Uses of PCA

Lyle Ungar

Learning objectives
PCA for feature creation
PCR, Semi-supervised learning
PCA for visualization
Eigenfaces: see the worksheet
Eigenwords: word embeddings
1. Do a PCA on X to get scores Z and loadings V

2. Do OLS regression using Z as features

$$y = w \cdot z \quad w = (Z^T Z)^{-1} Z^T Y$$

For future predictions, use $z = V^T x$

$$y = w \cdot V^T x$$
PCR

- How to find z for a new x?
 - \(X = ZV^T \)
 - \(x^T V = z^T VTV = z^T \)
 - \(z = V^T x \)
Semi-supervised learning

- Use unlabeled data X_0 to derive new features $z = \phi(x)$
- Train $y = f(\phi(x), w)$
Semi-supervised PCR

1a. Do a PCA on a big X_u to get loadings V

1b. Project X (with labels y) to get scores Z

2. Do OLS regression using Z as features

$$ y = w \cdot z \quad w = (Z^T Z)^{-1} Z^T Y $$

For future predictions, use $z = V^T x$

$$ y = w \cdot V^T x $$
Semi-Supervised Learning

- Hypothesis: $P(c|x)$ can be more accurately computed using shared structure with $P(x)$
Semi-Supervised Learning

- Hypothesis: $P(c|x)$ can be more accurately computed using shared structure with $P(x)$

from Socher and Manning
PCA for visualization

- Project original observations, x, into 2 dimensions
 - PCA minimizes reconstruction error
 - This is one of many ways of trying to make points that were close in m dimensions still be close in 2 dimensions

- Look at the loadings
 - Often prefer sparse loadings
Country well-being

import OECD data
df_OECD = pd.read_csv('http://www.cis.upenn.edu/~cis545/OECD_well-being.csv')
df_OECD
X, country = df_OECD.iloc[:,1:].values, df_OECD.iloc[:,0].values

sc = StandardScaler()
X_std = sc.fit_transform(X)

def plot_points(X, labels):
 plt.scatter(X[:,0],X[:,1])
 for i, txt in enumerate(labels):
 plt.annotate(txt, (X[i,0],X[i,1]))
 plt.show()

plot PCA
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca.fit(X_std)
X_PCA = pca.transform(X_std)
plot_points(X_PCA,country)
Second principal component
OCED PCA loadings

0 Dwellings without basic facilities
1 Housing expenditure
2 Rooms per person
3 Household net adjusted disposable income
4 Household net financial wealth
5 Labour market insecurity
6 Employment rate
7 Long-term unemployment rate
8 Personal earnings
9 Quality of support network
10 Educational attainment
11 Student skills
12 Years in education
13 Air pollution
14 Water quality
15 Stakeholder engagement for developing regulations
16 Voter turnout
17 Life expectancy
18 Self-reported health
19 Life satisfaction
20 Feeling safe walking alone at night
21 Homicide rate
22 Employees working very long hours
23 Time devoted to leisure and personal care
OCED PCA loadings

0 Dwellings without basic facilities
1 Housing expenditure
2 Rooms per person
3 Household net adjusted disposable income
4 Household net financial wealth
5 Labour market insecurity
6 Employment rate
7 Long-term unemployment rate
8 Personal earnings
9 Quality of support network
10 Educational attainment
11 Student skills
12 Years in education
13 Air pollution
14 Water quality
15 Stakeholder engagement for developing regulations
16 Voter turnout
17 Life expectancy
18 Self-reported health
19 Life satisfaction
20 Feeling safe walking alone at night
21 Homicide rate
22 Employees working very long hours
23 Time devoted to leisure and personal care
All the variance is in the first PC

PCA Analysis
Learning objectives
Distributional similarity
Word embeddings
SVD on words

Eigenwords

Lyle Ungar
University of Pennsylvania
Represent each word by its context

I ate ham
You ate cheese
You ate

<table>
<thead>
<tr>
<th>Word Before</th>
<th>Word After</th>
</tr>
</thead>
<tbody>
<tr>
<td>ate</td>
<td>ate</td>
</tr>
<tr>
<td>cheese</td>
<td>cheese</td>
</tr>
<tr>
<td>ham</td>
<td>ham</td>
</tr>
<tr>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>You</td>
<td>You</td>
</tr>
</tbody>
</table>

Distributional Similarity

Hypothesis: Words with similar contexts have similar meanings
Eigenwords: Word embeddings

- Project high dimensional context to low dimensional space (SVD/PCA)
- Similar words are close in this low dimensional space

<table>
<thead>
<tr>
<th></th>
<th>Word Before</th>
<th>Word After</th>
</tr>
</thead>
<tbody>
<tr>
<td>ate</td>
<td>0 0 0 1 2</td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>cheese</td>
<td>1 0 0 0 0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>ham</td>
<td>1 0 0 0 0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>I</td>
<td>0 0 0 0 0</td>
<td>1 0 0 0 0</td>
</tr>
<tr>
<td>You</td>
<td>0 0 0 0 0</td>
<td>2 0 0 0 0</td>
</tr>
</tbody>
</table>

I ate ham
You ate cheese
You ate

I ate cheese ham
I ate cheese ham I You

You ate cheese
You ate cheese ham
You ate cheese ham I You
Eigenwords as SVD

- Left singular vectors are eigenwords
 - a vector representing each word – “word embeddings”
- Right singular vectors times context give eigentokens
 - vectors mapping contexts to the latent space

<table>
<thead>
<tr>
<th>Word Before</th>
<th>Word After</th>
</tr>
</thead>
<tbody>
<tr>
<td>ate</td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>cheese</td>
<td>1 0 0 0 0</td>
</tr>
<tr>
<td>ham</td>
<td>1 0 0 0 0</td>
</tr>
<tr>
<td>I</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>You</td>
<td>0 0 0 0 0</td>
</tr>
</tbody>
</table>
Similar words are close
Nouns and verbs

cat
home
dog
word
boat
truck
car
river
drink
sleep
push
talk

agree
disagree
carry
listen
eat

PC 1
PC 2
Pronouns
Word Sense Disambiguation

- Estimate “state vector” (“contextualized embedding”) for a word using right singular vectors

- Similar meanings will again be close.
 - The ships dock in the port.
 - The **port** is loaded onto ships and sent to America
 - The meat is **tender**.
 - I have **tender** feelings for her.
 - The company will **tender** an offer.
Use eigenwords/eigentokens in supervised learning

- ’Similar’ words have embeddings that are close
- Predict labels for tokens based on their estimated ‘state vector’
 - Part of speech
 - Named entity type (person, place, thing…)
 - Word sense (“meaning”) disambiguation
- Or embed sentences
Word2vec

- *Word embeddings*, often found by deep learning, are very popular now
 - Word2Vec has similar performance to the simpler eigenwords
- Deep learning (contextualized) versions such as BERT and friends work better
 - To be covered later
What you should know

◆ PCR
 ● Use principal components from training to find scores on test data

◆ Interpretation: Scores and loadings
 ● percentage of variance explained

◆ Word embeddings
 ● Context free (left singular vectors: words)
 ● Context sensitive (right singular vectors: context)