Neural Networks: Deep Learning (2)

Lyle Ungar

Multilevel network: architecture, link functions
CNNs: local receptive fields, max pooling

Regularization: L_2, early stopping, dropout
Gradient Descent (again + Adgrad)
Semi-supervised and transfer learning
Visualization
Modern deep nets

- Often use rectified linear units (ReLUs)
 - Faster, less problems of saturation than logistic
- Use a variety of loss functions
 - Cross-entropy with softmax
- Can be very deep
- Solved with mini-batch gradient descent
- Regularized using L_1 and L_2 penalty plus “dropout”
 - and partial convergence and ..

\[
\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad \text{for} \ j = 1, \ldots, K.
\]
Regularization

- L_2 and/or L_1
- Early stopping
- Max norm (L_∞)
 - Weight clipping
 - Gradient clipping
- Dropout

Dropout

- Randomly (temporarily) remove a fraction p of the nodes (with replacement)
 - Usually, $p = 1/2$
- Repeatedly doing this samples (in theory) over exponentially many networks
 - Bounces the network out of local minima
- For the final network use all the weights, but shrink them by p
Gradient descent

- **Gradient descent**
 - Minibatch
 - Gradient clipping

- **Momentum**

- **Learning rate adaptation**
 - Adagrad and friends

\[
\frac{\delta Err}{\delta w} = \frac{Err(w+h) - Err(w-h)}{2h}
\]

\[
\Delta w^t = \eta \frac{\delta Err}{\delta w} + m \Delta w^{t-1}
\]
Learning rate adaption

- Adjust the learning rate over time

\[\Delta w^t = \eta(t) \frac{\delta Err}{\delta w} \]

- Adagrad: make the learning rate depend on previous changes in each weight
 - increases the learning rate for more sparse parameters and decreases the learning rate for less sparse ones.

\[\Delta w^t_j = \frac{\eta}{||\delta w^t_j||_2} \frac{\delta Err}{\delta w_j} \]
Learning rate

- Very high learning rate
- Low learning rate
- High learning rate
- Good learning rate

Feature Scaling (standardizing)

- **Idea:** Ensure that features have similar scales

- Can do this for hidden layer outputs as well for each minibatch

- Makes gradient descent converge much faster

Is deep learning scale invariant?
A word on hyperparameters

◆ Regularization
 ● L1, L2
 ● Dropout
 ● Early stopping
 ● Learning rate

◆ Architecture
 ● Number of layers, and nodes/layer
 ● Filter, maxpool, fully connected
Lots of fancy network structures

Convolutional (different sizes)
Or fully connected
Maxpool
Concatenation
Softmax
Some layers use dropout

googlenet
Validation classification
Validation classification

<table>
<thead>
<tr>
<th>Object</th>
<th>Object</th>
<th>Object</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>lens cap</td>
<td>abacus</td>
<td>slug</td>
<td>hen</td>
</tr>
<tr>
<td>reflex camera</td>
<td>Polaroid camera</td>
<td>typewriter keyboard</td>
<td>slug</td>
</tr>
<tr>
<td>pencil sharpener</td>
<td>switch</td>
<td>space bar</td>
<td>zucchini</td>
</tr>
<tr>
<td>combination lock</td>
<td>computer keyboard</td>
<td>common newt</td>
<td>ground beetle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>water snake</td>
<td></td>
</tr>
<tr>
<td>tiger</td>
<td>chambered nautilus</td>
<td>tape player</td>
<td>planetarium</td>
</tr>
<tr>
<td>tiger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tiger cat</td>
<td>tabby</td>
<td></td>
<td></td>
</tr>
<tr>
<td>boxer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saint Bernard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lampshade</td>
<td>throne goblet</td>
<td>cellular telephone</td>
<td>dome</td>
</tr>
<tr>
<td></td>
<td>table lamp</td>
<td>reflex camera dial telephone</td>
<td>mosque</td>
</tr>
<tr>
<td></td>
<td>hamper</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>radio telescope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>steel arch bridge</td>
</tr>
</tbody>
</table>
Validation localizations
Retrieval experiments

