Course goals

◆ Be familiar with all major ML methods
 ● Regression (linear, logistic), regularization, feature selection
 ● K-NN, Decision trees, Random Forests, SVMs
 ● PCA, K-means, GMM, Autoencoders
 ● Naive Bayes, Bayes Nets, Markov Nets, LDA, HMMs
 ● Boosting, perceptrons, LMS
 ● Deep learning (CNNs, GANs)
 ● Reinforcement Learning (MDP, Q-learning)

◆ Know their strengths and weaknesses
 ● know jargon, concepts, theory
 ● be able to modify and code algorithms
 ● be able to read current literature

We did all of these!
Components of ML

- **Representation**
 - Feature set
 - Model form

- **Loss function**
 - And regularization penalty

- **Optimization method**
 - For parameter estimation
 - For model selection and hyperparameter tuning
Representations

- **Linear models**
 - Hyperplane as a separator
 - Kernel methods

- **Decision Trees**
 - Random forests, gradient tree boosting

- **Neural nets**
 - CNNs, GANs and Conditional GANs
 - Recurrent Nets/LSTMs

- **Structured X, y**: Graphs & Trees (not covered)
What loss functions have we used?

- L_0, L_1, L_2
- Log-likelihood (MLE, MAP)
- Hinge
- Logistic
- Exponential
- Cross-Entropy; KL-divergence

Boosting: $\exp(-y_if_{\alpha}(x_i))$ Logistic: $\log(1 + \exp(-y_if_{w}(x_i)))$
Loss Functions

- L_0
- Hinge
- Logistic
- Exponential (adaboost)
Regularization priors

\[\text{Argmin}_w \|y - w \cdot x\|_2^2 + \lambda \|w\|_{p^p} \]

- **L₂** \(\|w\|_2^2 \)
 - Gaussian prior: \(p(w) \sim \exp(-\|w\|_2^2/\sigma^2) \)
- **L₁** \(\|w\|_1 \)
 - Laplace prior: roughly \(p(w) \sim \exp(-\|w\|_1/\sigma^2) \)
- **L₀** \(\|w\|_0 \)
 - Spike and slab prior

\[
\log P(D_X, D_Y, \theta) = \log P(D_X, D_Y \mid \theta) + \log P(\theta) = -\text{loss}(\theta) + \text{regularizer}(\theta)
\]
L₀, L₁ and L₂ Penalties

- If the x’s have been standardized (mean zero, variance 1) then we can visualize the shrinkage:

\[L₂ = \text{Ridge} \]

sum of squares

\[L₁ = \text{Lasso} \]

sum of abs value

\[L₀ = \text{“stepwise regression”} \]

Number of features
Bias-Variance Trade-off

$$E_{x,y,D}[(h(x; D) - y)^2] =$$

$$E_{x,D}[(h(x; D) - \bar{h}(x))^2] + E_x[(\bar{h}(x) - \bar{y}(x))^2] + E_{x,y}[(\bar{y}(x) - y)^2]$$

- Variance
- Bias^2
- Noise
Optimization methods

- **Gradient descent**: Stochastic, minibatch
- **Streaming/Online methods**: LMS, Perceptron
- **Closed form** (e.g. $w = (X^TX)^{-1}X^Ty$)
- **Search**: streamwise, stepwise, stagewise
- **Power method** (for eigenvectors, SVD)
- **Lagrange Multipliers** (constrained optimization)
 - not really covered
Optimization methods

◆ **EM** (alternating gradient descent in likelihood)
 - **E**: expected value of hidden values
 - **M**: MLE or MAP estimate of parameters

◆ **Other alternating methods**
 - **X ~ SW^T** for ICA, NNMF (non-negative matrix factorization)
 - **V** or **Q** and policy
 - Model and optimum (response surface)
Hyperparameter Optimization

◆ Search
 - e.g., L_1, L_2, penalties
 - Neural network structure, regularization

◆ Auto-SKlearn
 - Initialize hyperparameters from model predicting accuracy as a function of problem description and hyperparameter values

◆ Auto-ML
 - Use reinforcement learning to learn a ‘design policy’
Distance and similarity

◆ Distances induced from norms
 • $||x_1-x_2||_0$ $||x_1-x_2||_1$ $||x_1-x_2||_2$...

