w_{i+1} = w_i + \eta y_i x_i$
- Different ways of picking learning rate η
- Standard perceptron: $\eta = 1$
 - Guaranteed to converge to the correct answer in a finite time if the points are separable (but oscillates otherwise)
 - Can get bounds on error even for non-separable case
- Alternate: pick η to maximize the margin $(w_i^T x_i)$ in some fashion
Can we do a better job of picking η?

- **Perceptron**:

 For each observation (y_i, x_i)

 $$w_{i+1} = w_i + \eta \ r_i \ x_i$$
 where $r_i = y_i - \text{sign}(w_i^T x_i)$
 and $\eta = \frac{1}{2}$

 Let’s use the fact that we are actually trying to minimize a loss function
Passive Aggressive Perceptron

- Minimize the *hinge loss* at each observation
 - \(L(w_i; x_i, y_i) = 0 \) if \(y_i w_i^T x_i \geq 1 \) (loss 0 if correct with margin > 1)
 \[1 - y_i w_i^T x_i \] else

- Pick \(w_{i+1} \) to be as close as possible to \(w_i \) while still setting the hinge loss to zero
 - If point \(x_i \) is correctly classified with a margin of at least 1
 - no change
 - Otherwise
 - \(w_{i+1} = w_i + \eta y_i x_i \)
 - where \(\eta = L(w_i; x_i, y_i) / \|x_i\|^2 \)

- Can prove bounds on the total hinge loss
Passive-Aggressive = MIRA

\[w_{i+1} = w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i \]

easy to show:

\[y_i (w_{i+1} \cdot x_i) = y_i \left(w_i + \frac{y_i - w_i \cdot x_i}{\|x_i\|^2} x_i \right) \cdot x_i = 1 \]

new score

\[y_i (w_i \cdot x_i + y_i - w_i \cdot x_i) = y_i y_i \]

Moves hyperplane so that new point is on the margin
Margin-Infused Relaxed Algorithm (MIRA)

- Multiclass; each class has a prototype vector
 - Note that the prototype w is like a feature vector x
- Classify an instance by choosing the class whose prototype vector is *most similar* to the instance
 - Has the greatest dot product with the instance
- During training, make the ‘smallest’ change to the prototype vectors which guarantees correct classification by a specified margin
 - “passive aggressive”
Can we parallelize SGD?

- If I give you 1,000 machines, how do you speed SGD up?
What we didn’t cover

- Feature selection
What you should know

◆ LMS
 ● Online regression

◆ Perceptrons
 ● Online SVM
 ■ Large margin / hinge loss
 ● Has nice mistake bounds (for separable case): see wiki
 ● In practice, use averaged perceptrons
 ● Passive Aggressive perceptrons and MIRA
 ■ Change w just enough to set its hinge loss to zero.