CIS 520 Machine Learning Summary

Lyle Ungar

What we covered
What’s hot in ML

Final: Tuesday 12/20 6:00 pm
Watch ed for location
Towne 100 / Wu & Chen
Two 2-sided pages cheatsheet
Course goals

◆ Be familiar with all major ML methods
 ● Regression (linear, logistic), regularization, feature selection
 ● K-NN, Decision trees, Random Forests, SVMs
 ● PCA, K-means, GMM, Autoencoders
 ● Naive Bayes, Bayes Nets, LDA, HMMs
 ● Boosting, perceptrons, LMS
 ● Deep learning (CNNs)
 ● Reinforcement Learning (MDP, Q-learning)

◆ Know their strengths and weaknesses
 ● know jargon, concepts, theory
 ● be able to modify and code algorithms
 ● be able to read current literature

We did all of these!
Components of ML

◆ Representation
 ● Feature set
 ● Model form

◆ Loss function
 ● And regularization penalty

◆ Optimization method
 ● For parameter estimation
 ● For model selection and hyperparameter tuning
Representations

- **Non-parametric**
 - Nearest-neighbor
 - Decision Trees, Random forests, gradient tree boosting

- **Linear models**
 - Hyperplane as a separator
 - Kernel methods

- **Neural nets**
 - CNN’s, Recurrent Nets/LSTMs

- **Belief nets**
 - HMM, LDA
Representations

<table>
<thead>
<tr>
<th>Linear (parametric)</th>
<th>Nonlinear (semi-parametric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>Neural Nets</td>
</tr>
<tr>
<td>Logistic regression</td>
<td>Nonlinear (nonparametric)</td>
</tr>
<tr>
<td>HMM</td>
<td>K-NN</td>
</tr>
<tr>
<td>MDP</td>
<td>Trees, Forests</td>
</tr>
</tbody>
</table>
MLE gives loss functions

<table>
<thead>
<tr>
<th>Loss function</th>
<th>Bayesian (MLE/MAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td>OLS</td>
</tr>
<tr>
<td>K-means</td>
<td>GMM</td>
</tr>
<tr>
<td>PCA</td>
<td></td>
</tr>
</tbody>
</table>

Gaussian noise gives L2 loss
Representations: Primal/Dual

Primal: feature space
- X^TX
- Covariance
- OLS

Dual: observation space
- XX^T
- Kernel matrix
- SVM
Invariances

Translational invariance

In space: CNN, data augmentation

In time: CNN, HMM, MDP, RNN
What loss functions have we used?

- L0, L1, L2
- Log-likelihood (MLE, MAP)
- Hinge
- Logistic
- Exponential
- Cross-Entropy; KL-divergence

Boosting: \(\exp(-y_i f_\alpha(x_i)) \) Logistic: \(\log(1 + \exp(-y_i f_w(x_i))) \)
Loss Functions

- L_0
- Hinge
- Logistic
- Exponential (adaboost)
Regularization priors

\[
\text{Argmin}_w \|y - w \cdot x\|_2^2 + \lambda \|w\|_p^p
\]

- **L_2** \(\|w\|_2^2 \)
 - Gaussian prior: \(p(w) \sim \exp(-|w|_2^2/\sigma^2) \)

- **L_1** \(\|w\|_1 \)
 - Laplace prior: roughly \(p(w) \sim \exp(-|w|_1/\sigma^2) \)

- **L_0** \(\|w\|_0 \)
 - Spike and slab prior

\[
\log P(D_X, D_Y, \theta) = \log P(D_X, D_Y \mid \theta) + \log P(\theta) = -\text{loss}(\theta) + \text{regularizer}(\theta)
\]
Bias-Variance Trade-off

\[E_{x,y,D}[(h(x; D) - y)^2] = \]

\[\underbrace{E_{x,D}[(h(x; D) - \bar{h}(x))^2]}_{\text{Variance}} + \underbrace{E_x[(\bar{h}(x) - \bar{y}(x))^2]}_{\text{Bias}^2} + \underbrace{E_{x,y}[(\bar{y}(x) - y)^2]}_{\text{Noise}} \]
Optimization methods

