The Netflix training data

- **Training data**
 - 480,000 users
 - 18,000 movies
 - 100,000,000 ratings

- **Data is sparse**
 - \[\frac{100,000,000}{(18,000 \times 480,000)} = 0.01\]
 - but it is worse than that!

$1,000,000 prize money for first team to beat the baseline by 10\%$
Validation and Test data sets

- **Validation (“Quiz”) set**
 - 1.4 million ratings used to calculate leaderboard

- **Test set**
 - 1.4 million ratings used to determine winners
What models to use?

- An ensemble of many models
- Main methods
 - K-nearest neighbors
 - Matrix reconstruction
K-NN

\[\hat{r}_{ui} = \frac{\sum_{j \in N(i;u)} r_{uj}}{k} \]

\(r_{ui} = \) rating by user \(u \) for movie \(i \)

\(N(i;u) = \) the set of \(k \) (typically 20–50) movies for which user \(u \) has provided a rating that are most similar to movie \(i \)

How do you measure movie similarity?
How to improve?
Soft K-NN

\[\hat{r}_{ui} = \sum_{j \in N(i;u)} s_{ij} r_{uj} / \sum_{j \in N(i;u)} s_{ij} \]

- \(r_{ui} = \) rating by user \(u \) for movie \(i \)
- \(s_{ij} = \) similarity between movies \(i \) and \(j \)
K-NN – subtract off a baseline

\[\hat{r}_{ui} = b_{ui} + \sum_{j \in N(i;u)} s_{ij} (r_{uj} - b_{uj}) / \sum_{j \in N(i;u)} s_{ij} \]

- \(r_{ui} \) = rating by user \(u \) for movie \(i \)
- \(s_{ij} \) = similarity between movies \(i \) and \(j \)
- \(b_{ui} \) = baseline rating - e.g. mean rating of user \(u \) or movie \(i \)
This doesn’t account for

- **Similar movies are redundant**
 - e.g. a series like Star Wars or Avengers
- **Movies may be more or less similar**
 - If less similar, then ‘shrink’ more to the baseline
K-NN with regression instead of similarity

\[\hat{r}_{ui} = b_{ui} + \sum_{j \in N(i;u)} w_{ij}(r_{uj} - b_{uj}) \]

- \(r_{ui} \) = rating by user \(u \) for movie \(i \)
- \(w_{ij} \) = weight learned by regression
- \(b_{ui} \) = baseline rating - e.g. mean rating of user \(u \) or movie \(i \)
K-NN with regression

\[\hat{r}_{ui} = b_{ui} + \sum_{j \in N(i;u)} w_{ij} (r_{uj} - b_{uj}) \]

\(r_{ui} \) = rating by user \(u \) for movie \(i \)

\(w_{ij} \) = weight learned by regression

\(b_{ui} \) = baseline rating - e.g. mean rating of user \(u \) or movie \(i \)

Find \(w_{ij} \) by seeing what weights on similar movies \(j \) would have best estimated the rating \(r_{vi} \) on the target movie \(i \) by people \(v \) other than the user \(u \).

\[\text{argmin}_w [\sum_{v \neq u} (r_{vi} - \hat{r}_{vi})^2] = \text{argmin}_w [\sum_{v \neq u} (r_{vi} - b_{vi} - \sum_{j \in N(i;v)} w_{ij} (r_{vj} - b_{vj}))^2] \]
This can be expensive

- Need to compare every user against every other user to find the most similar users
 - Based on movies in common
- How to speed up?
Matrix factorization

- Factor rating matrix R
- $\hat{R} = PQ^T$ or $\hat{r}_{ui} = p_u q_i^T$
 - P is number of users * number of hidden factors
 - Q is number of movies * number of hidden factors
 - Number of hidden factors, $k = 60$
- P looks like principal component scores/coefficients
- Q looks like loadings
Matrix factorization

\[\sum_{(u,i) \in K} [(r_{ui} - p_u q_i^T)^2 + \lambda (\|p_u\|_2^2 + \|q_i\|_2^2)] \]

reconstruction error ridge penalty

where the summation is over the set \(K \) of \((u,i)\) pairs for which \(r_{ui} \) are known.

◆ Solve using alternating least squares
 - first fix \(P \) and solve for \(Q \) using Ridge regression
 - then fix \(Q \) and solve for \(P \) using Ridge regression
 - repeat.
Matrix factorization

- Further regularize by forcing the elements of P and Q to be non-negative
 - Non-Negative Matrix Factorization (NNMF)
- And do locally weighted matrix factorization
 - $\sum_{(u,i) \in K} [s_{ij}(r_{ui} - p_u q_i^T)^2 + \lambda(|p_u|_2 + |q_i|_2)]$
What is out-of-sample?
What you should know

- Everything we’ve done can be extended to only use the loss over the observations we have.
 - Regression
 - Matrix factorization
 - Generalizes PCA to include Ridge penalty, NNMF
- For highest accuracy, ensemble all the methods
 - Subtract off (and add back in) baseline
- Follow-up competition was cancelled because…
- Lots of other features can be used
How is my speed?

- Slow
- Good
- Fast