◆ Similarities from kernels
 • $k(x_1,x_2)$

◆ Probability-based divergence
 • $D_{KL}(p||q) = \sum_k p_k \log(p_k/q_k)$ - KL-divergence
 • $H(p,q) = H(p) + D_{KL}(p||q)$ - cross-entropy

 $= - \sum_k p_k \log(q_k)$

 p is the true distribution, q is the approximation
Cross entropy and log-likelihood

- **Cross-entropy**
 - $H(p,q) = - \sum_k p_k \log(q_k)$ summed over labels k
 - $- \sum_i \sum_k \delta_{ik} \log(p(y_i=k|x=x_i))$ \quad \delta_{ik} = 1 \text{ iff } y_i=k$
 - - Sum of the estimated log probabilities of the true answers

- $\log \prod_i p(y_i|x_i) = \sum_i \log p(y_i|x_i)$ log-likelihood
KL-Divergence

- \(D_{KL}(p||q) = \sum_k p_k \log(p_k/q_k) \)
- Mutual information
 - \(MI(X,Y) = D_{KL}(P(X,Y) || P(X)P(Y)) \)
- Information gain
 - \(IG(Y|X_j) = D_{KL}(P(Y|X_j) || P(Y)) = H(Y) - H(Y|X_j) \)
 - Which feature \(X_j \) will maximize the information gain?
- Bayesian Experimental Design
 - For which \(x \) will the label \(y \) (in expectation) most change \(p(w) \)

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Types of Learning

- **Supervised** \(X, y \)
 - Given an observation \(x \), what is the best label \(y \)?

- **Unsupervised** \(X \)
 - Given a set of \(x \)'s, cluster or summarize them

- **Reinforcement**
 - Given a sequence of states \(x \) and possible actions \(a \), learn which actions maximize reward.

What kind of learning is missing here?
Unsupervised methods

- PCA, ICA, NNMF
 - $X \sim SV^T$
- K-means, GMM
- Auto-encoders
 - Information bottleneck
 - Denoising
 - Variational

Most of these minimize reconstruction error subject to some constraints
Bayesian Belief Nets

- **NB**
 - Binary or real-valued X’s;

- **Belief Net**

- **GMM**
 - Different model forms

- **LDA**

- **HMM/MDP**
Reinforcement learning

- Model-based
 - MDP

- Model-free
 - Shallow: TD(0) vs. Deep: Monte-Carlo
 - Value: $V(s)$ vs. Q-learning $Q(s,a)$

- On policy (ε-greedy) vs. off-policy
 - Trade off exploration and exploitation
Summary

Response to all possible actions

Response to one possible actions

One-step ahead

Search to end

Model-based

Model-free

From David Silver UCL Course on RL: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
For any MDP, given infinite exploration time and a partly-random policy, Q-learning will find an optimal policy: one that maximizes the expected value of the total reward over all successive steps.
Deep Q-Learning (DQL)

\[\text{Argmin}_\theta \left[Q(s, a; \theta) - \left(r(s, a) + \gamma \max_a Q(s', a; \theta) \right) \right]^2 \]

Update this To be closer to new value estimate

Represent \(Q \) with a neural net

\(s, a \) can be one-hot or real valued
Model Interpretation

◆ Global: What does this *model* do?
 ● Variable importance
 ■ E.g. how much does accuracy suffer if you remove it?

◆ Local: Why did you make this decision for this x?
 ● Decision tree: path taken
 ● LIME (Local Interpretable Model-Agnostic Explanations)
What to use when? - Supervised

<table>
<thead>
<tr>
<th>n</th>
<th>p</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100,000</td>
<td>PCR, Ridge, SVM, semi-supervised</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>Anything in Sk-learn</td>
</tr>
<tr>
<td>100,000</td>
<td>100</td>
<td>Sk-learn, Nnet</td>
</tr>
<tr>
<td>1,000,000</td>
<td>10,000</td>
<td>Nnet</td>
</tr>
<tr>
<td>1,000,000</td>
<td>100,000</td>
<td>Nnet with pretraining</td>
</tr>
</tbody>
</table>

Ask: What structure do I expect to see?
What to use when? - Unsupervised

<table>
<thead>
<tr>
<th>n</th>
<th>p</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100,000</td>
<td>K-means or PCA</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>K-means or PCA</td>
</tr>
<tr>
<td>100,000</td>
<td>10,000</td>
<td>K-means? GMM? Autoencoder?</td>
</tr>
<tr>
<td>10,000,000 images</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000,000 words</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feature selection

- **Regression**
 - Do you expect very few, a moderate number of, or most features?

- **Random forests, gradient tree boosting**
 - Feature selection is ‘built in’

- **Neural nets**
 - Generally no feature selection
 - Or screen features before you build the net
The biggest open problem: Transfer learning

- **Embeddings**
 - Images, words, products, people
 - Multimodal transformers …

- **Multitask learning**
 - Shared embeddings for many tasks

- **One shot learning**
 - Generalize from one label on one image …
The biggest open problem: Transfer learning

- Learn “deep structure”
 - Reusable modules
- Build in “deep structure”
 - Physics
 - Ties to symbolic reasoning?
 - Causal models
- Use external data
 - Wikipedia, databases, …
The future ...

- Every company is an AI company
- Self-driving cars?
- The singularity??
See many of you for the review session, Monday 10:30
See all of you for the final, Wednesday
Stay in touch & let me know how you use ML …

Thank you!!!