- **Closed form** (e.g. \(w = (X^TX)^{-1}X^T y \))
- **Gradient descent**: Stochastic, minibatch
 - Streaming/Online: LMS, Perceptron
- **Search**: streamwise, stepwise, stagewise
- **Power method** (for eigenvectors, SVD)
- **Lagrange Multipliers** (constrained optimization)
 - not covered
Alternating optimization methods

◆ **EM** (alternating gradient descent in likelihood)
 - E: expected value of hidden values
 - M: MLE or MAP estimate of parameters

◆ **Other alternating methods**
 - X \sim SW^T for ICA, NNMF (non-negative matrix factorization)
 - RL: V or Q and policy
 - **Response surface**: Model and optimal action
Hyperparameter Optimization

◆ **Search**
 - e.g., L_1, L_2, penalties
 - Neural network structure, regularization

◆ **Auto-SKlearn**
 - Initialize hyperparameters from model predicting accuracy as a function of problem description and hyperparameter values

◆ **Auto-ML**
 - Use reinforcement learning to learn a ‘design policy’
Distance and similarity

◆ Distances from norms
 • $||x_1-x_2||_0$ $||x_1-x_2||_1$ $||x_1-x_2||_2$...

◆ Similarities from kernels
 • $k(x_1,x_2)$

◆ Probability-based divergence
 • $D_{KL}(p||q) = \sum_k p_k \log(p_k/q_k)$ - KL-divergence
 • $H(p,q) = H(p) + D_{KL}(p||q)$ - cross-entropy

 \[= - \sum_k p_k \log(q_k)\]
 - p is the true distribution, q is the approximation
Cross entropy and log-likelihood

- **Cross-entropy**

 - $H(p,q) = - \sum_k p_k \log(q_k)$ summed over labels k

 - $- \sum_i \sum_k \delta_{ik} \log(p(y_i=k|x=x_i))$ \hspace{1em} $\delta_{ik} = 1 \text{ iff } y_i = k$

 - Sum of the estimated log probabilities of the true answers

- $\log \prod_i p(y_i|x_i) = \sum_i \log p(y_i|x_i)$ log-likelihood
KL-Divergence

- $D_{KL}(p\|q) = \sum_k p_k \log(p_k/q_k)$

- **Mutual information** – not really covered
 - $MI(X,Y) = D_{KL}(P(X,Y) \| P(X)P(Y))$

- **Information gain**
 - $IG(Y|X_j) = D_{KL}(P(Y|X_j) \| P(Y)) = H(Y) - H(Y|X_j)$
 - Which feature X_j will maximize the information gain?

- **Bayesian Experimental Design**
 - For which x will the label y (in expectation) most change $p(w)$

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Types of Learning

- **Supervised** X, y
 - Given an observation x, what is the best label y?

- **Unsupervised** X
 - Given a set of x’s, cluster or summarize them

- **Reinforcement**
 - Given a sequence of states x and possible actions a, learn which actions maximize reward.

What kind of learning is missing here?
Unsupervised methods

- PCA, ICA, NNMF
 - $X \sim S V^T$
- K-means, GMM, LDA
- Auto-encoders
 - Information bottleneck
 - Denoising
 - Variational

Many of these minimize reconstruction error subject to some constraints
Bayesian Belief Nets

- **Naïve Bayes**
 - Binary or real-valued X’s;
- **Belief Net**
- **GMM**
 - Different model forms
- **LDA**
- **HMM/MDP**
Reinforcement learning

◆ Model-based
 ● MDP

◆ Model-free
 ● Shallow: TD(0) vs. Deep: Monte-Carlo Tree Search
 ● Value: \(V(s) \) vs. Q-learning \(Q(s,a) \)

◆ On-policy (\(\epsilon \)-greedy) vs. off-policy
 ● Trade-off exploration and exploitation
Summary