First column contains query images from ILSVRC-2010 test set, remaining columns contain retrieved images from training set.
Now used for image search; Benefit: Good Generalization

Both recognized as “meal”

Jeff Dean, google
Sensible Errors (sometimes)

“snake”

“dog”

Jeff Dean, google
Now used for image search

Works in practice… for real users

Jeff Dean, google
Now used for image search

Works in practice… for real users

Google Plus photo search is awesome. Searched with keyword 'Drawing' to find all my scribbles at once :D

Jeff Dean, google
Transfer learning

- Use one data set \((X_0, y_0)\) to train a model
- Find feature transformations \(\phi(x)\)
- Use those transformations \(\phi(x)\) on data from data set with a different label, \(y\).

\[\begin{array}{c}
\text{\(X_0\)} \\
\text{Data set for learning } \phi(x) \\
\end{array} \quad \begin{array}{c}
\text{\(y_0\)} \\
\end{array} \quad \begin{array}{c}
\text{\(X\)} \\
\text{Data set with target } y \\
\end{array} \]
Transfer learning for NNets

Data set for learning $\phi(x)$

Data set with target y.
New AI can guess whether you're gay or straight from a photograph

An algorithm deduced the sexuality of people on a dating site with up to 91% accuracy, raising tricky ethical questions
Deep neural networks are more accurate than humans at detecting sexual orientation from facial images.

Michal Kosinski & Yilun Wang

We show that faces contain much more information about sexual orientation than can be perceived and interpreted by the human brain. We used deep neural networks to extract features from 35,326 facial images. These features were entered into a logistic regression aimed at classifying sexual orientation. Given a single facial image, a classifier could correctly distinguish between gay and heterosexual men in 81% of cases, and in 74% of cases for women. Human judges achieved much lower accuracy: 61% for men and 54% for women. The accuracy of the algorithm increased to 91% and 83%, respectively, given five facial images per person. Facial features employed by the classifier included both fixed (e.g., nose shape) and transient facial features (e.g., grooming style). Consistent with the prenatal hormone theory of sexual orientation, gay men and women tended to have gender-atypical facial morphology, expression, and grooming styles. … Additionally, given that companies and governments are increasingly using computer vision algorithms to detect people’s intimate traits, our findings expose a threat to the privacy and safety of gay men and women.

https://osf.io/fk3xr/ 2017
Deep learning case study

- Download images and labels from a dating site where people declare their sexual orientation
- Only keep images with a single “good” face
 - Use Face++ to identify faces -- yielded 35,000 faces
- Use M-turkers to QC & restrict to Caucasians
- Use pretrained CNN to compute ~ 4,000 ‘scores’/image
 - VGG-Face was trained on 2.6 million faces
- Use logistic regression on SVD of the 4,000 scores
 - report cross-validation error predicting gay/straight
Limitations of NNs

- For many problems, tree ensemble methods are better than NNs. Why?
Visualizing networks

- Display pattern of hidden unit activations
 - Just shows they are distributed and sparse
 - Better: feed activations into a linear model to predict something

- Show input that maximizes a node’s output
 - Over all inputs in the training set
 - Over the space of possible inputs

- Show effect of occluding parts of an image on classification accuracy

http://cs231n.github.io/understanding-cnn/
What happens where

- **In CNN’s for images**
 - Early layers do feature detection
 - Later layers do object detection

- **In Neural nets for language**
 - Early layers do Part of Speech detection
 - Later layers do co-references …
Maximally activating inputs for the first CONV layer of an AlexNet

http://cs231n.github.io/understanding-cnn/
Maximally activating images for some 5th maxpool layer neurons of an AlexNet.
P(correct label) after occlusion
What you should know

- CNN
 - local receptive field, max pooling
- Rectified Linear Unit (ReLU)
- At least four kinds of regularization
 - Dropout
- Back-propagation, momentum, Adagrad, mini-batch
- Transfer learning