Response to all possible actions

Response to one possible actions

One-step ahead

Search to end

Model-based

Model-free

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
For any MDP, given infinite exploration time and a partly-random policy, Q-learning will find an optimal policy: one that maximizes the expected value of the total reward over all successive steps.

\[
Q^{\text{new}}(s_t, a_t) \leftarrow (1 - \alpha) \cdot Q(s_t, a_t) + \alpha \cdot \left(r_t + \gamma \cdot \max_a Q(s_{t+1}, a) \right)
\]
Deep Q-Learning (DQL)

$$\text{Argmin}_\theta \left[Q(s, a; \theta) - \left(r(s, a) + \gamma \max_a Q(s', a; \theta) \right) \right]^2$$

Represent Q with a neural net

s, a can be one-hot or real valued

Update this

To be closer to new value estimate
What to use when?
SKLearn vs. NNets

◆ Deep learning is almost always better than classic ML on large data sets
 - Text, images, sound, videos

◆ Classic ML is often better than deep learning on tabular data
Feature selection

- **Regression** (L0, L1, L2 penalties)
 - Do you expect very few, a moderate number of, or most features?

- **Random forests, gradient tree boosting**
 - Feature selection is ‘built in’

- **Neural nets**
 - Generally, no built-in feature selection
 - Screen features before you build the net
Note:

- The new material after this slide will not be on the final; it is just for fun!
What’s hot

◆ Applied ML
 ● datascience
◆ Multimodal
◆ Human in the loop
◆ Generative models
 ● Stable diffusion
 ● ChatGPT

This is a photograph of ancient Greek philosopher Heraclitus in 500 BC.
What’s hot: generative models

- Given a set of observations, x, generate new x’s from the same distribution

- Diffusion Models
 - $p(\text{image}' \mid \text{words}, \text{image})$

- Large Language Models
 - $p(\text{word}_{t+1} \mid \text{word}_t, \text{word}_{t-1}, \text{word}_{t-2}, ...)$
Diffusion Models

Diffusion Models

◆ Dall-E 2, Stable Diffusion, Midjourny

Source: https://www.youtube.com/watch?v=F1X4fHzF4mQ
Diffusion Models

Markov Chain!

https://medium.com/@monadsblog/diffusion-models-4dbe58489a2f
Large Language Models

- **GPT-3, ChatGPT** - OpenAI
- **Blenderbot** - Facebook
- **PaLM, Lambda** - Google
GPT-3 Generative Pretrained Transformer

► Trained to predict next word
 ● on ~ 45TB of text

► ~ 175B parameters.

► 2048 token context
 ● About 1,500 words

► 96 transformer layers

► GPT-4 will have 100 Trillion parameters
Transformers

- **Encoder-decoder architecture**
 - With self-attention: learns how much weight to put on each token

- **Byte Pair Encoding (BPE) tokenization**
Self-attention

- Embed every token in the sentence
- Project them down to \(Q, K, V \)
- Reweight them with \(\text{softmax}(Q K^T) \)
- Do this many times (different "heads")

https://jalammar.github.io/illustrated-transformer/
Self-attention

Embed every token in the sentence
Project them down to Q, K, V
Reweight them with $\text{softmax}(QK^T)$
Do this many times (different “heads’)

https://jalammar.github.io/illustrated-transformer/
ChatGPT

<table>
<thead>
<tr>
<th>Examples</th>
<th>Capabilities</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Explain quantum computing in simple terms" →</td>
<td>Remembers what user said earlier in the conversation</td>
<td>May occasionally generate incorrect information</td>
</tr>
<tr>
<td>"Got any creative ideas for a 10 year old’s birthday?" →</td>
<td>Allows user to provide follow-up corrections</td>
<td>May occasionally produce harmful instructions or biased content</td>
</tr>
<tr>
<td>"How do I make an HTTP request in Javascript?" →</td>
<td>Trained to decline inappropriate requests</td>
<td>Limited knowledge of world and events after 2021</td>
</tr>
</tbody>
</table>
See all of you for the final, **Tuesday 6:00**

Stay in touch & let me know how you use ML …

Thank you!!!